This study investigates how large-surface-area biocarbons with high phenolic adsorption capacities can be obtained from cheap and abundant rice husk(RH).The RH is directly mixed with potassium hydroxide(KOH)and activa...This study investigates how large-surface-area biocarbons with high phenolic adsorption capacities can be obtained from cheap and abundant rice husk(RH).The RH is directly mixed with potassium hydroxide(KOH)and activated in a flowing N_(2) atmosphere,and the effects of the pyrolysis temperature and KOH to RH ratio on the structure of the obtained activated carbon adsorbents and their adsorption of p-nitrophenol and phenol are studied.The results show that the optimum pyrolysis temperature of RH is 750℃,whereby the highest surface area of 2047 m^(2)/g and best adsorption performance are obtained with a KOH to RH ratio of 3:1.Moreover,the obtained biocarbons achieve a maximum adsorption capacity of 175 mg/g for phenol and 430 mg/g for p-nitrophenol,which are higher than most previously reported data.展开更多
Excessive waste production has led to the concept of a circular bioeconomy to deliver valuable by-products and improve environmental sustainability.The annual worldwide rice production accounts for more than 750 milli...Excessive waste production has led to the concept of a circular bioeconomy to deliver valuable by-products and improve environmental sustainability.The annual worldwide rice production accounts for more than 750 million tons of grain and 150 million tons of husk.Rice husk(RH)contains valuable biomaterials with extensive applications in various fields.The proportions of each component depend primarily on rice genotype,soil chemistry,and climatic conditions.RH and its derivatives,including ash,biochar,hydrochar,and activated carbon have been placed foreground of applications in agriculture and other industries.While the investigation on RH’s compositions,microstructures,and by-products has been done copiously,owing to its unique features,it is still an open-ended area with enormous scope for innovation,research,and technology.Here,we reviewed the latest applications of RH and its derivatives,including fuel and other energy resources,construction materials,pharmacy,medicine,and nanobiotechnology to keep this versatile biomaterial in the spotlight.展开更多
The rice husk ash ( RHA) and silica ( Si02) nanoparticles are prepared from rice husk charcoal (RHC) by the methods of ventilated calcining and chemical precipitation, respectively, to remove the residual carbon...The rice husk ash ( RHA) and silica ( Si02) nanoparticles are prepared from rice husk charcoal (RHC) by the methods of ventilated calcining and chemical precipitation, respectively, to remove the residual carbon which is harmful to cement composites. The structures and morphologies of these products are investigated by the Fourier transform infrared spectroscopy, X-ray diffraction, scanning/ transmission electron microscopy and N2 adsorption- desorption analyzer. The results show that the as-produced RHA and Si02 nanoparticles exist in amorphous phase without residual carbon, and exhibit porous structures with specific surface areas of 170.19 and 248. 67 m2 /g , respectively. The micro particles of RHA are aggregated by numerous loosely packed Si02 gel particles with the diameter of 50 to 100 nm. The Si02 nanoparticles are well dispersed with the average size of about 30 nm. Both the RHA and Si02 nanoparticles can significantly reduce the conductivity of saturated Ca(OH)2 solution and increase the early strength of the cement composites. They also exhibit high pozzolanic activity, indicating that they can be used as ecological nano mineral admixtures.展开更多
Rice husk-based activated carbon was prepared with the help of zinc chloride using microwave and electrical dual-mode heating.The pore characteristics and chemical properties of rice husk-based activated carbon(RH-AC)...Rice husk-based activated carbon was prepared with the help of zinc chloride using microwave and electrical dual-mode heating.The pore characteristics and chemical properties of rice husk-based activated carbon(RH-AC)were characterized by BET,XRD,Raman spectra,FTIR and pHIEP(pH of isoelectric point).The specific surface area of RH-AC is 1719.32 m^(2)/g with a total pore volume of 1.05 cm^(3)/g.The performance of RH-AC for removing Cr(VI)from aqueous solution was examined considering the variation of the contact time(0-120 min),pH value(2.0-9.0),adsorbent dose(0.5-3.0 g/L),initial concentration(28-145 mg/L)and solvent temperature(15-45℃).The ideal pH for Cr(VI)removal is between 2.0 and 3.0 with the equilibrium time of 90 min,achieving the maximum adsorption capacity of 56.82 mg/g with the pH of 3.0.Comparable study on the established kinetic models and isotherms to simulate the removal of Cr(VI)by RH-AC was carried out to sort out the inherent mechanism of the absorption.Reasonable agreements could be obtained by the pseudo-second-order kinetic model and Langmuir,Freundlich and Tempkin isothermal models.Results from Body model simulation suggest that external mass transfer was the essential cause for rate-controlling in the adsorption process of Cr(VI).展开更多
The present work was mainly focused on the single and binary adsorption of methylene blue(MB)and methyl orange(MO)from alcohol aqueous solution over rice husk based activated carbon(RHAC).The study of single dye adsor...The present work was mainly focused on the single and binary adsorption of methylene blue(MB)and methyl orange(MO)from alcohol aqueous solution over rice husk based activated carbon(RHAC).The study of single dye adsorption equilibrium experiments found that the Langmuir adsorption model was consistent with the adsorption behavior of RHAC on MB and MO,indicating that it was a single layer adsorption.The adsorption behavior con-formed to the pscudo-second-order kinetic model.The binary dye adsorption experiments showed that the Lang-muir-Freundlich model could be applied to describe the adsorption behavior of RHAC on MB and MO.Comparation with the single dye system,the adsorption capacity on the binary dye system was larger,and there was"competitive adsorption"and"synergistic adsorption"effects existed.Meanwhile,the pseudo-second-order kinetic model also fit for the binary dye adsorption behavior.展开更多
Biomass-derived activated carbon electrode materials have been synthesized by carbonization and KOH activa- tion processes from an agriculture waste - rice husk, composed of organic compound and silica. The surface ar...Biomass-derived activated carbon electrode materials have been synthesized by carbonization and KOH activa- tion processes from an agriculture waste - rice husk, composed of organic compound and silica. The surface area of activated carbon reached 1098.1 m2/g mainly including mesopores and macropores due to the template effect of sil- ica in rice husk. Owing to the existence of mesopores and macropores, the as-obtained activated carbon materials can be used in aqueous supercapacitors, lithium-ion (Li-ion) capacitors and lithium-sulfur (Li-S) batteries. In KOH electrolyte, fast rate performance (as high as 2 V/s) was obtained due to the existence of ideal electrical double layer capacitance. In organic electrolyte, high voltage (2.5 V) was achieved. Activated carbon electrode for Li-ion capac- itor also showed capacity of 17 mAh/g at 100 mA/g with the high voltage range of 2.5 V. The capacities of sul- fur-activated carbon in Li-S batteries were 1230 and 970 mAh/g at the current densities of 0.1 and 0.2 C. The pre- sent results showed that activated carbon materials with mesopores were good host to immobilize polysulfides.展开更多
文摘This study investigates how large-surface-area biocarbons with high phenolic adsorption capacities can be obtained from cheap and abundant rice husk(RH).The RH is directly mixed with potassium hydroxide(KOH)and activated in a flowing N_(2) atmosphere,and the effects of the pyrolysis temperature and KOH to RH ratio on the structure of the obtained activated carbon adsorbents and their adsorption of p-nitrophenol and phenol are studied.The results show that the optimum pyrolysis temperature of RH is 750℃,whereby the highest surface area of 2047 m^(2)/g and best adsorption performance are obtained with a KOH to RH ratio of 3:1.Moreover,the obtained biocarbons achieve a maximum adsorption capacity of 175 mg/g for phenol and 430 mg/g for p-nitrophenol,which are higher than most previously reported data.
文摘Excessive waste production has led to the concept of a circular bioeconomy to deliver valuable by-products and improve environmental sustainability.The annual worldwide rice production accounts for more than 750 million tons of grain and 150 million tons of husk.Rice husk(RH)contains valuable biomaterials with extensive applications in various fields.The proportions of each component depend primarily on rice genotype,soil chemistry,and climatic conditions.RH and its derivatives,including ash,biochar,hydrochar,and activated carbon have been placed foreground of applications in agriculture and other industries.While the investigation on RH’s compositions,microstructures,and by-products has been done copiously,owing to its unique features,it is still an open-ended area with enormous scope for innovation,research,and technology.Here,we reviewed the latest applications of RH and its derivatives,including fuel and other energy resources,construction materials,pharmacy,medicine,and nanobiotechnology to keep this versatile biomaterial in the spotlight.
基金The Key Program of the National Natural Science Foundation of China(No.51438003)the National Basic Research Program of China(973 Program)(No.2015CB655105)
文摘The rice husk ash ( RHA) and silica ( Si02) nanoparticles are prepared from rice husk charcoal (RHC) by the methods of ventilated calcining and chemical precipitation, respectively, to remove the residual carbon which is harmful to cement composites. The structures and morphologies of these products are investigated by the Fourier transform infrared spectroscopy, X-ray diffraction, scanning/ transmission electron microscopy and N2 adsorption- desorption analyzer. The results show that the as-produced RHA and Si02 nanoparticles exist in amorphous phase without residual carbon, and exhibit porous structures with specific surface areas of 170.19 and 248. 67 m2 /g , respectively. The micro particles of RHA are aggregated by numerous loosely packed Si02 gel particles with the diameter of 50 to 100 nm. The Si02 nanoparticles are well dispersed with the average size of about 30 nm. Both the RHA and Si02 nanoparticles can significantly reduce the conductivity of saturated Ca(OH)2 solution and increase the early strength of the cement composites. They also exhibit high pozzolanic activity, indicating that they can be used as ecological nano mineral admixtures.
基金the National Key R&D Program of China(Grant No.2019YFC1906805).
文摘Rice husk-based activated carbon was prepared with the help of zinc chloride using microwave and electrical dual-mode heating.The pore characteristics and chemical properties of rice husk-based activated carbon(RH-AC)were characterized by BET,XRD,Raman spectra,FTIR and pHIEP(pH of isoelectric point).The specific surface area of RH-AC is 1719.32 m^(2)/g with a total pore volume of 1.05 cm^(3)/g.The performance of RH-AC for removing Cr(VI)from aqueous solution was examined considering the variation of the contact time(0-120 min),pH value(2.0-9.0),adsorbent dose(0.5-3.0 g/L),initial concentration(28-145 mg/L)and solvent temperature(15-45℃).The ideal pH for Cr(VI)removal is between 2.0 and 3.0 with the equilibrium time of 90 min,achieving the maximum adsorption capacity of 56.82 mg/g with the pH of 3.0.Comparable study on the established kinetic models and isotherms to simulate the removal of Cr(VI)by RH-AC was carried out to sort out the inherent mechanism of the absorption.Reasonable agreements could be obtained by the pseudo-second-order kinetic model and Langmuir,Freundlich and Tempkin isothermal models.Results from Body model simulation suggest that external mass transfer was the essential cause for rate-controlling in the adsorption process of Cr(VI).
基金Supported by the National Natural Science Foundation of China(No.21501069)the National Key R&D Program During the 13th Five-year Plan of China(No.2016YFD0401405)+1 种基金the Fundamental Research Funds for the Central Universities of China(No.JUSRP51626B)MOE&SAFEA for the"111 Project"of China(No.B13025).
文摘The present work was mainly focused on the single and binary adsorption of methylene blue(MB)and methyl orange(MO)from alcohol aqueous solution over rice husk based activated carbon(RHAC).The study of single dye adsorption equilibrium experiments found that the Langmuir adsorption model was consistent with the adsorption behavior of RHAC on MB and MO,indicating that it was a single layer adsorption.The adsorption behavior con-formed to the pscudo-second-order kinetic model.The binary dye adsorption experiments showed that the Lang-muir-Freundlich model could be applied to describe the adsorption behavior of RHAC on MB and MO.Comparation with the single dye system,the adsorption capacity on the binary dye system was larger,and there was"competitive adsorption"and"synergistic adsorption"effects existed.Meanwhile,the pseudo-second-order kinetic model also fit for the binary dye adsorption behavior.
基金Financial support from the National Natural Science Foundation of China (Grant Nos. 91434118, 21601176), the National Natural Science Foundation for Creative Research Group (Grant No. 21521092), the External Cooperation Program of BIC, Chinese Academy of Sciences (Grant No. 121522KYS820150009), the Hun- dred Talents Program of the Chinese Academy of Sci- ences, and Jilin Provincial Science and Technology De-velopment Program of China (Grant No. 20160520002JH) is acknowledged.
文摘Biomass-derived activated carbon electrode materials have been synthesized by carbonization and KOH activa- tion processes from an agriculture waste - rice husk, composed of organic compound and silica. The surface area of activated carbon reached 1098.1 m2/g mainly including mesopores and macropores due to the template effect of sil- ica in rice husk. Owing to the existence of mesopores and macropores, the as-obtained activated carbon materials can be used in aqueous supercapacitors, lithium-ion (Li-ion) capacitors and lithium-sulfur (Li-S) batteries. In KOH electrolyte, fast rate performance (as high as 2 V/s) was obtained due to the existence of ideal electrical double layer capacitance. In organic electrolyte, high voltage (2.5 V) was achieved. Activated carbon electrode for Li-ion capac- itor also showed capacity of 17 mAh/g at 100 mA/g with the high voltage range of 2.5 V. The capacities of sul- fur-activated carbon in Li-S batteries were 1230 and 970 mAh/g at the current densities of 0.1 and 0.2 C. The pre- sent results showed that activated carbon materials with mesopores were good host to immobilize polysulfides.
文摘采用N2吸附、CO2吸附和热重红外联用等技术手段,考察了在KOH活化稻壳炭的过程中碱炭比和活化温度对活性炭极微孔的影响。结果表明:在不同碱炭比(0.6︰1~3︰1)和活化温度(640~780℃)下制备的稻壳活性炭,极微孔主要分布在0.42~0.70 nm。当碱炭比增加时,极微孔孔容先增大后减小;而当活化温度升高时,极微孔孔容呈降低趋势。极微孔率随碱炭比或活化温度的升高而单调递减。在活化温度为640℃、碱炭比为1:1时,可得极微孔孔容为0.149 m L/g、极微孔率达36.3%的微孔活性炭。活性炭的极微孔孔容与其在104 Pa时的CO2吸附量高度线性相关。