Due to the development of digital transformation,intelligent algorithms are getting more and more attention.The whale optimization algorithm(WOA)is one of swarm intelligence optimization algorithms and is widely used ...Due to the development of digital transformation,intelligent algorithms are getting more and more attention.The whale optimization algorithm(WOA)is one of swarm intelligence optimization algorithms and is widely used to solve practical engineering optimization problems.However,with the increased dimensions,higher requirements are put forward for algorithm performance.The double population whale optimization algorithm with distributed collaboration and reverse learning ability(DCRWOA)is proposed to solve the slow convergence speed and unstable search accuracy of the WOA algorithm in optimization problems.In the DCRWOA algorithm,the novel double population search strategy is constructed.Meanwhile,the reverse learning strategy is adopted in the population search process to help individuals quickly jump out of the non-ideal search area.Numerical experi-ments are carried out using standard test functions with different dimensions(10,50,100,200).The optimization case of shield construction parameters is also used to test the practical application performance of the proposed algo-rithm.The results show that the DCRWOA algorithm has higher optimization accuracy and stability,and the convergence speed is significantly improved.Therefore,the proposed DCRWOA algorithm provides a better method for solving practical optimization problems.展开更多
Unmanned aerial vehicle(UAV)paths in the field directly affect the efficiency and accuracy of payload data collection.Path planning of UAV advancing along river valleys in wild environments is one of the first and mos...Unmanned aerial vehicle(UAV)paths in the field directly affect the efficiency and accuracy of payload data collection.Path planning of UAV advancing along river valleys in wild environments is one of the first and most difficult problems faced by unmanned surveys of debris flow valleys.This study proposes a new hybrid bat optimization algorithm,GRE-Bat(Good point set,Reverse learning,Elite Pool-Bat algorithm),for unmanned exploration path planning of debris flow sources in outdoor environments.In the GRE-Bat algorithm,the good point set strategy is adopted to evenly distribute the population,ensure sufficient coverage of the search space,and improve the stability of the convergence accuracy of the algorithm.Subsequently,a reverse learning strategy is introduced to increase the diversity of the population and improve the local stagnation problem of the algorithm.In addition,an Elite pool strategy is added to balance the replacement and learning behaviors of particles within the population based on elimination and local perturbation factors.To demonstrate the effectiveness of the GRE-Bat algorithm,we conducted multiple simulation experiments using benchmark test functions and digital terrain models.Compared to commonly used path planning algorithms such as the Bat Algorithm(BA)and the Improved Sparrow Search Algorithm(ISSA),the GRE-Bat algorithm can converge to the optimal value in different types of test functions and obtains a near-optimal solution after an average of 60 iterations.The GRE-Bat algorithm can obtain higher quality flight routes in the designated environment of unmanned investigation in the debris flow gully basin,demonstrating its potential for practical application.展开更多
Dear Editor,In dynamic environments,the memory system of the brain must be able to perceive and process conflicting experiences to reach an adaptive decision.In Drosophila,in contrast to consistent experiences,conflic...Dear Editor,In dynamic environments,the memory system of the brain must be able to perceive and process conflicting experiences to reach an adaptive decision.In Drosophila,in contrast to consistent experiences,conflicting experiences trigger significantly increased Rac1 activity which mediates active forgetting [1].The ability to cope with conflicting experiences but not simple learning experiences is impaired in mutants of multiple autism-risk genes [2].展开更多
基金supported by Anhui Polytechnic University Introduced Talents Research Fund(No.2021YQQ064)Anhui Polytechnic University ScientificResearch Project(No.Xjky2022168).
文摘Due to the development of digital transformation,intelligent algorithms are getting more and more attention.The whale optimization algorithm(WOA)is one of swarm intelligence optimization algorithms and is widely used to solve practical engineering optimization problems.However,with the increased dimensions,higher requirements are put forward for algorithm performance.The double population whale optimization algorithm with distributed collaboration and reverse learning ability(DCRWOA)is proposed to solve the slow convergence speed and unstable search accuracy of the WOA algorithm in optimization problems.In the DCRWOA algorithm,the novel double population search strategy is constructed.Meanwhile,the reverse learning strategy is adopted in the population search process to help individuals quickly jump out of the non-ideal search area.Numerical experi-ments are carried out using standard test functions with different dimensions(10,50,100,200).The optimization case of shield construction parameters is also used to test the practical application performance of the proposed algo-rithm.The results show that the DCRWOA algorithm has higher optimization accuracy and stability,and the convergence speed is significantly improved.Therefore,the proposed DCRWOA algorithm provides a better method for solving practical optimization problems.
基金supported by National Natural Science Foundation of China(No.42302336)Project of the Department of Science and Technology of Sichuan Province(No.2024YFHZ0098,No.2023NSFSC0751)Open Project of Chengdu University of Information Technology(KYQN202317,760115027,KYTZ202278,KYTZ202280).
文摘Unmanned aerial vehicle(UAV)paths in the field directly affect the efficiency and accuracy of payload data collection.Path planning of UAV advancing along river valleys in wild environments is one of the first and most difficult problems faced by unmanned surveys of debris flow valleys.This study proposes a new hybrid bat optimization algorithm,GRE-Bat(Good point set,Reverse learning,Elite Pool-Bat algorithm),for unmanned exploration path planning of debris flow sources in outdoor environments.In the GRE-Bat algorithm,the good point set strategy is adopted to evenly distribute the population,ensure sufficient coverage of the search space,and improve the stability of the convergence accuracy of the algorithm.Subsequently,a reverse learning strategy is introduced to increase the diversity of the population and improve the local stagnation problem of the algorithm.In addition,an Elite pool strategy is added to balance the replacement and learning behaviors of particles within the population based on elimination and local perturbation factors.To demonstrate the effectiveness of the GRE-Bat algorithm,we conducted multiple simulation experiments using benchmark test functions and digital terrain models.Compared to commonly used path planning algorithms such as the Bat Algorithm(BA)and the Improved Sparrow Search Algorithm(ISSA),the GRE-Bat algorithm can converge to the optimal value in different types of test functions and obtains a near-optimal solution after an average of 60 iterations.The GRE-Bat algorithm can obtain higher quality flight routes in the designated environment of unmanned investigation in the debris flow gully basin,demonstrating its potential for practical application.
基金supported by grants from the National Natural Science Foundation of China (31970955 and 31700912)。
文摘Dear Editor,In dynamic environments,the memory system of the brain must be able to perceive and process conflicting experiences to reach an adaptive decision.In Drosophila,in contrast to consistent experiences,conflicting experiences trigger significantly increased Rac1 activity which mediates active forgetting [1].The ability to cope with conflicting experiences but not simple learning experiences is impaired in mutants of multiple autism-risk genes [2].