Probiotics are live microorganisms exerting beneficial effects on the host’s health when administered in adequate amounts.Among the most popular and adequately studied probiotics are bacteria from the families Lactob...Probiotics are live microorganisms exerting beneficial effects on the host’s health when administered in adequate amounts.Among the most popular and adequately studied probiotics are bacteria from the families Lactobacillaceae,Bifidobacteriaceae and yeasts.Most of them have been shown,both in vitro and in vivo studies of intestinal inflammation models,to provide favorable results by means of improving the gut microbiota composition,promoting the wound healing process and shaping the immunological responses.Chronic intestinal conditions,such as inflammatory bowel diseases(IBD),are characterized by an imbalance in microbiota composition,with decreased diversity,and by relapsing and persisting inflammation,which may lead to mucosal damage.Although the results of the clinical studies investigating the effect of probiotics on patients with IBD are still controversial,it is without doubt that these microorganisms and their metabolites,now named postbiotics,have a positive influence on both the host’s microbiota and the immune system,and ultimately alter the topical tissue microenvironment.This influence is achieved through three axes:(1)By dis-placement of potential pathogens via competitive exclusion;(2)by offering protection to the host through the secretion of various defensive mediators;and(3)by supplying the host with essential nutrients.We will analyze and discuss almost all the in vitro and in vivo studies of the past 2 years dealing with the possible favorable effects of certain probiotic genus on gut immunological responses,highlighting which species are the most beneficial against intestinal inflammation.展开更多
To predict the wave loads of a flexible trimaran in different wave fields,a one-way interaction numerical simulation method is proposed by integrating the fluid solver(Star-CCM+)and structural solver(Abaqus).Differing...To predict the wave loads of a flexible trimaran in different wave fields,a one-way interaction numerical simulation method is proposed by integrating the fluid solver(Star-CCM+)and structural solver(Abaqus).Differing from the existing coupled CFD-FEA method for monohull ships in head waves,the presented method equates the mass and stiffness of the whole ship to the hull shell so that any transverse and longitudinal section stress of the hull in oblique waves can be obtained.Firstly,verification study and sensitivity analysis are carried out by comparing the trimaran motions using different mesh sizes and time step schemes.Discussion on the wave elevation of uni-and bi-directional waves is also carried out.Then a comprehensive analysis on the structural responses of the trimaran in different uni-directional regular wave and bi-directional cross sea conditions is carried out,respectively.Finally,the differences in structural response characteristics of trimaran in different wave fields are studied.The results show that the present method can reduce the computational burden of the two-way fluid-structure interaction simulations.展开更多
The Submerged Floating Tunnel(SFT)relies on a tensioned mooring system for precise positioning.The sudden breakage of a single cable can trigger an immediate alteration in the constraint conditions of the tube,inducin...The Submerged Floating Tunnel(SFT)relies on a tensioned mooring system for precise positioning.The sudden breakage of a single cable can trigger an immediate alteration in the constraint conditions of the tube,inducing a transient heave response within the structure along with a transient increase in cable tension experienced by adjacent cables.In more severe cases,this may even lead to a progressive failure culminating in the global destruction of the SFT.This study used ANSYS/AQWA to establish a numerical model of the entire length SFT for the hydrodynamic response analysis,and conducted a coupled calculation of the dynamic responses of the SFT-mooring line model based on Orca Flex to study the global dynamic responses of the SFT at the moment of cable breakage and the redistribution of cable internal forces.The most unfavorable position for SFT cable breakage was identified,the influence mechanism of cable breakage at different positions on the global dynamic response was revealed,and the progressive chain failure pattern caused by localized cable breakage are also clarified.展开更多
Cemented and mechanically clamped types of end fittings(fitting-C and fitting-M)are commonly used in transformer bushings.During the Luding Ms 6.8 earthquake that occurred in China on September 5,2022,all transformer ...Cemented and mechanically clamped types of end fittings(fitting-C and fitting-M)are commonly used in transformer bushings.During the Luding Ms 6.8 earthquake that occurred in China on September 5,2022,all transformer bushings with the two types of end fittings in a 500 kV substation were damaged.Post-earthquake field investigations were conducted,and the failures of the two types of bushings were compared.Two elementary simulation models of the transformer-bushing systems were developed to simulate the engineering failures,and further compute their seismic responses for comparison.The results indicate that the hitch lugs of the connection flange are structurally harmful to seismic resistance.Fitting-M can decrease the bending stiffness of the bushing due to the flexible sealing rubber gasket.Since it provides a more flexible connection that dissipates energy,the peak accelerations and relative displacements at the top of the bushing are significantly lower than those of the bushing with fitting-C.Compared with fitting-C,fitting-M transfers the high-stress areas from the connection flange to the root of the porcelain,so the latter becomes the most vulnerable component.Fitting-M increases the failure risk of the low-strength porcelain,indicating the unsuitability of applying it in high-intensity fortification regions.展开更多
Thermo-poro-mechanical responses along sliding zone/surface have been extensively studied.However,it has not been recognized that the potential contribution of other crucial engineering geological interfaces beyond th...Thermo-poro-mechanical responses along sliding zone/surface have been extensively studied.However,it has not been recognized that the potential contribution of other crucial engineering geological interfaces beyond the slip surface to progressive failure.Here,we aim to investigate the subsurface multiphysics of reservoir landslides under two extreme hydrologic conditions(i.e.wet and dry),particularly within sliding masses.Based on ultra-weak fiber Bragg grating(UWFBG)technology,we employ specialpurpose fiber optic sensing cables that can be implanted into boreholes as“nerves of the Earth”to collect data on soil temperature,water content,pore water pressure,and strain.The Xinpu landslide in the middle reach of the Three Gorges Reservoir Area in China was selected as a case study to establish a paradigm for in situ thermo-hydro-poro-mechanical monitoring.These UWFBG-based sensing cables were vertically buried in a 31 m-deep borehole at the foot of the landslide,with a resolution of 1 m except for the pressure sensor.We reported field measurements covering the period 2021 and 2022 and produced the spatiotemporal profiles throughout the borehole.Results show that wet years are more likely to motivate landslide motions than dry years.The annual thermally active layer of the landslide has a critical depth of roughly 9 m and might move downward in warmer years.The dynamic groundwater table is located at depths of 9e15 m,where the peaked strain undergoes a periodical response of leap and withdrawal to annual hydrometeorological cycles.These interface behaviors may support the interpretation of the contribution of reservoir regulation to slope stability,allowing us to correlate them to local damage events and potential global destabilization.This paper also offers a natural framework for interpreting thermo-hydro-poro-mechanical signatures from creeping reservoir bank slopes,which may form the basis for a landslide monitoring and early warning system.展开更多
Inflammation is a multifaceted cellular and molecular response triggered by injury,infection,or various pathological conditions.Serving as a protective defense mechanism,the inflammatory response involves clinical sig...Inflammation is a multifaceted cellular and molecular response triggered by injury,infection,or various pathological conditions.Serving as a protective defense mechanism,the inflammatory response involves clinical signs like redness,swelling,pain,and increased body temperature.Immune cells,notably neutrophils and macrophages,play key roles in orchestrating this response.The delicate balance between proinflammatory and anti-inflammatory mediators,including cytokines and chemokines,regulates the inflammatory cascade.While acute inflammation is crucial for tissue repair,chronic inflammation may indicate an imbalance,contributing to conditions like autoimmune diseases.Understanding these mechanisms is vital for developing therapeutic strategies and managing chronic diseases.展开更多
Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to comp...Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to compare the properties of hydrogen and air with typical thermodynamic storage processes.This study employs a multi-physical coupling model to compare the operations of CAES and UHS,integrating gas thermodynamics within caverns,thermal conduction,and mechanical deformation around rock caverns.Gas thermodynamic responses are validated using additional simulations and the field test data.Temperature and pressure variations of air and hydrogen within rock caverns exhibit similarities under both adiabatic and diabatic simulation modes.Hydrogen reaches higher temperature and pressure following gas charging stage compared to air,and the ideal gas assumption may lead to overestimation of gas temperature and pressure.Unlike steel lining of CAES,the sealing layer(fibre-reinforced plastic FRP)in UHS is prone to deformation but can effectively mitigates stress in the sealing layer.In CAES,the first principal stress on the surface of the sealing layer and concrete lining is tensile stress,whereas UHS exhibits compressive stress in the same areas.Our present research can provide references for the selection of energy storage methods.展开更多
Long non-coding RNAs(lncRNAs)function as key modulators in mammalian immunity,particularly due to their involvement in lncRNA-mediated competitive endogenous RNA(ceRNA)crosstalk.Despite their recognized significance i...Long non-coding RNAs(lncRNAs)function as key modulators in mammalian immunity,particularly due to their involvement in lncRNA-mediated competitive endogenous RNA(ceRNA)crosstalk.Despite their recognized significance in mammals,research on lncRNAs in lower vertebrates remains limited.In the present study,we characterized the first immune-related lncRNA(pol-lnc78)in the teleost Japanese flounder(Paralichthys olivaceus).Results indicated that pol-lnc78 acted as a ceRNA for pol-miR-n199-3p to target the sterile alpha and armadillo motif-containing protein(SARM),the fifth discovered member of the Toll/interleukin 1(IL-1)receptor(TIR)adaptor family.This ceRNA network regulated the antibacterial responses of flounder via the Toll-like receptor(TLR)signaling pathway.Specifically,SARM acted as a negative regulator and exacerbated bacterial infection by inhibiting the expression of inflammatory cytokines IL-1βand tumor necrosis factor-α(TNF-α).Pol-miR-n199-3p reduced SARM expression by specifically interacting with the 3’untranslated region(UTR),thereby promoting SARM-dependent inflammatory cytokine expression and protecting the host against bacterial dissemination.Furthermore,pol-lnc78 sponged pol-miR-n199-3p to ameliorate the inhibition of SARM expression.During infection,the negative regulators pol-lnc78 and SARM were significantly down-regulated,while pol-miR-n199-3p was significantly up-regulated,thus favoring host antibacterial defense.These findings provide novel insights into the mechanisms underlying fish immunity and open new horizons to better understand ceRNA crosstalk in lower vertebrates.展开更多
A complete road-soft ground model is established in this paper to study the dynamic responses caused by vehicle loads and/or daily temperature variation.A dynamic thermo-elastic model is applied to capturing the behav...A complete road-soft ground model is established in this paper to study the dynamic responses caused by vehicle loads and/or daily temperature variation.A dynamic thermo-elastic model is applied to capturing the behavior of the rigid pavement,the base course,and the subgrade,while the soft ground is characterized using a dynamic thermo-poroelastic model.Solutions to the road-soft ground system are derived in the Laplace-Hankel transform domain.The time domain solutions are obtained using an integration approach.The temperature,thermal stress,pore water pressure,and displacement responses caused by the vehicle load and the daily temperature variation are presented.Results show that obvious temperature change mainly exists within 0.3 m of the road when subjected to the daily temperature variation,whereas the stress responses can still be found in deeper places because of the thermal swelling/shrinkage deformation within the upper road structures.Moreover,it is important to consider the coupling effects of the vehicle load and the daily temperature variation when calculating the dynamic responses inside the road-soft ground system.展开更多
This study aims to investigate mechanical properties and failure mechanisms of layered rock with rough joint surfaces under direct shear loading.Cubic layered samples with dimensions of 100 mm×100 mm×100 mm ...This study aims to investigate mechanical properties and failure mechanisms of layered rock with rough joint surfaces under direct shear loading.Cubic layered samples with dimensions of 100 mm×100 mm×100 mm were casted using rock-like materials,with anisotropic angle(α)and joint roughness coefficient(JRC)ranging from 15°to 75°and 2-20,respectively.The direct shear tests were conducted under the application of initial normal stress(σ_(n)) ranging from 1-4 MPa.The test results indicate significant differences in mechanical properties,acoustic emission(AE)responses,maximum principal strain fields,and ultimate failure modes of layered samples under different test conditions.The peak stress increases with the increasingαand achieves a maximum value atα=60°or 75°.As σ_(n) increases,the peak stress shows an increasing trend,with correlation coefficients R² ranging from 0.918 to 0.995 for the linear least squares fitting.As JRC increases from 2-4 to 18-20,the cohesion increases by 86.32%whenα=15°,while the cohesion decreases by 27.93%whenα=75°.The differences in roughness characteristics of shear failure surface induced byαresult in anisotropic post-peak AE responses,which is characterized by active AE signals whenαis small and quiet AE signals for a largeα.For a given JRC=6-8 andσ_(n)=1 MPa,asαincreases,the accumulative AE counts increase by 224.31%(αincreased from 15°to 60°),and then decrease by 14.68%(αincreased from 60°to 75°).The shear failure surface is formed along the weak interlayer whenα=15°and penetrates the layered matrix whenα=60°.Whenα=15°,as σ_(n) increases,the adjacent weak interlayer induces a change in the direction of tensile cracks propagation,resulting in a stepped pattern of cracks distribution.The increase in JRC intensifies roughness characteristics of shear failure surface for a smallα,however,it is not pronounced for a largeα.The findings will contribute to a better understanding of the mechanical responses and failure mechanisms of the layered rocks subjected to shear loads.展开更多
Cutaneous exposure to food allergens through a disrupted skin barrier is recognized as an important cause of food allergy,and the cutaneous sensitized mouse model has been established to investigate relevant allergic ...Cutaneous exposure to food allergens through a disrupted skin barrier is recognized as an important cause of food allergy,and the cutaneous sensitized mouse model has been established to investigate relevant allergic disorders.However,the role of different genetic backgrounds of mice on immune responses to food allergens upon epicutaneous sensitization is largely unknown.In this study,two strains of mice,i.e.,the BALB/c and C57BL/6 mice,were epicutaneously sensitized with ovalbumin on atopic dermatitis(AD)-like skin lesions,followed by intragastric challenge to induce IgE-mediated food allergy.Allergic outcomes were measured as clinical signs,specific antibodies and cytokines,and immune cell subpopulations,as well as changes in intestinal barrier function and gut microbiota.Results showed that both strains of mice exhibited typical food-allergic symptoms with a Th2-skewed response.The C57BL/6 mice,rather than the BALB/c mice,were fitter for establishing an epicutaneously sensitized model of food allergy since a stronger Th2-biased response and severer disruptions in the intestinal barrier and gut homeostasis were observed.This study provides knowledge for selecting an appropriate mouse model to study food-allergic responses associated with AD-like skin lesions and highlights the role of genetic variations in the immune mechanism underlying pathogenesis of food allergy.展开更多
High-resolution sea-level data and high-precision dating of corals in the northern South China Sea(SCS)during the Holocene provide a reference and historical background for current and future sea-level changes and a b...High-resolution sea-level data and high-precision dating of corals in the northern South China Sea(SCS)during the Holocene provide a reference and historical background for current and future sea-level changes and a basis for scientific assessment of the evolutionary trend of coral reefs in the SCS.Although sporadic studies have been performed around Hainan Island in the northern SCS,the reconstructed sea level presents different values or is controversial because the indicative meaning of the sea-level indicators were neither quantified nor uniform criteria.Here,we determined the quantitative relationship between modern living coral and sea level by measuring the top surfaces of 27 live Porites corals from the inner reef flat along the east coast of Hainan Island and assessed the accuracy of results obtained using coral as sea-level indicators.Additionally,three in situ fossil Porites corals were analyzed based on elevation measurements,digital X-ray radiography,and U-Th dating.The survey results showed that the indicative meanings for the modern live Porites corals is(146.09±8.35)cm below the mean tide level(MTL).It suggested that their upward growth limit is constrained by the sea level,and the lowest low water is the highest level of survival for the modern live Porites corals.Based on the newly defined indicative meanings,6 new sea-level index points(SLIPs)were obtained and 19 published SLIPs were recalculated.Those SLIPs indicated a relative sea level fluctuation between(227.7±9.8)cm to(154.88±9.8)cm MTL between(5393±25)cal a BP and(3390±12)cal a BP,providing evidences of the Mid-Holocene sea-level highstand in the northern SCS.Besides that,our analysis demonstrated that different sea-level histories may be produced based on different indicative meanings or criteria.The dataset of 276 coral U-Th ages indicates that coral reef development in the northern SCS comprised the initial development,boom growth,decline,and flourishing development again.A comparison with regional records indicated that synergistic effects of climatic and environmental factors were involved in the development of coral reefs in the northern SCS.Thus,the cessation of coral reef development during the Holocene in the northern SCS was probably associated with the dry and cold climate in South China,as reflected in the synchronous weakening of the ENSO and East Asian summer monsoon induced by the reduction of the 65°N summer insolation,which forced the migration of the Intertropical Convergence Zone.展开更多
Photothermal and photodynamic therapies(PTT/PDT)hold promise for localized tumor treatment,yet their full potential is hampered by limitations such as the hypoxic tumor microenvironment and inadequate systemic immune ...Photothermal and photodynamic therapies(PTT/PDT)hold promise for localized tumor treatment,yet their full potential is hampered by limitations such as the hypoxic tumor microenvironment and inadequate systemic immune activation.Addressing these challenges,we present a novel near-infrared(NIR)-triggered RNS nanoreactor(PBNO-Ce6)to amplify the photodynamic and photothermal therapy efficacy against triple-negative breast cancer(TNBC).The designed PBNOCe6 combines sodium nitroprusside-doped Prussian Blue nanoparticles with Chlorin e6 to enable on-site RNS production through NIR-induced concurrent NO release and ROS generation.This not only enhances tumor cell eradication but also potentiates local and systemic antitumor immune responses,protecting mice from tumor rechallenge.Our in vivo evaluations revealed that treatment with PBNO-Ce6 leads to a remarkable 2.7-fold increase in cytotoxic T lymphocytes and a 62%decrease in regulatory T cells in comparison to the control PB-Ce6(Prussian Blue nanoparticles loaded with Chlorin e6),marking a substantial improvement over traditional PTT/PDT.As such,the PBNO-Ce6 nanoreactor represents a transformative approach for improving outcomes in TNBC and potentially other malignancies affected by similar barriers.展开更多
Offshore wind power is a kind of important clean renewable energy and has attracted increasing attention due to the rapid consumption of non-renewable energy.To reduce the high cost of energy,a possible try is to util...Offshore wind power is a kind of important clean renewable energy and has attracted increasing attention due to the rapid consumption of non-renewable energy.To reduce the high cost of energy,a possible try is to utilize the combination of wind and wave energy considering their natural correlation.A combined concept consisting of a semi-submersible wind turbine and four torus-shaped wave energy converters was proposed and numerically studied under normal operating conditions.However,the dynamic behavior of the integrated system under extreme sea conditions has not been studied yet.In the present work,extreme responses of the integrated system under two different survival modes are evaluated.Fully coupled time-domain simulations with consideration of interactions between the semi-submersible wind turbine and the torus-shaped wave energy converters are performed to investigate dynamic responses of the integrated system,including mooring tensions,tower bending moments,end stop forces,and contact forces at the Column-Torus interface.It is found that the addition of four tori will reduce the mean motions of the yaw,pitch and surge.When the tori are locked at the still water line,the whole integrated system is more suitable for the survival modes.展开更多
BACKGROUND Currently,the primary treatment for gastroesophageal reflux is acid suppression with proton pump inhibitors,but they are not a cure,and some patients don’t respond well or refuse long-term use.Therefore,al...BACKGROUND Currently,the primary treatment for gastroesophageal reflux is acid suppression with proton pump inhibitors,but they are not a cure,and some patients don’t respond well or refuse long-term use.Therefore,alternative therapies are needed to understand the disease and develop better treatments.Laparoscopic anti-reflux surgery(LARS)can resolve symptoms of these patients and plays a significant role in evaluating esophageal healing after preventing harmful effects.Successful LARS improves typical gastroesophageal reflux symptoms in most patients,main-ly by reducing the exposure time to gastric contents in the esophagus.Amelio-ration of the inflammatory response and a recovery response in the esophageal epithelium is expected following the cessation of the noxious attack.AIM To explore the role of inflammatory biomolecules in LARS and assess the time required for esophageal epithelial recovery.METHODS Of 22 patients with LARS(pre-and post/5.8±3.8 months after LARS)and 25 healthy controls(HCs)were included.All subjects underwent 24-h multichannel intraluminal impedance-pH monitoring and upper gastrointestinal endoscopy,during which esophageal biopsy samples were collected using endoscopic tech-niques.Inflammatory molecules in esophageal biopsies were investigated by reverse transcription-polymerase chain reaction and multiplex-enzyme-linked immunosorbent assay.RESULTS Post-LARS samples showed significant increases in proinflammatory cytokines[interleukin(IL)-1β,interferon-γ,C-X-C chemokine ligand 2(CXCL2)],anti-inflammatory cytokines[CC chemokine ligand(CCL)11,CCL13,CCL17,CCL26,CCL1,CCL7,CCL8,CCL24,IL-4,IL-10],and homeostatic cytokines(CCL27,CCL20,CCL19,CCL23,C-CL25,CXCL12,migration inhibitory factor)compared to both HCs and pre-LARS samples.CCL17 and CCL21 levels were higher in pre-LARS than in HCs(P<0.05).The mRNA expression levels of AKT1,fibroblast growth factor 2,HRAS,and mitogen-activated protein kinase 4 were significantly decreased post-LARS vs pre-LARS.CCL2 and epidermal growth factor gene levels were significantly increased in the pre-LARS compared to the HCs(P<0.05).CONCLUSION The presence of proinflammatory proteins post-LARS suggests ongoing inflammation in the epithelium.Elevated homeostatic cytokine levels indicate cell balance is maintained for about 6 months after LARS.The anti-inflam-matory response post-LARS shows suppression of inflammatory damage and ongoing postoperative recovery.展开更多
This article explores the intricate relationship between attachment styles formed during early childhood and the subsequent responses to traumatic events, particularly the death of a parent. Drawing on the theoretical...This article explores the intricate relationship between attachment styles formed during early childhood and the subsequent responses to traumatic events, particularly the death of a parent. Drawing on the theoretical framework of attachment theory and incorporating contemporary research, the paper discusses how parental interactions shape the neural circuitry of infants and children, influencing their ability to form secure or insecure attachments. These attachment styles, in turn, play a critical role in determining the child’s coping mechanisms when faced with trauma. This paper focuses on trying to understand how attachment theory is connected to the reaction to trauma with a highlight on the four major styles of attachments which are secure, anxious, avoidant, and disorganized to mention but a few, and how they influence stress and adversity in children. Attachment theory holds that human beings’ ability to form affectional bonds in infancy determines their patterns of relatedness across the life cycle. The type of attachment that is secure usually supports healthy adaptation and good coping mechanisms regardless of the trauma in the childhood of the child. While secure attachment mostly facilitates favorable trauma-related outcomes, anxious or avoidant attachment can exacerbate or alter the responses. The caregiving system that is avoidant attachment has implications of autonomous self-functioning which has features of suppression of the emotional response and poor search for emotional support during stress. From the principles of developmental psychology and trauma theory, the paper also focuses on the major significance of the child’s early caregivers’ interactions that define the resilience and vulnerability factor. This knowledge is therefore critical in designing specific interventions based on the improvement of coping behaviors and emotional regulatory systems of children who have been exposed to trauma. Finally, we have the synthesis of new knowledge about the role of secure attachment relationships as its fundamental element in shaping adaptive traumatization and psychological development. The article also delves into the physiological processes involved in emotional regulation and the role of cortisol in disrupting attachment. Finally, the implications of these findings for therapeutic interventions and the challenges of addressing prolonged grief and traumatic responses in clinical settings are considered.展开更多
BACKGROUND Radical gastrectomy(RG)is commonly used in the treatment of patients with gastric cancer(GC),but this procedure may lead to stress responses,postoperative cognitive dysfunction,and blood coagulation abnorma...BACKGROUND Radical gastrectomy(RG)is commonly used in the treatment of patients with gastric cancer(GC),but this procedure may lead to stress responses,postoperative cognitive dysfunction,and blood coagulation abnormalities in patients.AIM To investigate the influences of dexmedetomidine(DEX)on stress responses and postoperative cognitive and coagulation functions in patients undergoing RG under general anesthesia(GA).METHODS One hundred and two patients undergoing RG for GC under GA from February 2020 to February 2022 were retrospectively reviewed.Of these,50 patients had received conventional anesthesia intervention[control group(CG)]and 52 patients had received DEX in addition to routine anesthesia intervention[observation group(OG)].Inflammatory factor(IFs;tumor necrosis factor-α,TNF-α;interleukin-6,IL-6),stress responses(cortisol,Cor;adrenocorticotropic hormone,ACTH),cognitive function(CF;Mini-Mental State Examination,MMSE),neurological function(neuron-specific enolase,NSE;S100 calciumbinding protein B,S100B),and coagulation function(prothrombin time,PT;thromboxane B2,TXB2;fibrinogen,FIB)were compared between the two groups before surgery(T0),as well as at 6 h(T1)and 24 h(T2)after surgery.RESULTS Compared with T0,TNF-α,IL-6,Cor,ACTH,NSE,S100B,PT,TXB2,and FIB showed a significant increase in both groups at T1 and T2,but with even lower levels in OG vs CG.Both groups showed a significant reduction in the MMSE score at T1 and T2 compared with T0,but the MMSE score was notably higher in OG compared with CG.CONCLUSION In addition to a potent inhibitory effect on postoperative IFs and stress responses in GC patients undergoing RG under GA,DEX may also alleviate the coagulation dysfunction and improve the postoperative CF of these patients.展开更多
This study aimed to explore citizens’emotional responses and issues of interest in the context of the coronavirus disease 2019(COVID-19)pandemic.The dataset comprised 65,313 tweets with the location marked as New Yor...This study aimed to explore citizens’emotional responses and issues of interest in the context of the coronavirus disease 2019(COVID-19)pandemic.The dataset comprised 65,313 tweets with the location marked as New York State.The data collection period was four days of tweets when New York City imposed a lockdown order due to an increase in confirmed cases.Data analysis was performed using R Studio.The emotional responses in tweets were analyzed using the Bing and NRC(National Research Council Canada)dictionaries.The tweets’central issue was identified by Text Network Analysis.When tweets were classified as either positive or negative,the negative sentiment was higher.Using the NRC dictionary,eight emotional classifications were devised:“trust,”“fear,”“anticipation,”“sadness,”“anger,”“joy,”“surprise,”and“disgust.”These results indicated that citizens showed negative and trusting emotional reactions in the early days of the pandemic.Moreover,citizens showed a strong interest in overcoming and coping with other people such as social solidarity.Citizens were concerned about the confirmation of COVID-19 infection status and death.Efforts should be made to ensure citizens’psychological stability by promptly informing them of the status of infectious disease management and the route of infection.展开更多
Foxtail millet(Setaria italica L.),a member of the Paniceae family,is a temperate and tropical grass species that is widely cultivated on the Eurasian continent.It is Chinese in origin and possesses a small genome,sho...Foxtail millet(Setaria italica L.),a member of the Paniceae family,is a temperate and tropical grass species that is widely cultivated on the Eurasian continent.It is Chinese in origin and possesses a small genome,short growth cycle,and strong natural abiotic stress resistance.Elucidating the mechanism of millet tolerance to salt stress is becoming increasingly important with increasing soil salinization limiting crop productivity.The responses and mechanisms of tolerance to salt stress from other model plants such as Arabidopsis and rice,were compared with those from foxtail millet to summarize current research on responses to salt stress.Numerous processes are involved in these processes,including physiological reactions,sensing,signaling,and control at the transcriptional,post-transcriptional,and epigenetic levels.To increase crop productivity and agricultural sustainability,a variety of technologies can be used to investigate how salt tolerance is mediated by physiological and molecular processes in foxtail millet.展开更多
In this letter to the editor,the authors discuss the findings and shortcomings of a published retrospective study,including 120 patients undergoing surgery for gastric or colon cancer under general anesthesia.The stud...In this letter to the editor,the authors discuss the findings and shortcomings of a published retrospective study,including 120 patients undergoing surgery for gastric or colon cancer under general anesthesia.The study focused on perioperative dynamic respiratory and hemodynamic disturbances and early postsurgical inflammatory responses.展开更多
文摘Probiotics are live microorganisms exerting beneficial effects on the host’s health when administered in adequate amounts.Among the most popular and adequately studied probiotics are bacteria from the families Lactobacillaceae,Bifidobacteriaceae and yeasts.Most of them have been shown,both in vitro and in vivo studies of intestinal inflammation models,to provide favorable results by means of improving the gut microbiota composition,promoting the wound healing process and shaping the immunological responses.Chronic intestinal conditions,such as inflammatory bowel diseases(IBD),are characterized by an imbalance in microbiota composition,with decreased diversity,and by relapsing and persisting inflammation,which may lead to mucosal damage.Although the results of the clinical studies investigating the effect of probiotics on patients with IBD are still controversial,it is without doubt that these microorganisms and their metabolites,now named postbiotics,have a positive influence on both the host’s microbiota and the immune system,and ultimately alter the topical tissue microenvironment.This influence is achieved through three axes:(1)By dis-placement of potential pathogens via competitive exclusion;(2)by offering protection to the host through the secretion of various defensive mediators;and(3)by supplying the host with essential nutrients.We will analyze and discuss almost all the in vitro and in vivo studies of the past 2 years dealing with the possible favorable effects of certain probiotic genus on gut immunological responses,highlighting which species are the most beneficial against intestinal inflammation.
基金financially supported by the State Key Laboratory of Structural Analysis,Optimization and CAE Software for Industrial Equipment,Dalian University of Technology(Grant No.GZ23112)the Shandong Provincial Natural Science Foundation,China(Grant No.ZR2021ME146).
文摘To predict the wave loads of a flexible trimaran in different wave fields,a one-way interaction numerical simulation method is proposed by integrating the fluid solver(Star-CCM+)and structural solver(Abaqus).Differing from the existing coupled CFD-FEA method for monohull ships in head waves,the presented method equates the mass and stiffness of the whole ship to the hull shell so that any transverse and longitudinal section stress of the hull in oblique waves can be obtained.Firstly,verification study and sensitivity analysis are carried out by comparing the trimaran motions using different mesh sizes and time step schemes.Discussion on the wave elevation of uni-and bi-directional waves is also carried out.Then a comprehensive analysis on the structural responses of the trimaran in different uni-directional regular wave and bi-directional cross sea conditions is carried out,respectively.Finally,the differences in structural response characteristics of trimaran in different wave fields are studied.The results show that the present method can reduce the computational burden of the two-way fluid-structure interaction simulations.
基金financially supported by the National Key Research and Development Program of China(Grant No.2022YFB2602800)Science and Technology Projects of Liaoning Province(Grant No.2023011352-JH1/110)。
文摘The Submerged Floating Tunnel(SFT)relies on a tensioned mooring system for precise positioning.The sudden breakage of a single cable can trigger an immediate alteration in the constraint conditions of the tube,inducing a transient heave response within the structure along with a transient increase in cable tension experienced by adjacent cables.In more severe cases,this may even lead to a progressive failure culminating in the global destruction of the SFT.This study used ANSYS/AQWA to establish a numerical model of the entire length SFT for the hydrodynamic response analysis,and conducted a coupled calculation of the dynamic responses of the SFT-mooring line model based on Orca Flex to study the global dynamic responses of the SFT at the moment of cable breakage and the redistribution of cable internal forces.The most unfavorable position for SFT cable breakage was identified,the influence mechanism of cable breakage at different positions on the global dynamic response was revealed,and the progressive chain failure pattern caused by localized cable breakage are also clarified.
基金National Natural Science Foundation of China under Grant No.51878508。
文摘Cemented and mechanically clamped types of end fittings(fitting-C and fitting-M)are commonly used in transformer bushings.During the Luding Ms 6.8 earthquake that occurred in China on September 5,2022,all transformer bushings with the two types of end fittings in a 500 kV substation were damaged.Post-earthquake field investigations were conducted,and the failures of the two types of bushings were compared.Two elementary simulation models of the transformer-bushing systems were developed to simulate the engineering failures,and further compute their seismic responses for comparison.The results indicate that the hitch lugs of the connection flange are structurally harmful to seismic resistance.Fitting-M can decrease the bending stiffness of the bushing due to the flexible sealing rubber gasket.Since it provides a more flexible connection that dissipates energy,the peak accelerations and relative displacements at the top of the bushing are significantly lower than those of the bushing with fitting-C.Compared with fitting-C,fitting-M transfers the high-stress areas from the connection flange to the root of the porcelain,so the latter becomes the most vulnerable component.Fitting-M increases the failure risk of the low-strength porcelain,indicating the unsuitability of applying it in high-intensity fortification regions.
基金We acknowledge the funding support from the National Science Fund for Distinguished Young Scholars of National Natural Science Foundation of China(Grant No.42225702)the National Natural Science Foundation of China(Grant No.42077235).
文摘Thermo-poro-mechanical responses along sliding zone/surface have been extensively studied.However,it has not been recognized that the potential contribution of other crucial engineering geological interfaces beyond the slip surface to progressive failure.Here,we aim to investigate the subsurface multiphysics of reservoir landslides under two extreme hydrologic conditions(i.e.wet and dry),particularly within sliding masses.Based on ultra-weak fiber Bragg grating(UWFBG)technology,we employ specialpurpose fiber optic sensing cables that can be implanted into boreholes as“nerves of the Earth”to collect data on soil temperature,water content,pore water pressure,and strain.The Xinpu landslide in the middle reach of the Three Gorges Reservoir Area in China was selected as a case study to establish a paradigm for in situ thermo-hydro-poro-mechanical monitoring.These UWFBG-based sensing cables were vertically buried in a 31 m-deep borehole at the foot of the landslide,with a resolution of 1 m except for the pressure sensor.We reported field measurements covering the period 2021 and 2022 and produced the spatiotemporal profiles throughout the borehole.Results show that wet years are more likely to motivate landslide motions than dry years.The annual thermally active layer of the landslide has a critical depth of roughly 9 m and might move downward in warmer years.The dynamic groundwater table is located at depths of 9e15 m,where the peaked strain undergoes a periodical response of leap and withdrawal to annual hydrometeorological cycles.These interface behaviors may support the interpretation of the contribution of reservoir regulation to slope stability,allowing us to correlate them to local damage events and potential global destabilization.This paper also offers a natural framework for interpreting thermo-hydro-poro-mechanical signatures from creeping reservoir bank slopes,which may form the basis for a landslide monitoring and early warning system.
文摘Inflammation is a multifaceted cellular and molecular response triggered by injury,infection,or various pathological conditions.Serving as a protective defense mechanism,the inflammatory response involves clinical signs like redness,swelling,pain,and increased body temperature.Immune cells,notably neutrophils and macrophages,play key roles in orchestrating this response.The delicate balance between proinflammatory and anti-inflammatory mediators,including cytokines and chemokines,regulates the inflammatory cascade.While acute inflammation is crucial for tissue repair,chronic inflammation may indicate an imbalance,contributing to conditions like autoimmune diseases.Understanding these mechanisms is vital for developing therapeutic strategies and managing chronic diseases.
基金the financial support from the Natural Science Foundation of China (Nos.52179118,52209151 and 42307238)the Science and Technology Project of Jiangsu Provincial Department of Science and Technology-Carbon Emissions Peak and Carbon Neutrality Science and Technology Innovation Specia Fund Project (No.BK20220025)+3 种基金the Excellent Postdoctoral Program of Jiangsu Province (No.2023ZB602)the China Postdoctora Science Foundation (Nos.2023M733773 and 2023M733772)Xuzhou City Science and Technology Innovation Special Basic Research Plan (KC23045)State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering,China University of Mining&Technology (No SKLGDUEK1916)。
文摘Underground hydrogen storage(UHS)and compressed air energy storage(CAES)are two viable largescale energy storage technologies for mitigating the intermittency of wind and solar power.Therefore,it is meaningful to compare the properties of hydrogen and air with typical thermodynamic storage processes.This study employs a multi-physical coupling model to compare the operations of CAES and UHS,integrating gas thermodynamics within caverns,thermal conduction,and mechanical deformation around rock caverns.Gas thermodynamic responses are validated using additional simulations and the field test data.Temperature and pressure variations of air and hydrogen within rock caverns exhibit similarities under both adiabatic and diabatic simulation modes.Hydrogen reaches higher temperature and pressure following gas charging stage compared to air,and the ideal gas assumption may lead to overestimation of gas temperature and pressure.Unlike steel lining of CAES,the sealing layer(fibre-reinforced plastic FRP)in UHS is prone to deformation but can effectively mitigates stress in the sealing layer.In CAES,the first principal stress on the surface of the sealing layer and concrete lining is tensile stress,whereas UHS exhibits compressive stress in the same areas.Our present research can provide references for the selection of energy storage methods.
基金supported by the National Natural Science Foundation of China(42006082)Natural Science Foundation of Jiangsu Province of China(BK20221323)+1 种基金“JBGS”Project of Seed Industry Revitalization in Jiangsu Province(JBGS[2021]034)State Key Laboratory of Developmental Biology of Freshwater Fish(2021KF009)。
文摘Long non-coding RNAs(lncRNAs)function as key modulators in mammalian immunity,particularly due to their involvement in lncRNA-mediated competitive endogenous RNA(ceRNA)crosstalk.Despite their recognized significance in mammals,research on lncRNAs in lower vertebrates remains limited.In the present study,we characterized the first immune-related lncRNA(pol-lnc78)in the teleost Japanese flounder(Paralichthys olivaceus).Results indicated that pol-lnc78 acted as a ceRNA for pol-miR-n199-3p to target the sterile alpha and armadillo motif-containing protein(SARM),the fifth discovered member of the Toll/interleukin 1(IL-1)receptor(TIR)adaptor family.This ceRNA network regulated the antibacterial responses of flounder via the Toll-like receptor(TLR)signaling pathway.Specifically,SARM acted as a negative regulator and exacerbated bacterial infection by inhibiting the expression of inflammatory cytokines IL-1βand tumor necrosis factor-α(TNF-α).Pol-miR-n199-3p reduced SARM expression by specifically interacting with the 3’untranslated region(UTR),thereby promoting SARM-dependent inflammatory cytokine expression and protecting the host against bacterial dissemination.Furthermore,pol-lnc78 sponged pol-miR-n199-3p to ameliorate the inhibition of SARM expression.During infection,the negative regulators pol-lnc78 and SARM were significantly down-regulated,while pol-miR-n199-3p was significantly up-regulated,thus favoring host antibacterial defense.These findings provide novel insights into the mechanisms underlying fish immunity and open new horizons to better understand ceRNA crosstalk in lower vertebrates.
基金funding support from the National Natural Science Foundation of China(Grant Nos.42077262 and 42077261).
文摘A complete road-soft ground model is established in this paper to study the dynamic responses caused by vehicle loads and/or daily temperature variation.A dynamic thermo-elastic model is applied to capturing the behavior of the rigid pavement,the base course,and the subgrade,while the soft ground is characterized using a dynamic thermo-poroelastic model.Solutions to the road-soft ground system are derived in the Laplace-Hankel transform domain.The time domain solutions are obtained using an integration approach.The temperature,thermal stress,pore water pressure,and displacement responses caused by the vehicle load and the daily temperature variation are presented.Results show that obvious temperature change mainly exists within 0.3 m of the road when subjected to the daily temperature variation,whereas the stress responses can still be found in deeper places because of the thermal swelling/shrinkage deformation within the upper road structures.Moreover,it is important to consider the coupling effects of the vehicle load and the daily temperature variation when calculating the dynamic responses inside the road-soft ground system.
基金financial support from the National Natural Science Foundation of China(Nos.52174092,51904290,52004272,52104125,42372328,and U23B2091)Natural Science Foundation of Jiangsu Province,China(Nos.BK20220157 and BK20240209)+3 种基金the Fundamental Research Funds for the Central Universities,China(No.2022YCPY0202)Xuzhou Science and Technology Project,China(Nos.KC21033 and KC22005)Yunlong Lake Laboratory of Deep Underground Science and Engineering Project,China(No.104023002)the Graduate Innovation Program of China University of Mining and Technology(No.2023WLTCRCZL052)。
文摘This study aims to investigate mechanical properties and failure mechanisms of layered rock with rough joint surfaces under direct shear loading.Cubic layered samples with dimensions of 100 mm×100 mm×100 mm were casted using rock-like materials,with anisotropic angle(α)and joint roughness coefficient(JRC)ranging from 15°to 75°and 2-20,respectively.The direct shear tests were conducted under the application of initial normal stress(σ_(n)) ranging from 1-4 MPa.The test results indicate significant differences in mechanical properties,acoustic emission(AE)responses,maximum principal strain fields,and ultimate failure modes of layered samples under different test conditions.The peak stress increases with the increasingαand achieves a maximum value atα=60°or 75°.As σ_(n) increases,the peak stress shows an increasing trend,with correlation coefficients R² ranging from 0.918 to 0.995 for the linear least squares fitting.As JRC increases from 2-4 to 18-20,the cohesion increases by 86.32%whenα=15°,while the cohesion decreases by 27.93%whenα=75°.The differences in roughness characteristics of shear failure surface induced byαresult in anisotropic post-peak AE responses,which is characterized by active AE signals whenαis small and quiet AE signals for a largeα.For a given JRC=6-8 andσ_(n)=1 MPa,asαincreases,the accumulative AE counts increase by 224.31%(αincreased from 15°to 60°),and then decrease by 14.68%(αincreased from 60°to 75°).The shear failure surface is formed along the weak interlayer whenα=15°and penetrates the layered matrix whenα=60°.Whenα=15°,as σ_(n) increases,the adjacent weak interlayer induces a change in the direction of tensile cracks propagation,resulting in a stepped pattern of cracks distribution.The increase in JRC intensifies roughness characteristics of shear failure surface for a smallα,however,it is not pronounced for a largeα.The findings will contribute to a better understanding of the mechanical responses and failure mechanisms of the layered rocks subjected to shear loads.
基金the financial support received from the Natural Science Foundation of China(32202202 and 31871735)the Zhejiang Provincial Natural Science Foundation of China(LGN22C200027)the Open Fund of the Key Laboratory of Biosafety Detection for Zhejiang Market Regulation(2022BS004)。
文摘Cutaneous exposure to food allergens through a disrupted skin barrier is recognized as an important cause of food allergy,and the cutaneous sensitized mouse model has been established to investigate relevant allergic disorders.However,the role of different genetic backgrounds of mice on immune responses to food allergens upon epicutaneous sensitization is largely unknown.In this study,two strains of mice,i.e.,the BALB/c and C57BL/6 mice,were epicutaneously sensitized with ovalbumin on atopic dermatitis(AD)-like skin lesions,followed by intragastric challenge to induce IgE-mediated food allergy.Allergic outcomes were measured as clinical signs,specific antibodies and cytokines,and immune cell subpopulations,as well as changes in intestinal barrier function and gut microbiota.Results showed that both strains of mice exhibited typical food-allergic symptoms with a Th2-skewed response.The C57BL/6 mice,rather than the BALB/c mice,were fitter for establishing an epicutaneously sensitized model of food allergy since a stronger Th2-biased response and severer disruptions in the intestinal barrier and gut homeostasis were observed.This study provides knowledge for selecting an appropriate mouse model to study food-allergic responses associated with AD-like skin lesions and highlights the role of genetic variations in the immune mechanism underlying pathogenesis of food allergy.
基金The National Natural Science Foundation of China under contract Nos 42366002 and 41702182the National Key R&D Program of China under contract No.2017YFA0603300the Guangxi Scientific Projects under contract No.2018GXNSFAA281293。
文摘High-resolution sea-level data and high-precision dating of corals in the northern South China Sea(SCS)during the Holocene provide a reference and historical background for current and future sea-level changes and a basis for scientific assessment of the evolutionary trend of coral reefs in the SCS.Although sporadic studies have been performed around Hainan Island in the northern SCS,the reconstructed sea level presents different values or is controversial because the indicative meaning of the sea-level indicators were neither quantified nor uniform criteria.Here,we determined the quantitative relationship between modern living coral and sea level by measuring the top surfaces of 27 live Porites corals from the inner reef flat along the east coast of Hainan Island and assessed the accuracy of results obtained using coral as sea-level indicators.Additionally,three in situ fossil Porites corals were analyzed based on elevation measurements,digital X-ray radiography,and U-Th dating.The survey results showed that the indicative meanings for the modern live Porites corals is(146.09±8.35)cm below the mean tide level(MTL).It suggested that their upward growth limit is constrained by the sea level,and the lowest low water is the highest level of survival for the modern live Porites corals.Based on the newly defined indicative meanings,6 new sea-level index points(SLIPs)were obtained and 19 published SLIPs were recalculated.Those SLIPs indicated a relative sea level fluctuation between(227.7±9.8)cm to(154.88±9.8)cm MTL between(5393±25)cal a BP and(3390±12)cal a BP,providing evidences of the Mid-Holocene sea-level highstand in the northern SCS.Besides that,our analysis demonstrated that different sea-level histories may be produced based on different indicative meanings or criteria.The dataset of 276 coral U-Th ages indicates that coral reef development in the northern SCS comprised the initial development,boom growth,decline,and flourishing development again.A comparison with regional records indicated that synergistic effects of climatic and environmental factors were involved in the development of coral reefs in the northern SCS.Thus,the cessation of coral reef development during the Holocene in the northern SCS was probably associated with the dry and cold climate in South China,as reflected in the synchronous weakening of the ENSO and East Asian summer monsoon induced by the reduction of the 65°N summer insolation,which forced the migration of the Intertropical Convergence Zone.
基金the financial support from the National Natural Science Foundation of China (No. 82372019, 82022034, 82173327)Jiangsu Province Natural Science Foundation of China (BK20200032)Double First Class Foundation of China Pharmaceutical University(CPUQNJC22_03)
文摘Photothermal and photodynamic therapies(PTT/PDT)hold promise for localized tumor treatment,yet their full potential is hampered by limitations such as the hypoxic tumor microenvironment and inadequate systemic immune activation.Addressing these challenges,we present a novel near-infrared(NIR)-triggered RNS nanoreactor(PBNO-Ce6)to amplify the photodynamic and photothermal therapy efficacy against triple-negative breast cancer(TNBC).The designed PBNOCe6 combines sodium nitroprusside-doped Prussian Blue nanoparticles with Chlorin e6 to enable on-site RNS production through NIR-induced concurrent NO release and ROS generation.This not only enhances tumor cell eradication but also potentiates local and systemic antitumor immune responses,protecting mice from tumor rechallenge.Our in vivo evaluations revealed that treatment with PBNO-Ce6 leads to a remarkable 2.7-fold increase in cytotoxic T lymphocytes and a 62%decrease in regulatory T cells in comparison to the control PB-Ce6(Prussian Blue nanoparticles loaded with Chlorin e6),marking a substantial improvement over traditional PTT/PDT.As such,the PBNO-Ce6 nanoreactor represents a transformative approach for improving outcomes in TNBC and potentially other malignancies affected by similar barriers.
基金supported by the National Natural Science Foundation of China(Grant Nos.52171289,42176210,and 52201330)the Guangdong Basic and Applied Basic Research Foundation,China(Grant No.2022B1515250005)Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.311023014).
文摘Offshore wind power is a kind of important clean renewable energy and has attracted increasing attention due to the rapid consumption of non-renewable energy.To reduce the high cost of energy,a possible try is to utilize the combination of wind and wave energy considering their natural correlation.A combined concept consisting of a semi-submersible wind turbine and four torus-shaped wave energy converters was proposed and numerically studied under normal operating conditions.However,the dynamic behavior of the integrated system under extreme sea conditions has not been studied yet.In the present work,extreme responses of the integrated system under two different survival modes are evaluated.Fully coupled time-domain simulations with consideration of interactions between the semi-submersible wind turbine and the torus-shaped wave energy converters are performed to investigate dynamic responses of the integrated system,including mooring tensions,tower bending moments,end stop forces,and contact forces at the Column-Torus interface.It is found that the addition of four tori will reduce the mean motions of the yaw,pitch and surge.When the tori are locked at the still water line,the whole integrated system is more suitable for the survival modes.
基金Supported by the Scientific and Technological Research Council of Turkiye/TUBİTAK,No.118S260Turkish Society of Gastroenterology,No.797-TGD-2021.
文摘BACKGROUND Currently,the primary treatment for gastroesophageal reflux is acid suppression with proton pump inhibitors,but they are not a cure,and some patients don’t respond well or refuse long-term use.Therefore,alternative therapies are needed to understand the disease and develop better treatments.Laparoscopic anti-reflux surgery(LARS)can resolve symptoms of these patients and plays a significant role in evaluating esophageal healing after preventing harmful effects.Successful LARS improves typical gastroesophageal reflux symptoms in most patients,main-ly by reducing the exposure time to gastric contents in the esophagus.Amelio-ration of the inflammatory response and a recovery response in the esophageal epithelium is expected following the cessation of the noxious attack.AIM To explore the role of inflammatory biomolecules in LARS and assess the time required for esophageal epithelial recovery.METHODS Of 22 patients with LARS(pre-and post/5.8±3.8 months after LARS)and 25 healthy controls(HCs)were included.All subjects underwent 24-h multichannel intraluminal impedance-pH monitoring and upper gastrointestinal endoscopy,during which esophageal biopsy samples were collected using endoscopic tech-niques.Inflammatory molecules in esophageal biopsies were investigated by reverse transcription-polymerase chain reaction and multiplex-enzyme-linked immunosorbent assay.RESULTS Post-LARS samples showed significant increases in proinflammatory cytokines[interleukin(IL)-1β,interferon-γ,C-X-C chemokine ligand 2(CXCL2)],anti-inflammatory cytokines[CC chemokine ligand(CCL)11,CCL13,CCL17,CCL26,CCL1,CCL7,CCL8,CCL24,IL-4,IL-10],and homeostatic cytokines(CCL27,CCL20,CCL19,CCL23,C-CL25,CXCL12,migration inhibitory factor)compared to both HCs and pre-LARS samples.CCL17 and CCL21 levels were higher in pre-LARS than in HCs(P<0.05).The mRNA expression levels of AKT1,fibroblast growth factor 2,HRAS,and mitogen-activated protein kinase 4 were significantly decreased post-LARS vs pre-LARS.CCL2 and epidermal growth factor gene levels were significantly increased in the pre-LARS compared to the HCs(P<0.05).CONCLUSION The presence of proinflammatory proteins post-LARS suggests ongoing inflammation in the epithelium.Elevated homeostatic cytokine levels indicate cell balance is maintained for about 6 months after LARS.The anti-inflam-matory response post-LARS shows suppression of inflammatory damage and ongoing postoperative recovery.
文摘This article explores the intricate relationship between attachment styles formed during early childhood and the subsequent responses to traumatic events, particularly the death of a parent. Drawing on the theoretical framework of attachment theory and incorporating contemporary research, the paper discusses how parental interactions shape the neural circuitry of infants and children, influencing their ability to form secure or insecure attachments. These attachment styles, in turn, play a critical role in determining the child’s coping mechanisms when faced with trauma. This paper focuses on trying to understand how attachment theory is connected to the reaction to trauma with a highlight on the four major styles of attachments which are secure, anxious, avoidant, and disorganized to mention but a few, and how they influence stress and adversity in children. Attachment theory holds that human beings’ ability to form affectional bonds in infancy determines their patterns of relatedness across the life cycle. The type of attachment that is secure usually supports healthy adaptation and good coping mechanisms regardless of the trauma in the childhood of the child. While secure attachment mostly facilitates favorable trauma-related outcomes, anxious or avoidant attachment can exacerbate or alter the responses. The caregiving system that is avoidant attachment has implications of autonomous self-functioning which has features of suppression of the emotional response and poor search for emotional support during stress. From the principles of developmental psychology and trauma theory, the paper also focuses on the major significance of the child’s early caregivers’ interactions that define the resilience and vulnerability factor. This knowledge is therefore critical in designing specific interventions based on the improvement of coping behaviors and emotional regulatory systems of children who have been exposed to trauma. Finally, we have the synthesis of new knowledge about the role of secure attachment relationships as its fundamental element in shaping adaptive traumatization and psychological development. The article also delves into the physiological processes involved in emotional regulation and the role of cortisol in disrupting attachment. Finally, the implications of these findings for therapeutic interventions and the challenges of addressing prolonged grief and traumatic responses in clinical settings are considered.
基金Supported by Project of Guangxi Health and Health Commission,No.Z20201268。
文摘BACKGROUND Radical gastrectomy(RG)is commonly used in the treatment of patients with gastric cancer(GC),but this procedure may lead to stress responses,postoperative cognitive dysfunction,and blood coagulation abnormalities in patients.AIM To investigate the influences of dexmedetomidine(DEX)on stress responses and postoperative cognitive and coagulation functions in patients undergoing RG under general anesthesia(GA).METHODS One hundred and two patients undergoing RG for GC under GA from February 2020 to February 2022 were retrospectively reviewed.Of these,50 patients had received conventional anesthesia intervention[control group(CG)]and 52 patients had received DEX in addition to routine anesthesia intervention[observation group(OG)].Inflammatory factor(IFs;tumor necrosis factor-α,TNF-α;interleukin-6,IL-6),stress responses(cortisol,Cor;adrenocorticotropic hormone,ACTH),cognitive function(CF;Mini-Mental State Examination,MMSE),neurological function(neuron-specific enolase,NSE;S100 calciumbinding protein B,S100B),and coagulation function(prothrombin time,PT;thromboxane B2,TXB2;fibrinogen,FIB)were compared between the two groups before surgery(T0),as well as at 6 h(T1)and 24 h(T2)after surgery.RESULTS Compared with T0,TNF-α,IL-6,Cor,ACTH,NSE,S100B,PT,TXB2,and FIB showed a significant increase in both groups at T1 and T2,but with even lower levels in OG vs CG.Both groups showed a significant reduction in the MMSE score at T1 and T2 compared with T0,but the MMSE score was notably higher in OG compared with CG.CONCLUSION In addition to a potent inhibitory effect on postoperative IFs and stress responses in GC patients undergoing RG under GA,DEX may also alleviate the coagulation dysfunction and improve the postoperative CF of these patients.
基金supported by the National Research Foundation of Korea(NRF)Grant Funded by the Korea Government(MSIT)(NRF-2020R1A2B5B0100208).
文摘This study aimed to explore citizens’emotional responses and issues of interest in the context of the coronavirus disease 2019(COVID-19)pandemic.The dataset comprised 65,313 tweets with the location marked as New York State.The data collection period was four days of tweets when New York City imposed a lockdown order due to an increase in confirmed cases.Data analysis was performed using R Studio.The emotional responses in tweets were analyzed using the Bing and NRC(National Research Council Canada)dictionaries.The tweets’central issue was identified by Text Network Analysis.When tweets were classified as either positive or negative,the negative sentiment was higher.Using the NRC dictionary,eight emotional classifications were devised:“trust,”“fear,”“anticipation,”“sadness,”“anger,”“joy,”“surprise,”and“disgust.”These results indicated that citizens showed negative and trusting emotional reactions in the early days of the pandemic.Moreover,citizens showed a strong interest in overcoming and coping with other people such as social solidarity.Citizens were concerned about the confirmation of COVID-19 infection status and death.Efforts should be made to ensure citizens’psychological stability by promptly informing them of the status of infectious disease management and the route of infection.
基金supported by the National Key Research and Development Program of China(2018YFD1000704/2018YFD1000700,2022YFD1201704/2022YFD1201700)the Central Guidance on Local Science and Technology Development Fund of Shandong Province(YDZX2021008)the Agricultural Fine Seed Project of Shandong Province(2021LZGC006)。
文摘Foxtail millet(Setaria italica L.),a member of the Paniceae family,is a temperate and tropical grass species that is widely cultivated on the Eurasian continent.It is Chinese in origin and possesses a small genome,short growth cycle,and strong natural abiotic stress resistance.Elucidating the mechanism of millet tolerance to salt stress is becoming increasingly important with increasing soil salinization limiting crop productivity.The responses and mechanisms of tolerance to salt stress from other model plants such as Arabidopsis and rice,were compared with those from foxtail millet to summarize current research on responses to salt stress.Numerous processes are involved in these processes,including physiological reactions,sensing,signaling,and control at the transcriptional,post-transcriptional,and epigenetic levels.To increase crop productivity and agricultural sustainability,a variety of technologies can be used to investigate how salt tolerance is mediated by physiological and molecular processes in foxtail millet.
文摘In this letter to the editor,the authors discuss the findings and shortcomings of a published retrospective study,including 120 patients undergoing surgery for gastric or colon cancer under general anesthesia.The study focused on perioperative dynamic respiratory and hemodynamic disturbances and early postsurgical inflammatory responses.