In the reversed field pinch(RFP),plasmas exhibit various self-organized states.Among these,the three-dimensional(3D)helical state known as the“quasi-single-helical”(QSH)state enhances RFP confinement.However,accurat...In the reversed field pinch(RFP),plasmas exhibit various self-organized states.Among these,the three-dimensional(3D)helical state known as the“quasi-single-helical”(QSH)state enhances RFP confinement.However,accurately describing the equilibrium is challenging due to the presence of 3D structures,magnetic islands,and chaotic regions.It is difficult to obtain a balance between the available diagnostic and the real equilibrium structure.To address this issue,we introduce KTX3DFit,a new 3D equilibrium reconstruction code specifically designed for the Keda Torus eXperiment(KTX)RFP.KTX3DFit utilizes the stepped-pressure equilibrium code(SPEC)to compute 3D equilibria and uses polarimetric interferometer signals from experiments.KTX3DFit is able to reconstruct equilibria in various states,including axisymmetric,doubleaxis helical(DAx),and single-helical-axis(SHAx)states.Notably,this study marks the first integration of the SPEC code with internal magnetic field data for equilibrium reconstruction and could be used for other 3D configurations.展开更多
This work reports an exceptional reversed yield strength asymmetry at room temperature for a rare-earth free magnesium alloy containing a mass of fine dispersed quasicrystal(I-phase)precipitates.Although exhibiting tr...This work reports an exceptional reversed yield strength asymmetry at room temperature for a rare-earth free magnesium alloy containing a mass of fine dispersed quasicrystal(I-phase)precipitates.Although exhibiting traditional basal texture,it owns an exceptional CYS/TYS as high as~1.17.Electron back-scattered diffraction(EBSD)and transmission electron microscopy(TEM)examinations indicate pyramidal and prismatic dislocations plus tensile twinning being activated after immediate yielding in compression while basal and non-basal dislocations in tension.I-phase particles transferred the concentrated stress by self-twinning to provide the driving force for tensile twin initiating in neighboring grains,thereby significantly increasing the critical resolved shear stress of tensile twinning to possibly the level of pyramidal slip,finally leading to the dominance of pyramidal slip plus tensile twinning in texture grains.This results in a higher contribution on yield strength by~55 MPa in compression than in tension,which reasonably agrees with the experimental yield strength difference(~38 MPa).It can be concluded that I-phase particles influence deformation modes in tension and in compression,finally result in reversed yield strength asymmetry.展开更多
In a tokamak fusion reactor operated at steady state,the equilibrium magnetic field is likely to have reversed shear in the core region,as the noninductive bootstrap current profile generally peaks off-axis.The revers...In a tokamak fusion reactor operated at steady state,the equilibrium magnetic field is likely to have reversed shear in the core region,as the noninductive bootstrap current profile generally peaks off-axis.The reversed shear Alfvén eigenmode(RSAE)as a unique branch of the shear Alfvén wave in this equilibrium,can exist with a broad spectrum in wavenumber and frequency,and be resonantly driven unstable by energetic particles(EP).After briefly discussing the RSAE linear properties in burning plasma condition,we review several key topics of the nonlinear dynamics for the RSAE through both wave-EP resonance and wave-wave coupling channels,and illustrate their potentially important role in reactor-scale fusion plasmas.By means of simplified hybrid MHD-kinetic simulations,the RSAEs are shown to have typically broad phase space resonance structure with both circulating and trapped EP,as results of weak/vanishing magnetic shear and relatively low frequency.Through the route of wave-EP nonlinearity,the dominant saturation mechanism is mainly due to the transported resonant EP radially decoupling with the localized RSAE mode structure,and the resultant EP transport generally has a convective feature.The saturated RSAEs also undergo various nonlinear couplings with other collective oscillations.Two typical routes as parametric decay and modulational instability are studied using nonlinear gyrokinetic theory,and applied to the scenario of spontaneous excitation by a finite amplitude pump RSAE.Multiple RSAEs could naturally couple and induce the spectral energy cascade into a low frequency Alfvénic mode,which may effectively transfer the EP energy to fuel ions via collisionless Landau damping.Moreover,zero frequency zonal field structure could be spontaneously excited by modulation of the pump RSAE envelope,and may also lead to saturation of the pump RSAE by both scattering into stable domain and local distortion of the continuum structure.展开更多
Field reversed configuration(FRC)is widely considered as an ideal target plasma for magnetoinertial fusion.However,its confinement and stability,both proportional to the radius,will deteriorate inevitably during radia...Field reversed configuration(FRC)is widely considered as an ideal target plasma for magnetoinertial fusion.However,its confinement and stability,both proportional to the radius,will deteriorate inevitably during radial compression.Hence,we propose a new fusion approach based on axial compression of a large-sized FRC.The axial compression can be made by plasma jets or plasmoids converging onto the axial ends of the FRC.The parameter space that can reach the ignition condition while preserving the FRC's overall quality is studied using a numerical model based on different FRC confinement scalings.It is found that ignition is possible for a large FRC that can be achieved with the current FRC formation techniques if compression ratio is greater than 50.A more realistic compression is to combine axial with moderate radial compression,which is also presented and calculated in this work.展开更多
The interaction between metal and support is critical in oxygen catalysis as it governs the charge transfer between these two entities,influences the electronic structures of the supported metal,affects the adsorption...The interaction between metal and support is critical in oxygen catalysis as it governs the charge transfer between these two entities,influences the electronic structures of the supported metal,affects the adsorption energies of reaction intermediates,and ultimately impacts the catalytic performance.In this study,we discovered a unique charge transfer reversal phenomenon in a metal/carbon nanohybrid system.Specifically,electrons were transferred from the metal-based species to N-doped carbon,while the carbon support reciprocally donated electrons to the metal domain upon the introduction of nickel.This led to the exceptional electrocatalytic performances of the resulting Ni-Fe/Mo_(2)C@nitrogen-doped carbon catalyst,with a half-wave potential of 0.91 V towards oxygen reduction reaction(ORR)and a low overpotential of 290 m V at 10 mA cm^(-2)towards oxygen evolution reaction(OER)under alkaline conditions.Additionally,the Fe-Ni/Mo_(2)C@carbon heterojunction catalyst demonstrated high specific capacity(794 mA h g_(Zn)~(-1))and excellent cycling stability(200 h)in a Zn-air battery.Theoretical calculations revealed that Mo_(2)C effectively inhibited charge transfer from Fe to the support,while secondary doping of Ni induced a charge transfer reversal,resulting in electron accumulation in the Fe-Ni alloy region.This local electronic structure modulation significantly reduced energy barriers in the oxygen catalysis process,enhancing the catalytic efficiency of both ORR and OER.Consequently,our findings underscore the potential of manipulating charge transfer reversal between the metal and support as a promising strategy for developing highly-active and durable bi-functional oxygen electrodes.展开更多
In this work,several key scaling laws of the quasi-static magnetic compression of field reversed configuration(FRC)plasma(Spencer et al 1983 Phys.Fluids 261564)are amended from a series of two-dimensional FRC MHD equi...In this work,several key scaling laws of the quasi-static magnetic compression of field reversed configuration(FRC)plasma(Spencer et al 1983 Phys.Fluids 261564)are amended from a series of two-dimensional FRC MHD equilibriums numerically obtained using the Grad–Shafranov equation solver NIMEQ.Based on the new scaling for the elongation and the magnetic fields at the separatrix and the wall,the empirically stable limits for the compression ratio,the fusion gain,and the neutron yield are evaluated,which may serve as a more accurate estimate for the upper ceiling of performance from the magnetic compression of FRC plasma as a potential fusion energy as well as neutron source devices.展开更多
BACKGROUND Immune checkpoint inhibitor-associated interstitial lung disease(ICI-ILD)and opportunistic pneumonias are the main pulmonary complications during immunotherapy for malignancies.The organizing pneumonia(OP)p...BACKGROUND Immune checkpoint inhibitor-associated interstitial lung disease(ICI-ILD)and opportunistic pneumonias are the main pulmonary complications during immunotherapy for malignancies.The organizing pneumonia(OP)pattern is one of the common radiological manifestations of ICI-ILD,and OP is the most common cause of reversed halo cycles and consolidations.However,opportunistic pneumonias should be excluded.CASE SUMMARY In this report,we described a case of a 44-year-old man with esophageal cancer who showed multiple reversed-halo cycles and consolidations on chest computed tomography(CT)after he had a cold during immunotherapy.He was diagnosed with esophageal squamous-cell cancer(T2NIM0)after surgery.Then,he was successfully treated with 6 cycles of chemotherapy plus tislelizumab,one cycle of radiotherapy and 9 cycles of tislelizumab.Two months later,he complained of low-grade fever and cough with nonpurulent sputum after he had a cold.Community-acquired pneumonia was considered,but moxifloxacin was ineffective.Chest CT showed multiple reversed-halo cycles and consolidations.Mycobacterium tuberculosis was identified with next-generation sequence analysis of bronchoalveolar lavage fluid(BALF).Two months later,he improved with standard anti-tuberculosis medications.Both the cycles and consolidations disappeared in the repeat CT after 6 mo of medications.CONCLUSION When chest CT shows reversed-halo cycles and consolidations in patients during anticancer immunotherapy,both ICI-ILD and infectious pneumonia should be considered.BALF microbiological analysis was helpful to differentiate them.展开更多
Time-resolved electron spin resonance has been used to study quenching reactions between the antioxidant Vitamin C (VC) and the triplet excited states of 9,10-phenanthrenequinone (PAQ) in ethylene glycol-water (E...Time-resolved electron spin resonance has been used to study quenching reactions between the antioxidant Vitamin C (VC) and the triplet excited states of 9,10-phenanthrenequinone (PAQ) in ethylene glycol-water (EG-H2O) homogeneous and inhomogeneous reversed micelle solutions. Reversed micelle solutions were used to be the models of physiological environment of biological cell and tissue. In PAQ/EG-H2O homogeneous solution, the excited triplet of PAQ (3PAQ*) abstracts hydrogen atom from solvent EG. In PAQ/VC/EG-H2O solution, 3pAQ* abstracts hydrogen atom not only from solvent EG but also from VC. The quenching rate constant of 3pAQ* by VC is close to the diffusion-controlled value of 1.41 × 108 L/(mol.s). In hexadecyltrimethylammonium bromide (CTAB)/EG-H2O and aerosol OT (AOT)/EG- H2O reversed micelle solutions, 3pAQ* and VC react around the water-oil interface of the reversed micelle. Exit of 3pAQ* from the lipid phase slows down the quenching reaction. For Triton X-100 (TX-100)/EG-H2O reversed micelle solution, PAQ and VC coexist inside the hydrophilic polyethylene glycol core, and the quenching rate constant of 3pAQ* by VC is larger than those in AOT/EG-H2O and CTAB/EG-H2O reversed micelle solutions, even a little larger than that in EG-H2O homogeneous solution. The strong emissive chemically induced dynamic electron polarization of As'- resulted from the effective TM spin polarization transfer in hydrogen abstraction of 3pAQ* from VC.展开更多
Hursts rescaled range (R/S) analysis and Wolfs attractor reconstruction technique have been adopted to estimate the local fractal dimensions and the local largest Lyapunov exponents in terms of the time series pressur...Hursts rescaled range (R/S) analysis and Wolfs attractor reconstruction technique have been adopted to estimate the local fractal dimensions and the local largest Lyapunov exponents in terms of the time series pressure fluctuations obtained from a gas liquid solid three phase self aspirated reversed flow jet loop reactor,respectively.The results indicate that the local fractal dimensions and the local largest Lyapunov exponents in both the jet region and the tubular region inside the draft tube increase with the increase in the jet liquid flowrates and the solid loadings,the local fractal dimension profiles are similar to those of the largest Lyapunov exponent,the local largest lyapunov exponents are positive for all cases,and the flow behavior of such a reactor is chaotic.The local nonlinear characteristic parameters such as the local fractal dimension and the local largest Lyapunov exponent could be applied to further study the flow properties such as the flow regime transitions and flow structures of this three phase jet loop reactor.展开更多
The local chaos characteristics of the time series pressure fluctuations of gas liquid two phase flow in a self aspirated reversed flow jet loop reactor are studied by the deterministic chaos analysis technique. It...The local chaos characteristics of the time series pressure fluctuations of gas liquid two phase flow in a self aspirated reversed flow jet loop reactor are studied by the deterministic chaos analysis technique. It is found that the estimated local largest Lyapunov exponent is positive in all cases and the profile is similar to that of the local fractal dimension in this reactor. The positive largest Lyapunov exponent shows that the reactor is a nonlinear chaotic system. The obvious distribution indicates that the local nonlinear characteristic parameters such as the Lyapunov exponent and the fractal dimension could be applied to further study the flow characteristics such as the flow regine transitions and flow structures of the multi phase reactors.展开更多
A new method was used to analyze the factors affecting the precipitation of reversed austenite during tempering. The samples were kept at various tempering temperatures for 10 min and their length changes were recorde...A new method was used to analyze the factors affecting the precipitation of reversed austenite during tempering. The samples were kept at various tempering temperatures for 10 min and their length changes were recorded. Then, the precipitation of reversed austenite which led to the length reduction was shown by thermal expansion curves. The results show that the effects of process parameters on the precipitation of reversed austenite can be determined more accurately by this method than by X-ray diffraction. When the quenching and tempering process is adopted, both the lower quenching temperature and higher tempering temperature can promote the precipitation of reversed austenite during tempering; and when the quenching, lamellarizing, and tempering process is used, intercritical quenching is considered beneficial to the precipitation of reversed austenite in the subsequent tempering because of Ni segregation during holding at the intercritical temperature.展开更多
Separation of ethane from ethylene is a very important but challenging process in the petrochemical industry.Finding an alternative method would reduce the energy needed to make 170 million tons of ethylene manufactur...Separation of ethane from ethylene is a very important but challenging process in the petrochemical industry.Finding an alternative method would reduce the energy needed to make 170 million tons of ethylene manufactured worldwide each year.Adsorptive separation using C2H6-selective porous materials to directly produce high-purity C2H4 is more energy-efficient.We herein report the"reversed C2H6/C2H4 adsorption"in a metal–organic framework Cr-BTC via the introduction of oxygen on its open metal sites.The oxidized Cr-BTC(O2)can bind C2H6 over C2H4 through the active Cr-superoxo sites,which was elucidated by the gas sorption isotherms and density functional theory calculations.This material thus exhibits a good performance for the separation of 50/50 C2H6/C2H4 mixtures to produce 99.99%pure C2H4 in a single separation operation.展开更多
AIM: To elucidate the natural history and the longitudinal outcomes in cirrhotic patients with non-forward portal flow(NFPF).METHODS: The present retrospective study consisted of 222 cirrhotic patients(120 males and 1...AIM: To elucidate the natural history and the longitudinal outcomes in cirrhotic patients with non-forward portal flow(NFPF).METHODS: The present retrospective study consisted of 222 cirrhotic patients(120 males and 102 females; age, 61.7 ± 11.1 years). The portal hemodynamics were evaluated at baseline and during the observation period using both pulsed and color Doppler ultrasonography. The diameter(mm), flow direction, mean flow velocity(cm/s), and mean flow volume(m L/min) were assessed at the portal trunk, the splenic vein, the superior mesenteric vein, and the collateral vessels. The average values from 2 to 4 measurements were used for the data analysis. The portal flow direction was defined as follows: forward portal flow(FPF) for continuous hepatopetal flow; bidirectional flow for to-and-fro flow; and reversed flow for continuous hepatofugal flow. The bidirectional flow and the reversed flow were classified as NFPF in this study. The clinical findings and prognosis were compared between the patients with FPF and those with NFPF. The median follow-up period was 40.9 mo(range, 0.3-156.5 mo).RESULTS: Twenty-four patients(10.8%) demonstrated NFPF, accompanied by lower albumin level, worse ChildPugh scores, and model for end-stage liver disease scores. The portal hemodynamic features in the patients with NFPF were smaller diameter of the portal trunk;presence of short gastric vein, splenorenal shunt, or inferior mesenteric vein; and advanced collateral vessels(diameter > 8.7 mm, flow velocity > 10.2 cm/s, and flow volume > 310 m L/min). The cumulative incidence rates of NFPF were 6.5% at 1 year, 14.5% at 3 years, and 23.1% at 5 years. The collateral vessels characterized by flow velocity > 9.5 cm/s and those located at the splenic hilum were significant predictive factors for developing NFPF. The cumulative survival rate was significantly lower in the patients with NFPF(72.2% at 1 year, 38.5% at 3 years, 38.5% at 5 years) than in those with forward portal flow(84.0% at 1 year, 67.8% at 3 years, 54.3% at 5 years, P = 0.0123) using the Child-Pugh B and C classifications.CONCLUSION: NFPF has a significant negative effect on the prognosis of patients with worse liver function reserve, suggesting the need for careful management.展开更多
Single-phase homogeneous Ce1-x ZrxO2 solid versed microemulsion method. The structural properties solutions with various compositions were synthesized using the reand performance of Ce1- xZrxO2 were studied using XRD,...Single-phase homogeneous Ce1-x ZrxO2 solid versed microemulsion method. The structural properties solutions with various compositions were synthesized using the reand performance of Ce1- xZrxO2 were studied using XRD, BET, SEM, HRTEM, TPR and CO oxidation measurements. The results show that in the range of x = 0.4 - 0.5 and x = 0.6 - 1.0, the solid solutions posses the cubic and the tetragonal phase structure, respectively, Solids obtained by the reversed microemulsion method were more homogeneous on the whole range of composition, XRD investigations of the prepared materials did not show segregation of cerium or zirconium oxides, Highly uniform nanosize solid solution particles of ceria-zirconia with high specific area (146.7 m^2·g^-1) were attained under the conditions of this study. The TPR results and CO oxidation measurements indicate that the performance of the CeO2-ZrO2 mixed oxides is strongly related to the composition and structure of the oxides. Enhancement of the activity was found for the catalyst prepared by reversed microemulsion method as compared to the sample prepared by sol-gel method.展开更多
In this article, the influence factors of trypsin extracted from crude pancreatin was investigated, and scanning turmeling microscope(STM) was used to observe the image of trypsin in butane-diacid-2-ethyl-hexyl-este...In this article, the influence factors of trypsin extracted from crude pancreatin was investigated, and scanning turmeling microscope(STM) was used to observe the image of trypsin in butane-diacid-2-ethyl-hexyl-ester-sulfonic sodium (AOT)/iso-octane reversed micelles. The STM image showed that trypsins bounded in reversed micelles was rigid, which weakened its conjugative effect and caused maximum ultraviolet absorption and fluorescence emissive absorption moving toward blue waves. AOT concentration, pH and cations were the main influence factors of extraction. Specifically, extraction percentage of trypsin decreased with the increase of AOT concentration from 0.01 to 0.1mol·L^-1. When pH value is from 5.30 to 10.0, i.e. less than pI of trypsin, the extraction percentage is raised with the different increase of pI-pH, but when the pH value is less than 5.20, the extraction percentage is decreased with the acidity added. Besides, the extraction efficiency is negative, related with the concentrations of Ca^2+, Na^+, K^+ which were in the range of 0.2-1.0mol.L^-1, and influence of concentration of Ca^2+ is greater than that of Na^+, and K^+ which has the minimum impact with the same concentration. Finally, optimum conditions to extract trypsin were: AOT reversed micelles 0.05mol·L^-1, trypsin concentration in crude pancreatin solution 3mg·ml^-1, pH 5.2-- 5.3, ratio (by volume) of extraction phase to strip-extraction phase 1 : 1, and time of 5min. The corresponding percentage of extraction was 22.7% and specific activity was 78.9 N-benzoyl-L-arginlne ethyl ester (BAEE) U·mg^-1 protein, three times than that in crude pancreatin. There was no lipase and amylopsin activity was decreased to 1/5 of crude pancreatin. Partly purifying solution was treated by condition mentioned above with 0.05mol·L^-1 ceryl-trimethyl-ammonium bromide (CTAB), total extraction percentage of trypsin was 74.18% and specific activity was 3148.3 BAEE U·mg^-1, i.e. 48.16 times purer than that in crude pancreatin. Through sodium dodecyl sulfate-polyacryl amide gel electrophoresis (SDS-PAGE) and image analysis of extracted product, there were only three bands in the trypsin, while seven in crude pancreatin, and electrophoresis location of main bend was almost identical with the standard enzyme.展开更多
As a hybrid approach to realizing fusion energy,Magnetized Target Fusion(MTF)based on the Field Reversed Configuration(FRC),which has the plasma density and confinement time in the range between magnetic and inertial ...As a hybrid approach to realizing fusion energy,Magnetized Target Fusion(MTF)based on the Field Reversed Configuration(FRC),which has the plasma density and confinement time in the range between magnetic and inertial confinement fusion,has been recently widely pursued around the world.To investigate the formation and confinement of the FRC plasma injector for MTF,the Yingguang-I,which is an FRC test device and contains a multi-bank program-discharged pulsed power sub-system,was constructed at the Institute of Fluid Physics(IFP),China.This paper presents the pulsed power components and their parameters of the device in detail,then gives a brief description of progress in experiments of FRC formation.Experimental results of the pulsed power sub-system show that the peak current/magnetic field of 110 kA/0.3 T,10 kA/1.2 Tand 1.7 MA/3.4 Twere achieved in the bias,mirror and q-pinch circuits with quarter cycle of 80 ms,700 ms and 3.8 ms respectively.The induced electric field in the neutral gas was greater than 0.25 kV/cm when the ionization bank was charged to 70 kV.With H_(2) gas of 8 Pa,the plasma target of density 10^(16) cm^(-3),separatrix radius 4 cm,half-length 17 cm,equilibrium temperature 200 eV and lifetime 3 ms(approximately the half pulse width of the reversed field)have been obtained through the q-pinch method when the bias,mirror,ionization and θ-pinch banks were charged to 5 kV,5 kV,55 kV and ±45 kV respectively.The images from the high-speed end-on framing camera demonstrate the formation processes of FRC and some features agree well with the results with the two-dimension magneto hydrodynamics code(2D-MHD).展开更多
Objective Reversed alkane δ;C and δ;H values in many prolific shale plays all over the world have aroused much attention in the study of the formation mechanism of reversed isotope series in alkanes in the past few ...Objective Reversed alkane δ;C and δ;H values in many prolific shale plays all over the world have aroused much attention in the study of the formation mechanism of reversed isotope series in alkanes in the past few years(Zou Caineng et al., 2016). Although many researchers have put forward different hypotheses, the mechanism has not been well understood yet. The openness degree of oil and gas system展开更多
Objective: To establish a new assay for platelet-activating factor (PAF), to compare it with bio-assay; and to discuss its significance in some elderly people diseases such as cerebral infarction and coronary heart di...Objective: To establish a new assay for platelet-activating factor (PAF), to compare it with bio-assay; and to discuss its significance in some elderly people diseases such as cerebral infarction and coronary heart disease. Methods: To measure PAF levels in 100 controls, 23 elderly patients with cerebral infarction and 65 cases with coronary heart disease by reversed phase high-performance liquid chromatographic technique (rHPLC). Results:rHPLC is more convenient, sensitive,specific, and less confusing, compared with bio-assay. The level of plasma PAF in patients with cerebral infarction was higher than that in the controls (P<0.01), and in patients with coronary heart disease. Conclusion: Detection of PAF with rHPLC is more reliable and more accurate. The new assay has important significance in PAF research.展开更多
Full scale experimental study on nitrogen removal for low-carbon wastewater was conducted in reversed A2/O process in Jiguanshi waste water treatment plant in Chongqing,in order to aid the operation and maintenance of...Full scale experimental study on nitrogen removal for low-carbon wastewater was conducted in reversed A2/O process in Jiguanshi waste water treatment plant in Chongqing,in order to aid the operation and maintenance of similar WWTP. When the proposed measures,such as using 0.1% (volume fraction of wastewater) landfill leachate,shortening HRT by 2/3 in the primary sedimentation tank and controlling DO at 0.5 mg/L in the 3rd section of aerobic zone,are applied,15% of the carbon source can be complemented,the favorable property of activated sludge is achieved,and the nitrogen removal effect is significantly improved. The effluent NH3-N is 2 mg/L and the removal rate is 90%. The effluent TN is 17 mg/L and the removal rate is 54%. The up-to-standard discharge of the effluent is achieved. And after the optimization,the unit electricity consumption also reaches 0.21 kW/h and saves 20%.展开更多
A novel, simple, rapid, sensitive and highly selective flow injection procedure for the spectrophotometric determination of chlorine dioxide in the presence of other chlorine species, viz,free chlorine, chlorite, chlo...A novel, simple, rapid, sensitive and highly selective flow injection procedure for the spectrophotometric determination of chlorine dioxide in the presence of other chlorine species, viz,free chlorine, chlorite, chlorate and hypochlorite, is developed. The method is based on the discoloration reaction between chlorine dioxide and chlorophenol red and can overcome the shortcomings existed in direct spectrophotometric determination for chlorine dioxide owing to the serious interference of free and combined chlorine. The procedure gave a linear calibration graph over the range 0—0.71 mg/L of chlorine dioxide. With a detection limit of 0.024 mg/L and a sample throughput of 60 samples/h.展开更多
基金supported by National Natural Science Foundation of China(Nos.12175227 and 12375226)the National Magnetic Confinement Fusion Program of China(No.2022YFE03100004)+1 种基金the Fundamental Research Funds for the Central Universities(No.USTC 20210079)the Collaborative Innovation Program of Hefei Science Center,CAS(No.2022HSC-CIP022)。
文摘In the reversed field pinch(RFP),plasmas exhibit various self-organized states.Among these,the three-dimensional(3D)helical state known as the“quasi-single-helical”(QSH)state enhances RFP confinement.However,accurately describing the equilibrium is challenging due to the presence of 3D structures,magnetic islands,and chaotic regions.It is difficult to obtain a balance between the available diagnostic and the real equilibrium structure.To address this issue,we introduce KTX3DFit,a new 3D equilibrium reconstruction code specifically designed for the Keda Torus eXperiment(KTX)RFP.KTX3DFit utilizes the stepped-pressure equilibrium code(SPEC)to compute 3D equilibria and uses polarimetric interferometer signals from experiments.KTX3DFit is able to reconstruct equilibria in various states,including axisymmetric,doubleaxis helical(DAx),and single-helical-axis(SHAx)states.Notably,this study marks the first integration of the SPEC code with internal magnetic field data for equilibrium reconstruction and could be used for other 3D configurations.
基金financially supported by the Scientific and Technological Developing Scheme of Jilin Province under grants no.20220402012GHthe National Natural Science Foundation of China under grants no.U21A20323+3 种基金the Capital Construction Fund within the Budget of Jilin Province no.2021C038-1the Special high-tech industrialization project of science and technology cooperation between Jilin Province and Chinese Academy of Sciences under grant no.2021SYHZ0043 and 2022SYHZ0038the Major science and technology projects of Jilin Province and Changchun City under grant no.20210301024GXthe Project for Jilin provincial department of education under grant no.JJKH20220760KJ。
文摘This work reports an exceptional reversed yield strength asymmetry at room temperature for a rare-earth free magnesium alloy containing a mass of fine dispersed quasicrystal(I-phase)precipitates.Although exhibiting traditional basal texture,it owns an exceptional CYS/TYS as high as~1.17.Electron back-scattered diffraction(EBSD)and transmission electron microscopy(TEM)examinations indicate pyramidal and prismatic dislocations plus tensile twinning being activated after immediate yielding in compression while basal and non-basal dislocations in tension.I-phase particles transferred the concentrated stress by self-twinning to provide the driving force for tensile twin initiating in neighboring grains,thereby significantly increasing the critical resolved shear stress of tensile twinning to possibly the level of pyramidal slip,finally leading to the dominance of pyramidal slip plus tensile twinning in texture grains.This results in a higher contribution on yield strength by~55 MPa in compression than in tension,which reasonably agrees with the experimental yield strength difference(~38 MPa).It can be concluded that I-phase particles influence deformation modes in tension and in compression,finally result in reversed yield strength asymmetry.
基金supported by National Natural Science Foundation of China (Nos. 12205251, 12275236 and 12261131622)Italian Ministry for Foreign Affairs and International Cooperation Project (No. CN23GR02)+2 种基金the National Key Research and Development Program of China (Nos. 2019YFE03020003 and 2017YFE0301900)Users of Excellence program of Hefei Science Center CAS (No. 2021HSC-UE016)funded by the European Union via the Euratom Research and Training Programme (No. 101052200–EUROfusion)
文摘In a tokamak fusion reactor operated at steady state,the equilibrium magnetic field is likely to have reversed shear in the core region,as the noninductive bootstrap current profile generally peaks off-axis.The reversed shear Alfvén eigenmode(RSAE)as a unique branch of the shear Alfvén wave in this equilibrium,can exist with a broad spectrum in wavenumber and frequency,and be resonantly driven unstable by energetic particles(EP).After briefly discussing the RSAE linear properties in burning plasma condition,we review several key topics of the nonlinear dynamics for the RSAE through both wave-EP resonance and wave-wave coupling channels,and illustrate their potentially important role in reactor-scale fusion plasmas.By means of simplified hybrid MHD-kinetic simulations,the RSAEs are shown to have typically broad phase space resonance structure with both circulating and trapped EP,as results of weak/vanishing magnetic shear and relatively low frequency.Through the route of wave-EP nonlinearity,the dominant saturation mechanism is mainly due to the transported resonant EP radially decoupling with the localized RSAE mode structure,and the resultant EP transport generally has a convective feature.The saturated RSAEs also undergo various nonlinear couplings with other collective oscillations.Two typical routes as parametric decay and modulational instability are studied using nonlinear gyrokinetic theory,and applied to the scenario of spontaneous excitation by a finite amplitude pump RSAE.Multiple RSAEs could naturally couple and induce the spectral energy cascade into a low frequency Alfvénic mode,which may effectively transfer the EP energy to fuel ions via collisionless Landau damping.Moreover,zero frequency zonal field structure could be spontaneously excited by modulation of the pump RSAE envelope,and may also lead to saturation of the pump RSAE by both scattering into stable domain and local distortion of the continuum structure.
基金supported by National Natural Science Foundation of China(No.12175226)。
文摘Field reversed configuration(FRC)is widely considered as an ideal target plasma for magnetoinertial fusion.However,its confinement and stability,both proportional to the radius,will deteriorate inevitably during radial compression.Hence,we propose a new fusion approach based on axial compression of a large-sized FRC.The axial compression can be made by plasma jets or plasmoids converging onto the axial ends of the FRC.The parameter space that can reach the ignition condition while preserving the FRC's overall quality is studied using a numerical model based on different FRC confinement scalings.It is found that ignition is possible for a large FRC that can be achieved with the current FRC formation techniques if compression ratio is greater than 50.A more realistic compression is to combine axial with moderate radial compression,which is also presented and calculated in this work.
基金financially supported by the Outstanding Youth Scientific Research Project for Colleges and Universities of Anhui Province of China (2022AH020054)the Anhui Provincial Natural Science Foundation (2208085Y06)+2 种基金the National Natural Science Foundation of China (Nos.21975001 and U2002213)the Support Program of Excellent Young Talents in Anhui Provincial Colleges and Universities (gxyq ZD2022034)the Double Tops Joint Fund of the Yunnan Science and Technology Bureau and Yunnan University (2019FY003025)。
文摘The interaction between metal and support is critical in oxygen catalysis as it governs the charge transfer between these two entities,influences the electronic structures of the supported metal,affects the adsorption energies of reaction intermediates,and ultimately impacts the catalytic performance.In this study,we discovered a unique charge transfer reversal phenomenon in a metal/carbon nanohybrid system.Specifically,electrons were transferred from the metal-based species to N-doped carbon,while the carbon support reciprocally donated electrons to the metal domain upon the introduction of nickel.This led to the exceptional electrocatalytic performances of the resulting Ni-Fe/Mo_(2)C@nitrogen-doped carbon catalyst,with a half-wave potential of 0.91 V towards oxygen reduction reaction(ORR)and a low overpotential of 290 m V at 10 mA cm^(-2)towards oxygen evolution reaction(OER)under alkaline conditions.Additionally,the Fe-Ni/Mo_(2)C@carbon heterojunction catalyst demonstrated high specific capacity(794 mA h g_(Zn)~(-1))and excellent cycling stability(200 h)in a Zn-air battery.Theoretical calculations revealed that Mo_(2)C effectively inhibited charge transfer from Fe to the support,while secondary doping of Ni induced a charge transfer reversal,resulting in electron accumulation in the Fe-Ni alloy region.This local electronic structure modulation significantly reduced energy barriers in the oxygen catalysis process,enhancing the catalytic efficiency of both ORR and OER.Consequently,our findings underscore the potential of manipulating charge transfer reversal between the metal and support as a promising strategy for developing highly-active and durable bi-functional oxygen electrodes.
基金supported by the National Magnetic Confinement Fusion Program of China (No. 2017YFE0301805)National Natural Science Foundation of China (No. 51821005)+3 种基金the Fundamental Research Funds for the Central Universities at Huazhong University of Science and Technology (No. 2019kfy XJJS193)the U.S. Department of Energy (Nos. DE-FG02-86ER53218 and DE-SC0018001)the supports from the NIMROD teamthe support from the Chinese Government Scholarship.
文摘In this work,several key scaling laws of the quasi-static magnetic compression of field reversed configuration(FRC)plasma(Spencer et al 1983 Phys.Fluids 261564)are amended from a series of two-dimensional FRC MHD equilibriums numerically obtained using the Grad–Shafranov equation solver NIMEQ.Based on the new scaling for the elongation and the magnetic fields at the separatrix and the wall,the empirically stable limits for the compression ratio,the fusion gain,and the neutron yield are evaluated,which may serve as a more accurate estimate for the upper ceiling of performance from the magnetic compression of FRC plasma as a potential fusion energy as well as neutron source devices.
基金Supported by National High Level Hospital Clinical Research Funding,No.2022-PUMCH-C-069 and No.2022-PUMCH-A-009.
文摘BACKGROUND Immune checkpoint inhibitor-associated interstitial lung disease(ICI-ILD)and opportunistic pneumonias are the main pulmonary complications during immunotherapy for malignancies.The organizing pneumonia(OP)pattern is one of the common radiological manifestations of ICI-ILD,and OP is the most common cause of reversed halo cycles and consolidations.However,opportunistic pneumonias should be excluded.CASE SUMMARY In this report,we described a case of a 44-year-old man with esophageal cancer who showed multiple reversed-halo cycles and consolidations on chest computed tomography(CT)after he had a cold during immunotherapy.He was diagnosed with esophageal squamous-cell cancer(T2NIM0)after surgery.Then,he was successfully treated with 6 cycles of chemotherapy plus tislelizumab,one cycle of radiotherapy and 9 cycles of tislelizumab.Two months later,he complained of low-grade fever and cough with nonpurulent sputum after he had a cold.Community-acquired pneumonia was considered,but moxifloxacin was ineffective.Chest CT showed multiple reversed-halo cycles and consolidations.Mycobacterium tuberculosis was identified with next-generation sequence analysis of bronchoalveolar lavage fluid(BALF).Two months later,he improved with standard anti-tuberculosis medications.Both the cycles and consolidations disappeared in the repeat CT after 6 mo of medications.CONCLUSION When chest CT shows reversed-halo cycles and consolidations in patients during anticancer immunotherapy,both ICI-ILD and infectious pneumonia should be considered.BALF microbiological analysis was helpful to differentiate them.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20903004) and the Science Foundation of the Education Committee of Anhui Province (No.J2010A145). We are grateful to professor Li-min Zhang for his help in transient absorptive spectrum measurement.
文摘Time-resolved electron spin resonance has been used to study quenching reactions between the antioxidant Vitamin C (VC) and the triplet excited states of 9,10-phenanthrenequinone (PAQ) in ethylene glycol-water (EG-H2O) homogeneous and inhomogeneous reversed micelle solutions. Reversed micelle solutions were used to be the models of physiological environment of biological cell and tissue. In PAQ/EG-H2O homogeneous solution, the excited triplet of PAQ (3PAQ*) abstracts hydrogen atom from solvent EG. In PAQ/VC/EG-H2O solution, 3pAQ* abstracts hydrogen atom not only from solvent EG but also from VC. The quenching rate constant of 3pAQ* by VC is close to the diffusion-controlled value of 1.41 × 108 L/(mol.s). In hexadecyltrimethylammonium bromide (CTAB)/EG-H2O and aerosol OT (AOT)/EG- H2O reversed micelle solutions, 3pAQ* and VC react around the water-oil interface of the reversed micelle. Exit of 3pAQ* from the lipid phase slows down the quenching reaction. For Triton X-100 (TX-100)/EG-H2O reversed micelle solution, PAQ and VC coexist inside the hydrophilic polyethylene glycol core, and the quenching rate constant of 3pAQ* by VC is larger than those in AOT/EG-H2O and CTAB/EG-H2O reversed micelle solutions, even a little larger than that in EG-H2O homogeneous solution. The strong emissive chemically induced dynamic electron polarization of As'- resulted from the effective TM spin polarization transfer in hydrogen abstraction of 3pAQ* from VC.
文摘Hursts rescaled range (R/S) analysis and Wolfs attractor reconstruction technique have been adopted to estimate the local fractal dimensions and the local largest Lyapunov exponents in terms of the time series pressure fluctuations obtained from a gas liquid solid three phase self aspirated reversed flow jet loop reactor,respectively.The results indicate that the local fractal dimensions and the local largest Lyapunov exponents in both the jet region and the tubular region inside the draft tube increase with the increase in the jet liquid flowrates and the solid loadings,the local fractal dimension profiles are similar to those of the largest Lyapunov exponent,the local largest lyapunov exponents are positive for all cases,and the flow behavior of such a reactor is chaotic.The local nonlinear characteristic parameters such as the local fractal dimension and the local largest Lyapunov exponent could be applied to further study the flow properties such as the flow regime transitions and flow structures of this three phase jet loop reactor.
文摘The local chaos characteristics of the time series pressure fluctuations of gas liquid two phase flow in a self aspirated reversed flow jet loop reactor are studied by the deterministic chaos analysis technique. It is found that the estimated local largest Lyapunov exponent is positive in all cases and the profile is similar to that of the local fractal dimension in this reactor. The positive largest Lyapunov exponent shows that the reactor is a nonlinear chaotic system. The obvious distribution indicates that the local nonlinear characteristic parameters such as the Lyapunov exponent and the fractal dimension could be applied to further study the flow characteristics such as the flow regine transitions and flow structures of the multi phase reactors.
文摘A new method was used to analyze the factors affecting the precipitation of reversed austenite during tempering. The samples were kept at various tempering temperatures for 10 min and their length changes were recorded. Then, the precipitation of reversed austenite which led to the length reduction was shown by thermal expansion curves. The results show that the effects of process parameters on the precipitation of reversed austenite can be determined more accurately by this method than by X-ray diffraction. When the quenching and tempering process is adopted, both the lower quenching temperature and higher tempering temperature can promote the precipitation of reversed austenite during tempering; and when the quenching, lamellarizing, and tempering process is used, intercritical quenching is considered beneficial to the precipitation of reversed austenite in the subsequent tempering because of Ni segregation during holding at the intercritical temperature.
基金the financial support from the National Natural Science Foundation of China(Nos.21606163 and 21878205)Coal Bed Methane Joint Foundation of Shanxi(2016012006)+2 种基金Foundation of State Key Laboratory of Coal Conversion(J18-19-610)Welch Foundation(grant AX-1730)the Distinguished Scientist Fellowship Program(DSFP)at KSU.
文摘Separation of ethane from ethylene is a very important but challenging process in the petrochemical industry.Finding an alternative method would reduce the energy needed to make 170 million tons of ethylene manufactured worldwide each year.Adsorptive separation using C2H6-selective porous materials to directly produce high-purity C2H4 is more energy-efficient.We herein report the"reversed C2H6/C2H4 adsorption"in a metal–organic framework Cr-BTC via the introduction of oxygen on its open metal sites.The oxidized Cr-BTC(O2)can bind C2H6 over C2H4 through the active Cr-superoxo sites,which was elucidated by the gas sorption isotherms and density functional theory calculations.This material thus exhibits a good performance for the separation of 50/50 C2H6/C2H4 mixtures to produce 99.99%pure C2H4 in a single separation operation.
文摘AIM: To elucidate the natural history and the longitudinal outcomes in cirrhotic patients with non-forward portal flow(NFPF).METHODS: The present retrospective study consisted of 222 cirrhotic patients(120 males and 102 females; age, 61.7 ± 11.1 years). The portal hemodynamics were evaluated at baseline and during the observation period using both pulsed and color Doppler ultrasonography. The diameter(mm), flow direction, mean flow velocity(cm/s), and mean flow volume(m L/min) were assessed at the portal trunk, the splenic vein, the superior mesenteric vein, and the collateral vessels. The average values from 2 to 4 measurements were used for the data analysis. The portal flow direction was defined as follows: forward portal flow(FPF) for continuous hepatopetal flow; bidirectional flow for to-and-fro flow; and reversed flow for continuous hepatofugal flow. The bidirectional flow and the reversed flow were classified as NFPF in this study. The clinical findings and prognosis were compared between the patients with FPF and those with NFPF. The median follow-up period was 40.9 mo(range, 0.3-156.5 mo).RESULTS: Twenty-four patients(10.8%) demonstrated NFPF, accompanied by lower albumin level, worse ChildPugh scores, and model for end-stage liver disease scores. The portal hemodynamic features in the patients with NFPF were smaller diameter of the portal trunk;presence of short gastric vein, splenorenal shunt, or inferior mesenteric vein; and advanced collateral vessels(diameter > 8.7 mm, flow velocity > 10.2 cm/s, and flow volume > 310 m L/min). The cumulative incidence rates of NFPF were 6.5% at 1 year, 14.5% at 3 years, and 23.1% at 5 years. The collateral vessels characterized by flow velocity > 9.5 cm/s and those located at the splenic hilum were significant predictive factors for developing NFPF. The cumulative survival rate was significantly lower in the patients with NFPF(72.2% at 1 year, 38.5% at 3 years, 38.5% at 5 years) than in those with forward portal flow(84.0% at 1 year, 67.8% at 3 years, 54.3% at 5 years, P = 0.0123) using the Child-Pugh B and C classifications.CONCLUSION: NFPF has a significant negative effect on the prognosis of patients with worse liver function reserve, suggesting the need for careful management.
文摘Single-phase homogeneous Ce1-x ZrxO2 solid versed microemulsion method. The structural properties solutions with various compositions were synthesized using the reand performance of Ce1- xZrxO2 were studied using XRD, BET, SEM, HRTEM, TPR and CO oxidation measurements. The results show that in the range of x = 0.4 - 0.5 and x = 0.6 - 1.0, the solid solutions posses the cubic and the tetragonal phase structure, respectively, Solids obtained by the reversed microemulsion method were more homogeneous on the whole range of composition, XRD investigations of the prepared materials did not show segregation of cerium or zirconium oxides, Highly uniform nanosize solid solution particles of ceria-zirconia with high specific area (146.7 m^2·g^-1) were attained under the conditions of this study. The TPR results and CO oxidation measurements indicate that the performance of the CeO2-ZrO2 mixed oxides is strongly related to the composition and structure of the oxides. Enhancement of the activity was found for the catalyst prepared by reversed microemulsion method as compared to the sample prepared by sol-gel method.
文摘In this article, the influence factors of trypsin extracted from crude pancreatin was investigated, and scanning turmeling microscope(STM) was used to observe the image of trypsin in butane-diacid-2-ethyl-hexyl-ester-sulfonic sodium (AOT)/iso-octane reversed micelles. The STM image showed that trypsins bounded in reversed micelles was rigid, which weakened its conjugative effect and caused maximum ultraviolet absorption and fluorescence emissive absorption moving toward blue waves. AOT concentration, pH and cations were the main influence factors of extraction. Specifically, extraction percentage of trypsin decreased with the increase of AOT concentration from 0.01 to 0.1mol·L^-1. When pH value is from 5.30 to 10.0, i.e. less than pI of trypsin, the extraction percentage is raised with the different increase of pI-pH, but when the pH value is less than 5.20, the extraction percentage is decreased with the acidity added. Besides, the extraction efficiency is negative, related with the concentrations of Ca^2+, Na^+, K^+ which were in the range of 0.2-1.0mol.L^-1, and influence of concentration of Ca^2+ is greater than that of Na^+, and K^+ which has the minimum impact with the same concentration. Finally, optimum conditions to extract trypsin were: AOT reversed micelles 0.05mol·L^-1, trypsin concentration in crude pancreatin solution 3mg·ml^-1, pH 5.2-- 5.3, ratio (by volume) of extraction phase to strip-extraction phase 1 : 1, and time of 5min. The corresponding percentage of extraction was 22.7% and specific activity was 78.9 N-benzoyl-L-arginlne ethyl ester (BAEE) U·mg^-1 protein, three times than that in crude pancreatin. There was no lipase and amylopsin activity was decreased to 1/5 of crude pancreatin. Partly purifying solution was treated by condition mentioned above with 0.05mol·L^-1 ceryl-trimethyl-ammonium bromide (CTAB), total extraction percentage of trypsin was 74.18% and specific activity was 3148.3 BAEE U·mg^-1, i.e. 48.16 times purer than that in crude pancreatin. Through sodium dodecyl sulfate-polyacryl amide gel electrophoresis (SDS-PAGE) and image analysis of extracted product, there were only three bands in the trypsin, while seven in crude pancreatin, and electrophoresis location of main bend was almost identical with the standard enzyme.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.11375163,11605182,11605183)the Development Foundation of China Academy of Engineering Physics(Grant No.2011B0402009)the Science Challenge Project No.2016212A505.
文摘As a hybrid approach to realizing fusion energy,Magnetized Target Fusion(MTF)based on the Field Reversed Configuration(FRC),which has the plasma density and confinement time in the range between magnetic and inertial confinement fusion,has been recently widely pursued around the world.To investigate the formation and confinement of the FRC plasma injector for MTF,the Yingguang-I,which is an FRC test device and contains a multi-bank program-discharged pulsed power sub-system,was constructed at the Institute of Fluid Physics(IFP),China.This paper presents the pulsed power components and their parameters of the device in detail,then gives a brief description of progress in experiments of FRC formation.Experimental results of the pulsed power sub-system show that the peak current/magnetic field of 110 kA/0.3 T,10 kA/1.2 Tand 1.7 MA/3.4 Twere achieved in the bias,mirror and q-pinch circuits with quarter cycle of 80 ms,700 ms and 3.8 ms respectively.The induced electric field in the neutral gas was greater than 0.25 kV/cm when the ionization bank was charged to 70 kV.With H_(2) gas of 8 Pa,the plasma target of density 10^(16) cm^(-3),separatrix radius 4 cm,half-length 17 cm,equilibrium temperature 200 eV and lifetime 3 ms(approximately the half pulse width of the reversed field)have been obtained through the q-pinch method when the bias,mirror,ionization and θ-pinch banks were charged to 5 kV,5 kV,55 kV and ±45 kV respectively.The images from the high-speed end-on framing camera demonstrate the formation processes of FRC and some features agree well with the results with the two-dimension magneto hydrodynamics code(2D-MHD).
基金supported by the National Natural Science Foundation of China (grant No. 41503033)Basic Foresight Program of the Ministry of science and technology, Sinopec (grant No. G5800-15-ZS-KJB050-02)the Key Laboratory Project of Gansu Province (grant No. 1309RTSA041)
文摘Objective Reversed alkane δ;C and δ;H values in many prolific shale plays all over the world have aroused much attention in the study of the formation mechanism of reversed isotope series in alkanes in the past few years(Zou Caineng et al., 2016). Although many researchers have put forward different hypotheses, the mechanism has not been well understood yet. The openness degree of oil and gas system
文摘Objective: To establish a new assay for platelet-activating factor (PAF), to compare it with bio-assay; and to discuss its significance in some elderly people diseases such as cerebral infarction and coronary heart disease. Methods: To measure PAF levels in 100 controls, 23 elderly patients with cerebral infarction and 65 cases with coronary heart disease by reversed phase high-performance liquid chromatographic technique (rHPLC). Results:rHPLC is more convenient, sensitive,specific, and less confusing, compared with bio-assay. The level of plasma PAF in patients with cerebral infarction was higher than that in the controls (P<0.01), and in patients with coronary heart disease. Conclusion: Detection of PAF with rHPLC is more reliable and more accurate. The new assay has important significance in PAF research.
基金Project (2009ZX07315-002-01) supported by Water Pollution Control and Management of Major Special Science and Technology
文摘Full scale experimental study on nitrogen removal for low-carbon wastewater was conducted in reversed A2/O process in Jiguanshi waste water treatment plant in Chongqing,in order to aid the operation and maintenance of similar WWTP. When the proposed measures,such as using 0.1% (volume fraction of wastewater) landfill leachate,shortening HRT by 2/3 in the primary sedimentation tank and controlling DO at 0.5 mg/L in the 3rd section of aerobic zone,are applied,15% of the carbon source can be complemented,the favorable property of activated sludge is achieved,and the nitrogen removal effect is significantly improved. The effluent NH3-N is 2 mg/L and the removal rate is 90%. The effluent TN is 17 mg/L and the removal rate is 54%. The up-to-standard discharge of the effluent is achieved. And after the optimization,the unit electricity consumption also reaches 0.21 kW/h and saves 20%.
文摘A novel, simple, rapid, sensitive and highly selective flow injection procedure for the spectrophotometric determination of chlorine dioxide in the presence of other chlorine species, viz,free chlorine, chlorite, chlorate and hypochlorite, is developed. The method is based on the discoloration reaction between chlorine dioxide and chlorophenol red and can overcome the shortcomings existed in direct spectrophotometric determination for chlorine dioxide owing to the serious interference of free and combined chlorine. The procedure gave a linear calibration graph over the range 0—0.71 mg/L of chlorine dioxide. With a detection limit of 0.024 mg/L and a sample throughput of 60 samples/h.