期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
基于RFE-BXGBoost的轴承套圈沟道表面缺陷识别方法 被引量:2
1
作者 徐凯 张会妨 《机电工程》 CAS 北大核心 2023年第11期1691-1699,共9页
轴承套圈是轴承部件的重要组成部分,其表面缺陷影响轴承的服役期限。为了解决轴承沟道表面缺陷难以被准确识别的问题,提出了一种基于特征递归消除的贝叶斯极度梯度提升树(RFE-BXGBoost)的轴承套圈沟道表面缺陷识别模型(方法)。首先,基... 轴承套圈是轴承部件的重要组成部分,其表面缺陷影响轴承的服役期限。为了解决轴承沟道表面缺陷难以被准确识别的问题,提出了一种基于特征递归消除的贝叶斯极度梯度提升树(RFE-BXGBoost)的轴承套圈沟道表面缺陷识别模型(方法)。首先,基于特征衍生的思想,对轴承沟道的时域、频域等特征进行了提取,使用了极度梯度提升树(XGBoost)作为基于特征递归消除(RFE)的基学习器,对影响轴承沟道表面缺陷最佳特征子集进行了选择,并过滤了冗余特征;然后,利用基于贝叶斯优化的XGBoost模型组成弱分类器,为了降低模型预测结果的方差,使用有放回随机抽样法,对基分类器进行了选取;最后,根据抽样结果,利用投票法获得了最终的表面缺陷识别结果,并使用轴承套圈沟道实测数据集进行了模型预测性能的测试。实验结果表明:基于RFE-BXGBoost的表面缺陷识别模型的识别准确率为0.90,F1-score为0.879,优于仅使用自适应提升法(Adaboost)、随机森林、梯度提升树的表面缺陷识别结果。研究结果表明:该表面缺陷识别模型对复杂零部件和系统的表面缺陷识别有一定的效果。 展开更多
关键词 滚动轴承 特征递归消除 极度梯度提升树 轴承套圈沟道 有放回随机抽样 集成模型
下载PDF
激光诱导击穿光谱结合RFE-GBDT算法定量分析稀土矿石中的Fe和Y 被引量:1
2
作者 刘向前 安端阳 +2 位作者 张卓昆 岳承恩 王梦迪 《化工矿物与加工》 CAS 2023年第3期20-25,共6页
稀土矿组成复杂,对选矿技术要求较高,寻找一种快速检测分析稀土矿石中元素的方法对稀土矿选矿具有重要意义。激光诱导击穿光谱(Laser-induced Breakdown Spectroscopy, LIBS)是检测稀土矿石中元素的一种重要手段,可以进行现场分析,无需... 稀土矿组成复杂,对选矿技术要求较高,寻找一种快速检测分析稀土矿石中元素的方法对稀土矿选矿具有重要意义。激光诱导击穿光谱(Laser-induced Breakdown Spectroscopy, LIBS)是检测稀土矿石中元素的一种重要手段,可以进行现场分析,无需制备复杂样品。建立了一种基于LIBS结合递归特征消除(Recursive Feature Elimination, RFE)和梯度提升树(Gradient Boosting Decision Tree, GBDT)算法的模型对稀土矿石中Fe元素和Y元素进行快速定量分析。采用激光诱导击穿光谱仪对25个样品进行光谱采集,将采集的光谱进行预处理后使用5折交叉验证对RFE阈值进行优化,再通过贝叶斯搜索对GBDT模型参数进行优化,构建了RFE-GBDT校正模型,对稀土矿石中的Fe和Y进行了定量分析并与真实值进行对比,结果表明,Fe和Y的预测决定系数(RP2)分别为0.957 1和0.930 7,预测均方根误差(RMSEP)分别为0.072 7和0.022 6,说明该模型具有良好的预测性能,可以实现稀土矿石中Fe和Y的快速定量分析。 展开更多
关键词 激光诱导击穿光谱 递归特征消除(rfe) 梯度提升树(GBDT) 稀土矿石 稀土元素 定量分析 贝叶斯优化
下载PDF
ReliefF-SVM RFE组合式特征选择人脸识别 被引量:6
3
作者 孔英会 张少明 《计算机工程与应用》 CSCD 2013年第11期169-171,212,共4页
针对人脸识别中因特征个数较多对识别的实时性和准确性影响较大的问题,提出了ReliefF-SVM RFE组合式特征选择的人脸识别方法。利用离散余弦变换提取特征和ReliefF对人脸图像特征集做特征初选,降低特征维数空间,再用改进的SVM RFE(Suppor... 针对人脸识别中因特征个数较多对识别的实时性和准确性影响较大的问题,提出了ReliefF-SVM RFE组合式特征选择的人脸识别方法。利用离散余弦变换提取特征和ReliefF对人脸图像特征集做特征初选,降低特征维数空间,再用改进的SVM RFE(Support Vector Machine Recursive Feature Elimination)选择最优特征,解决了利用SVM RFE特征选择时因特征数多而算法需多次训练耗时长的问题。对训练得到的特征排序表采用交叉留一验证方法选取最优子集,再由SVM分类识别。在UMIST人脸库上实验证明,可以在特征数为52时,达到98.84%的识别率,识别时间仅需0.037s。 展开更多
关键词 人脸识别 支持向量机回归特征消除(SVM rfe) RELIEFF 离散余弦变换 特征选择
下载PDF
基于SVM-RFE的水稻抗病基因筛选 被引量:1
4
作者 付媛 王岩 +3 位作者 周柚 张帆 王珏鑫 梁艳春 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2011年第6期1101-1104,共4页
提出一种改进的回归特征消去支持向量机特征选择方法(SVM-RFE)对水稻的抗病基因进行筛选.实验结果表明:在预测得到的20个与水稻抗病/敏感相关基因中,有3个基因与已知的水稻抗病基因紧密相关;2个基因与已知的水稻抗病基因有一定的相关性... 提出一种改进的回归特征消去支持向量机特征选择方法(SVM-RFE)对水稻的抗病基因进行筛选.实验结果表明:在预测得到的20个与水稻抗病/敏感相关基因中,有3个基因与已知的水稻抗病基因紧密相关;2个基因与已知的水稻抗病基因有一定的相关性.通过该方法能找到影响水稻生长状态(正常/染病)的基因. 展开更多
关键词 回归特征消去支持向量机 基因筛选 水稻抗病
下载PDF
基于贝叶斯优化的支持向量回归模型对电能表在线率的预测 被引量:3
5
作者 余俊泽 夏显威 +3 位作者 雷春俊 赵冬立 马群 陈百龄 《广东电力》 2023年第9期72-79,共8页
为预测电能表的在线状态,保障塔里木油田生产用电,将迪那地区电能表在线数等24个变量作为研究对象,运用反向特征消除方法进行数据降维,得到影响在线率的5个主要变量。进一步通过贝叶斯优化的支持向量回归方法完成对电能表在线率的预测,... 为预测电能表的在线状态,保障塔里木油田生产用电,将迪那地区电能表在线数等24个变量作为研究对象,运用反向特征消除方法进行数据降维,得到影响在线率的5个主要变量。进一步通过贝叶斯优化的支持向量回归方法完成对电能表在线率的预测,并与随机森林算法、梯度提升算法等预测方法进行比较。计算结果表明,该模型在预测电能表在线率的任务中表现出色,预测值加权平均误差低至0.408%,明显优于其他各算法。以塔里木油田为例,该模型可提升电网运维效率,为实现高效的电能分配提出了一条切实可行的途径。 展开更多
关键词 异常值剔除 非线性问题 反向特征消除 贝叶斯优化 支持向量回归 电能表在线率
下载PDF
人脸特征选择中的SVM泛化误差估计 被引量:3
6
作者 李伟红 龚卫国 +1 位作者 杨利平 辜小花 《光学精密工程》 EI CAS CSCD 北大核心 2008年第8期1452-1458,共7页
为了研究在人脸特征选择中用支持向量机(SVM)泛化误差界作特征选择判据的有效性问题,结合过滤(Filter)和封装(Wrapper)模型构造了人脸特征选择及识别的新框架,将小波变换(WT)和核主元分析(KPCA)作为Filter模型,最小化SVM的VC维(VC)留一... 为了研究在人脸特征选择中用支持向量机(SVM)泛化误差界作特征选择判据的有效性问题,结合过滤(Filter)和封装(Wrapper)模型构造了人脸特征选择及识别的新框架,将小波变换(WT)和核主元分析(KPCA)作为Filter模型,最小化SVM的VC维(VC)留一法(LOO)误差界及支持向量span误差界作为Wrapper模型的特征选择判据;通过递归特征排除法(RFE)在UMIST人脸图像库上进行人脸特征选择及识别实验。实验结果表明:判据为VC维的LOO误差界和支持向量span误差界时,特征维数可以分别降低到80和70,而分类识别率仍然能达到94%以上,表明本文所提出的特征选择判据和特征搜索策略是解决人脸特征选择问题的一种有效方法。 展开更多
关键词 SVM泛化误差界 人脸特征选择 Filter模型 Wrapper模型 递归特征排除法
下载PDF
矿产预测中的成矿因子选择方法:以滇东南金矿预测为例 被引量:1
7
作者 俞乐 柏坚 张汉奎 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2011年第3期348-353,共6页
由于矿产地质信息的复杂性和不确定性,难以建立精确的数学模型来确定矿产资源的分布状况.非线性分析建模技术,如人工神经网络(Artificial Neural Network,ANN)、支持向量机(Support Vector Machine,SVM)等,给矿产预测工作提供了新的途径... 由于矿产地质信息的复杂性和不确定性,难以建立精确的数学模型来确定矿产资源的分布状况.非线性分析建模技术,如人工神经网络(Artificial Neural Network,ANN)、支持向量机(Support Vector Machine,SVM)等,给矿产预测工作提供了新的途径.这类方法在处理数据时可以避免数据分析和建模的困难,即不须理解各种成矿因子与矿床(点)之间的相互关系,只须选择已知的矿床(点)和非矿产(点),进行"黑箱"学习.虽然经过合理的训练,这类方法能够得到较高的预测精度,但由于其分类过程的非线性特性,难以获得容易理解的分类规则,提供成矿因子的知识.本文采用基于SVM的迭代特征消去(Recursive Feature Elimination,RFE)技术(SVM-RFE),即在SVM模型的训练过程中,采用RFE特征选择方法,从所有输入的成矿因子中选择出对矿床(点)能正确预测的重要因子,以提供对输入模型的成矿因子的客观评价.通过对滇东南地区金矿预测的实践表明,采用SVM-RFE技术从原始10类成矿因子中自动选择6类进行预测的精度从68.42%提高到94.74%,并且得到该区域进行矿产预测的成矿因子重要性依次是:Au异常、As异常、侵入岩、下三叠统与中三叠统之间的平行不整合面、上二叠统与三叠系的平行不整合面、断裂交汇点密度、石炭系和下二叠统间的平行不整合面、中上泥盆统和石炭系间的平行不整合面、Sb异常和Hg异常,从中选取前6类成矿因子进行SVM训练得到的预测精度最高.这一结论可为在该区域进行矿产预测的资料选取,以及对成矿因子的理解提供支持. 展开更多
关键词 特征选择 支持向量机 迭代特征消去 金矿 滇东南
下载PDF
改进的多类支持向量机递归特征消除在癌症多分类中的应用 被引量:9
8
作者 黄晓娟 张莉 《计算机应用》 CSCD 北大核心 2015年第10期2798-2802,共5页
为处理癌症多分类问题,已经提出了多类支持向量机递归特征消除(MSVM-RFE)方法,但该方法考虑的是所有子分类器的权重融合,忽略了各子分类器自身挑选特征的能力。为提高多分类问题的识别率,提出了一种改进的多类支持向量机递归特征消除(MM... 为处理癌症多分类问题,已经提出了多类支持向量机递归特征消除(MSVM-RFE)方法,但该方法考虑的是所有子分类器的权重融合,忽略了各子分类器自身挑选特征的能力。为提高多分类问题的识别率,提出了一种改进的多类支持向量机递归特征消除(MMSVM-RFE)方法。所提方法利用一对多策略把多类问题化解为多个两类问题,每个两类问题均采用支持向量机递归特征消除来逐渐剔除掉冗余特征,得到一个特征子集;然后将得到的多个特征子集合并得到最终的特征子集;最后用SVM分类器对获得的特征子集进行建模。在3个基因数据集上的实验结果表明,改进的算法整体识别率提高了大约2%,单个类别的精度有大幅度提升甚至100%。与随机森林、k近邻分类器以及主成分分析(PCA)降维方法的比较均验证了所提算法的优势。 展开更多
关键词 支持向量机 特征选择 递归特征消除 癌症分类 基因数据
下载PDF
基于多种特征选择策略的入侵检测模型研究 被引量:9
9
作者 何红艳 黄国言 +1 位作者 张炳 陈瑜 《信息安全研究》 2021年第3期225-232,共8页
入侵检测是防止主机和网络攻击的有效方法.入侵检测系统的使用弥补了传统防火墙技术、签名认证技术、访问控制技术在安全保护方面的不足.但是,由于入侵检测数据样本特征之间存在互冗余性,干扰了攻击检测的准确性和效率.特征选择方法能... 入侵检测是防止主机和网络攻击的有效方法.入侵检测系统的使用弥补了传统防火墙技术、签名认证技术、访问控制技术在安全保护方面的不足.但是,由于入侵检测数据样本特征之间存在互冗余性,干扰了攻击检测的准确性和效率.特征选择方法能有效降低数据特征的维度和消除冗余特征,选出最优特征子集并提高网络流量异常检测的准确率.基于此,首先使用Kmeans聚类算法在真实流量数据集UNSW-NB15提取典型数据,生成具有典型数据特征的数据集作为特征提取的数据集,随后在该数据集上分别使用了9种不同策略的入侵检测模型进行了网络入侵检测实验.实验结果表明,该方法能够进行有效检测和分类,正常流量、恶意流量二分类精度为88.27%,高于其他机器学习算法.并且在进行多类分类研究时样本数据少的攻击类型的检测率均有提高.验证了该方法的有效性,易于使用. 展开更多
关键词 入侵检测 特征选择 UNSW-NB15 特征递归消除(rfe) 逻辑回归(LR)
下载PDF
基于递归特征消除和随机森林融合算法的大豆前体MicroRNA预测模型研究 被引量:4
10
作者 安宇 陈桂芬 李静 《大豆科学》 CAS CSCD 北大核心 2020年第3期401-405,共5页
随着大豆RNA基因的生物调控作用研究的不断深入,利用数据挖掘技术对大豆前体MicroRNA(pre-microRNA)进行有效的预测已成为该领域的重要发展方向。针对常规的随机森林算法在pre-microRNA预测模型中存在识别精度较低的问题,研究提出并构... 随着大豆RNA基因的生物调控作用研究的不断深入,利用数据挖掘技术对大豆前体MicroRNA(pre-microRNA)进行有效的预测已成为该领域的重要发展方向。针对常规的随机森林算法在pre-microRNA预测模型中存在识别精度较低的问题,研究提出并构建基于递归特征消除(recursive feature elimination, RFE)与随机森林(random forest, RF)融合算法的大豆pre-microRNA预测模型。首先利用递归特征消除法筛选大豆pre-microRNA序列的最优特征子集;然后结合随机森林算法构建大豆pre-microRNA的预测模型;最后利用十折交叉验证法,将递归特征消除与随机森林(RFE-RF)融合模型的预测结果与单一随机森林和支持向量机分类模型的预测结果对比。研究结果表明:融合后构建的大豆pre-microRNA预测模型精度有明显提高,达到84.62%,相比于支持向量机算法(support vector machine, SVM)构建的模型精度提高了17.02%,相比于单独使用随机森林算法构建的模型精度提高了14.58%。该研究方法为大豆的pre-microRNA基因预测提供了新思路。 展开更多
关键词 大豆 Pre-microRNA 递归特征消除 随机森林 预测模型
下载PDF
一种有效降维的特征选择方法及其在水声目标识别中的应用 被引量:1
11
作者 郭政 赵梅 胡长青 《声学技术》 CSCD 北大核心 2021年第1期14-20,共7页
为在保证目标识别准确率基础上进行有效特征降维,文章以目标识别准确率为特征选择准则,提出一种支持向量机递归特征消除(Support Vector Machine Recursive Feature Elimination,SVM-RFE)快速筛选出部分优质特征子集与猫群算法(Cat Swar... 为在保证目标识别准确率基础上进行有效特征降维,文章以目标识别准确率为特征选择准则,提出一种支持向量机递归特征消除(Support Vector Machine Recursive Feature Elimination,SVM-RFE)快速筛选出部分优质特征子集与猫群算法(Cat Swarm Algorithm,CSO)迭代寻优结合的特征选择方法,并将该方法应用于水声目标识别的特征选择。实验数据处理结果表明:相比SVM-RFE和CSO特征选择算法,文中提出的方法在平均特征维数降低8%的基础上,平均目标识别率提高了1.88%,能够实现有效降维的目的。该方法对判断特征是否适合用于特定的目标识别也有一定应用价值。 展开更多
关键词 特征选择 水声目标识别 支持向量机 递归特征消除 猫群算法
下载PDF
Parameters selection in gene selection using Gaussian kernel support vector machines by genetic algorithm 被引量:11
12
作者 毛勇 周晓波 +2 位作者 皮道映 孙优贤 WONG Stephen T.C. 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE EI CAS CSCD 2005年第10期961-973,共13页
In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying result... In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying results by using conventional linear sta- tistical methods. Recursive feature elimination based on support vector machine (SVM RFE) is an effective algorithm for gene selection and cancer classification, which are integrated into a consistent framework. In this paper, we propose a new method to select parameters of the aforementioned algorithm implemented with Gaussian kernel SVMs as better alternatives to the common practice of selecting the apparently best parameters by using a genetic algorithm to search for a couple of optimal parameter. Fast implementation issues for this method are also discussed for pragmatic reasons. The proposed method was tested on two repre- sentative hereditary breast cancer and acute leukaemia datasets. The experimental results indicate that the proposed method per- forms well in selecting genes and achieves high classification accuracies with these genes. 展开更多
关键词 Gene selection Support VECTOR machine (SVM) RECURSIVE feature elimination (rfe) GENETIC algorithm (GA) Parameter SELECTION
下载PDF
基于SVM-RFE的钓鱼网页检测方法研究 被引量:3
13
作者 王婷 彭勇 +2 位作者 戴忠华 伊胜伟 韩兰胜 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第S2期143-146,共4页
针对现有钓鱼网页检测方法存在的不足,基于后向选择算法,在信息获取、特征提取、分类器训练及检测疑似网络钓鱼网页等过程进行了优化.根据特征之间的相互关系划分等级空间,借助支持向量机回归特征消除的思想,提出了基于支持向量机的回... 针对现有钓鱼网页检测方法存在的不足,基于后向选择算法,在信息获取、特征提取、分类器训练及检测疑似网络钓鱼网页等过程进行了优化.根据特征之间的相互关系划分等级空间,借助支持向量机回归特征消除的思想,提出了基于支持向量机的回归特征消除(SVM-RFE)对钓鱼网页进行检测的思路,设计出一种改进的钓鱼网页检测方法.最后对比不同特征维度在漏报率、误报率、识别率方面的差异,分析检测的有效性.实验结果表明:实际应用中可通过该方法准确有效地选定最优特征. 展开更多
关键词 网络钓鱼检测 支持向量机 回归特征消除 特征选择 特征向量 钓鱼网页
原文传递
基于RFE_RF算法的幼龄沉香叶片含水率预估模型 被引量:4
14
作者 王甜 王雪峰 刘嘉政 《南京林业大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第4期177-184,共8页
【目的】针对随机森林算法在树木水分预测模型中高维度变量筛选困难及精度较低的问题,研究基于递归特征消除(RFE)与随机森林(RF)的融合算法,构建幼龄沉香(Aquilaria sinensis)可见光图像与叶片含水率的估测模型,探索适合幼龄沉香生长的... 【目的】针对随机森林算法在树木水分预测模型中高维度变量筛选困难及精度较低的问题,研究基于递归特征消除(RFE)与随机森林(RF)的融合算法,构建幼龄沉香(Aquilaria sinensis)可见光图像与叶片含水率的估测模型,探索适合幼龄沉香生长的水分条件,为实现沉香幼苗水分亏缺程度的无损监测提供可行方法。【方法】以2年生的名贵树种沉香为研究对象,用相机获取4种不同水分梯度下的幼龄沉香可见光图像,提取15种图像特征,利用递归特征消除法筛选沉香叶片最优的图像特征子集,然后结合随机森林算法构建沉香叶片含水率的预测模型,最后利用十折交叉验证法,将RFE_RF模型与常规随机森林(RF)以及最小二乘法支持向量机(LSSVM)相比较,检验模型的可行性。利用递归特征消除和随机森林融合(RFE_RF)算法筛选出幼龄沉香叶片图像的标准红光值(I_(NR))、饱和度(S)、矩形度(E_(R))3个特征,并以此作为模型自变量。【结果】与重度水淹胁迫相比,幼龄沉香对于长期重度干旱胁迫更加敏感,且干旱时间超出2周时幼苗叶片严重受损,威胁沉香生长;沉香最适叶片水分生长范围为50%~65%,适度增加水分,有利于沉香生长。基于RFE_RF融合算法构建的预测模型敏感度、特异性、误报率和精度分别达到88.64%、85.31%、14.39%和91.62%,优于LSSVM模型效果;与RF预测模型相比其敏感度提高3.34%、特异性提高10.87%、误报率降低36.83%、精度提高13.39%。【结论】基于RFE_RF融合算法建立的沉香叶片颜色、形状特征与含水率的模型,解决了随机森林过程中高维度变量选择问题,提高了RF在林木水分预测模型中的精度,实现了沉香幼苗叶片含水率的无损估测和诊断,为珍贵树种在经营管理中对水分进行准确管控提供了新思路。 展开更多
关键词 沉香 递归特征消除(rfe) 随机森林(RF)算法 含水率预估
原文传递
高分六号红边特征的农作物识别与评估 被引量:52
15
作者 梁继 郑镇炜 +2 位作者 夏诗婷 张晓彤 唐媛媛 《遥感学报》 EI CSCD 北大核心 2020年第10期1168-1179,共12页
红边作为植被敏感波段,其红边特征的运用是遥感识别农作物并实现精准农业的高新手段之一。以黑龙江松嫩平原北部为研究区,以国内首个提供红边波段的多光谱高分六号影像和玉米、大豆、水稻总计82859个作物样本同时作为研究对象,从以下几... 红边作为植被敏感波段,其红边特征的运用是遥感识别农作物并实现精准农业的高新手段之一。以黑龙江松嫩平原北部为研究区,以国内首个提供红边波段的多光谱高分六号影像和玉米、大豆、水稻总计82859个作物样本同时作为研究对象,从以下几个方面研究了红边波段和红边指数波段等红边特征在农作物识别中的表现,并评估了农作物的识别精度。(1)通过作物样本辐射亮度值的统计特征,初步显示了在两红边波段0.710μm和0.750μm处有比其他波段更好的区分;(2)根据传统归一化植被指数形式构建了红边归一化植被指数NDVI710和NDVI750,综合两指数在J-M距离表征的作物样本类别区分度上比传统NDVI更显著;(3)通过多种手段筛选了有效波段并且制定了支持向量机(SVM)框架下4种农作物识别的分类策略,分别在5∶5、6∶4、7∶3、8∶2、9∶1等5套随机样本分割方案下完成研究区域农作物的分类预测。在这20类分类精度中kappa系数均高于0.9609,总体精度高于0.9742;列向上5∶5分割方案的精度最高,8∶2的精度最低;横向上分类精度排序如下:SVM-RFE>SVM-RF>SVM-有红边波段>SVM-无红边波段,该结果表明了红边指数和红边波段的参与显著地提高了作物的识别精度;(4)由于水域等其他样本的缺少,SVM-RFE方法和SVM-RF方法的分类图像均存在少量错分现象。但从分类精度和图像细节展示上来看,SVM-RFE方法要优于SVM-RF方法,二者分类图像的交叉验证中kappa系数为0.8060,总体精度为0.8743。总之,高分六号红边特征在作物识别中表现优越,使得识别精度显著提高。后续研究者可开发更多与红边相关的植被指数,充分发挥红边特征在精准农业中的作用。 展开更多
关键词 遥感 高分六号 红边波段 支持向量机 随机森林法 递归特征消除法
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部