An aluminum extrusion process is mainly used to fabricate long tubes, beams and rods for various applications. However, this process has a high production cost due to the need for investment of high-pressure machinery...An aluminum extrusion process is mainly used to fabricate long tubes, beams and rods for various applications. However, this process has a high production cost due to the need for investment of high-pressure machinery. The objective of this work is to develop a new semi-solid extrusion process using semi-solid slurry at low solid fractions. A laboratory extrusion system was used to fabricate aluminum rods with the diameter of 12 ram. The semi-solid metal process used in this study was the gas induced semi-solid (GISS) technique. To study the feasibility of the GISS extrusion process, the effects of extrusion parameters such as plunger speed and solid fi-action on the extrudability, microstructure, and mechanical properties of extruded samples were investigated. The results show that the plunger speed and solid fraction of the semi-solid metal need to be carefully controlled to produce complete extruded parts.展开更多
In order to obtain the Al wires with good mechanical properties and high electrical conductivities, conductive wires of Al-0.16 Zr, Al-0.16 Sc, Al-0.12Sc-0.04Zr(mass fraction, %) and pure Al(99.996%) were produced...In order to obtain the Al wires with good mechanical properties and high electrical conductivities, conductive wires of Al-0.16 Zr, Al-0.16 Sc, Al-0.12Sc-0.04Zr(mass fraction, %) and pure Al(99.996%) were produced with the diameter of 9.5 mm by continuous rheo-extrusion technology, and the extruded materials were heat treated and analyzed. The results show that the separate additions of 0.16% Sc and 0.16% Zr to pure Al improve the ultimate tensile strength but reduce the electrical conductivity, and the similar trend is found in the Al-0.12Sc-0.04 Zr alloy. After the subsequent heat treatment, the wire with the optimum comprehensive properties is Al-0.12Sc-0.04 Zr alloy, of which the ultimate tensile strength and electrical conductivity reach 160 MPa and 64.03%(IACS), respectively.展开更多
基金the financial supports from Prince of Songkla University (Contract number AGR530031M)
文摘An aluminum extrusion process is mainly used to fabricate long tubes, beams and rods for various applications. However, this process has a high production cost due to the need for investment of high-pressure machinery. The objective of this work is to develop a new semi-solid extrusion process using semi-solid slurry at low solid fractions. A laboratory extrusion system was used to fabricate aluminum rods with the diameter of 12 ram. The semi-solid metal process used in this study was the gas induced semi-solid (GISS) technique. To study the feasibility of the GISS extrusion process, the effects of extrusion parameters such as plunger speed and solid fi-action on the extrudability, microstructure, and mechanical properties of extruded samples were investigated. The results show that the plunger speed and solid fraction of the semi-solid metal need to be carefully controlled to produce complete extruded parts.
基金Project(51222405)supported by the National Natural Science Foundation for Outstanding Young Scholars of ChinaProject(51034002)supported by the National Natural Science Foundation of ChinaProject(120502001)supported by the Fundamental Research Funds for the Central Universities of China
文摘In order to obtain the Al wires with good mechanical properties and high electrical conductivities, conductive wires of Al-0.16 Zr, Al-0.16 Sc, Al-0.12Sc-0.04Zr(mass fraction, %) and pure Al(99.996%) were produced with the diameter of 9.5 mm by continuous rheo-extrusion technology, and the extruded materials were heat treated and analyzed. The results show that the separate additions of 0.16% Sc and 0.16% Zr to pure Al improve the ultimate tensile strength but reduce the electrical conductivity, and the similar trend is found in the Al-0.12Sc-0.04 Zr alloy. After the subsequent heat treatment, the wire with the optimum comprehensive properties is Al-0.12Sc-0.04 Zr alloy, of which the ultimate tensile strength and electrical conductivity reach 160 MPa and 64.03%(IACS), respectively.