Increasing the population and infrastructure in both emerging and developed countries requires a considerable amount of cement, which significantly affects the environment. The primary materials of concrete (‘cement...Increasing the population and infrastructure in both emerging and developed countries requires a considerable amount of cement, which significantly affects the environment. The primary materials of concrete (‘cement’) production emit a large quantity of CO<sub>2</sub> into the environment. Also, the cost of conventional building materials like cement gives motivation to find geopolymer waste materials for concrete. To reduce harmful effects on the environment and cost of traditional concrete substance, alternative waste materials like rice husk ash (RHA), ground granulated blast-furnace (GGBS), fly ash (FA), and metakaolin (MK) can be used due to their pozzolanic behavior. RHA waste material with a high silica concentration obtained from burning rice husks can possibly be used as a supplementary cementitious material (SCM) in the manufacturing of concrete, and its strong pozzolanic properties can contribute to the strength and impermeability of concrete. This review paper highlights a summary of the positive effect of using RHA as a partial substitute for cement in building construction, as well as its optimal inclusion of enhanced mechanical properties like compressive strength, flexural strength, and split tensile strength of mortar and concrete.展开更多
The effect of grinding on the chemical and physical properties of rice husk ash was studied. Four rice husk ashes with different finenesses, i.e. coarse original rice husk ash (RHA0), RHA1, RHA2, and RHA3 were used ...The effect of grinding on the chemical and physical properties of rice husk ash was studied. Four rice husk ashes with different finenesses, i.e. coarse original rice husk ash (RHA0), RHA1, RHA2, and RHA3 were used for the study. Ordinary Portland cement (OPC) was partially replaced with rice husk ash at 20% by weight of binder. The water to binder ratio (W/B) of the mortar was maintained at 110%±5% with flow table test. Specific gravity, fineness, chemical properties, compressive strength, and porosity test of mortars were determined. The differences in chemical composition of the rice husk ashes with different finenesses from the same batch are small. The use of RHA3 produces the mortars with good strength and low porosity. The strength of the mortar improves with partial replacement of RHA3 in comparison with normal coarse rice husk ash. The use of RHA3 results in a strong and dense mortar, which is due to the better dispersion and filling effect, as well as an increase in the pozzolanic reaction.展开更多
The geopolymer of fly ash (FA) and rice husk ash (RHA) was prepared. The burning temperature of rice husk, the RHA fineness and the ratio of FA to RHA were studied. The density and strength of the geopolymer morta...The geopolymer of fly ash (FA) and rice husk ash (RHA) was prepared. The burning temperature of rice husk, the RHA fineness and the ratio of FA to RHA were studied. The density and strength of the geopolymer mortars with RHA/FA mass ratios of 0/100, 20/80, 40/60, and 60/40 were tested. The geopolymers were activated with sodium hydroxide (NaOH), sodium silicate, and heat. It is revealed that the optimum burning temperature of RHA for making FA-RHA geopolymer is 690oC. The as-received FA and the ground RHA with 1%-5% retained on No.325 sieve are suitable source materials for making geopolymer, and the obtained compressive strengths are between 12.5-56.0 MPa and are dependent on the ratio of FA/RHA, the RHA fineness, and the ratio of sodium silicate to NaOH. Relatively high strength FA-RHA geopolymer mortars are obtained using a sodium silicate/NaOH mass ratio of 4.0, delay time before subjecting the samples to heat for 1 h, and heat curing at 60oC for 48 h.展开更多
Thermogravimetric analysis and electrical resistivity were used to determine the hydration process of cement paste with rice husk ash(RHA)(0−15%)and water-cement ratio of 0.4 in this work.X-ray diffraction(XRD)method ...Thermogravimetric analysis and electrical resistivity were used to determine the hydration process of cement paste with rice husk ash(RHA)(0−15%)and water-cement ratio of 0.4 in this work.X-ray diffraction(XRD)method and scanning electron microscopy(SEM)were used to survey crystal composition and microstructures of specimens cured for 3 h,1 d,7 d and 28 d.Finally,electrical parameters(electrical resistance and AC impedance spectroscopy)of steel bars reinforced cement paste were investigated to study the effect of RHA on the corrosion resistance.Results showed that RHA could affect the cement hydration by hydration promotion and pozzolanic effect.The evaluation function for electrical resistivity and curing ages fitted well with linear increasing function.The addition of RHA higher than 5%demonstrated a decreasing role in the electrical resistivity of cement paste at earlier curing ages(3−7 d).Meanwhile,when at later curing ages(7−28 d)the result was the opposite.Moreover,RHA demonstrated positive effects on corrosion resistance of steel bars in cement paste.展开更多
Preparation of rice husk ash with high specific surface area and chemical reactivity of the product are reported in this paper. The amorphous rice husk ash with high specific surface area of 311 m2·g-1 was produc...Preparation of rice husk ash with high specific surface area and chemical reactivity of the product are reported in this paper. The amorphous rice husk ash with high specific surface area of 311 m2·g-1 was produced by heating acid treated rice husk at 700℃ for 4 h. The isotherms of rice husk ash are similar in shape to type Ⅱof Brunaner's classification with mesopores being predominant. The rice husk ash has a high chemical reactivity,especially that pretreated with acid. This chemical reactivity depends on ashing temperature and pretreatment conditions. There is an exponential relation between the specific surface area of rice husk ash and the change in the conductivity of saturated Ca(OH)2 solution with rice husk ash, from which the specific surface area can be known according to the conductivity change.展开更多
In order to study the production of porous silica compacts by the combustion of rice husk ash (RHA) for tundish lining, the experimental design technique was used to evaluate the effect of firing temperature, soakin...In order to study the production of porous silica compacts by the combustion of rice husk ash (RHA) for tundish lining, the experimental design technique was used to evaluate the effect of firing temperature, soaking time and compaction pressure on controlling both the porosity degree and compressive strength of rice husk ash compacts. The results revealed that while the porosity degree of the compacts decreased with the increase in the entire studied parameters, the compressive strength exhibited another trend especially at a lower soaking time. At a lower soaking time, the increase in firing temperature led to a slight decrease in compressive strength and then increasing thereafter. The porous silica compacts having 30% porosity and 〉 2.5 MPa compressive strength suitable for tundish lining could be obtained from the combustion of rice husk ash compacts.展开更多
The development of high volume rice husk ash (RHA) alumino silicate composites (ASC) was studied. RHA was used as the source of silica and aluminium in the ASC. The mass ratios of RHA:Al(OH)3 of 70:30 to 99:1...The development of high volume rice husk ash (RHA) alumino silicate composites (ASC) was studied. RHA was used as the source of silica and aluminium in the ASC. The mass ratios of RHA:Al(OH)3 of 70:30 to 99:1 were tested. The results indicate that the obtained ASC mortars are not stable and disintegrate in water. Boric acid was introduced to the mixture to overcome this problem. Stable ASC mortars with high RHA:Al(OH)3 mass ratios of 90:10 to 97.5:2.5 were obtained with the use of boric acid and 115oC curing. The compressive strength of the mortar of 20 MPa was gained. The immersion test indicates that high volume RHA ASC mortars show good resistance in 3vol% H2SO4 solution, but is slightly less durable in 5wt% MgSO4 solution.展开更多
This paper reports the results of an investigation carried out on clay soil stabilized with pond ash(PA),rice husk ash(RHA) and cement. Modified Proctor compaction tests were performed in order to investigate the comp...This paper reports the results of an investigation carried out on clay soil stabilized with pond ash(PA),rice husk ash(RHA) and cement. Modified Proctor compaction tests were performed in order to investigate the compaction behavior of clay, and California bearing ratio(CBR) tests were performed to determine the strength characteristics of clay. For evaluation purpose, the specimens containing different amounts of admixtures were prepared. Clay was replaced with PA and RHA at a dosage of 30%e45% and5%e20%, respectively. The influence of stabilizer types and dosages on mechanical properties of clay was evaluated. In order to study the surface morphology and crystallization characteristics of the soil samples, scanning electron microscopy(SEM) and X-ray diffraction(XRD) analyses were carried out,respectively. The results obtained indicated a decrease in the maximum dry density(MDD) and a simultaneous increase in the optimum moisture content(OMC) with the addition of PA and RHA.Multiple linear regression analysis(MLRA) showed that the predicted values of CBR tests are in good agreement with the experimental values. Developed stabilized soil mixtures showed satisfactory strength and can be used for construction of embankments and stabilization of sub-grade soil. The use of locally available soils, PA, RHA, and cement in the production of stabilized soils for such applications can provide sustainability for the local construction industry.展开更多
According to empirical evidence,high levels of energy and considerable amounts of natural resources are used in the production of concrete.Given the context,this study explores self-consolidating concrete(SCC)that inc...According to empirical evidence,high levels of energy and considerable amounts of natural resources are used in the production of concrete.Given the context,this study explores self-consolidating concrete(SCC)that includes rice husk ash(RHA)and metal furnace slag(MFS)as an alternative to cement and the natural aggregates in standard SCC mixes.In this study,mixture designs are investigated with 20 wt.%of RHA,10–30 wt.%of MFS and water-to-powder material ratios of 0.30 and 0.40.Based on the findings regarding the fresh-state,hardened-state,and durability properties of the resulting SCC mixes,it is evident that the use of RHA and MFS can significantly improve the properties of concrete.The highest compressive strength was achieved for SCC with 20 wt.%RHA and 10 wt.%MFS.This outcome should be used as a basis for further investigations into the production of concrete materials that are both high-performance and sustainable.展开更多
SAPO-34 molecular sieves were synthesized directly by hydrothermal method with rice husk ash(RHA)used as the silicon source.The crystal structure,composition,surface morphology and acidity of the synthesized products ...SAPO-34 molecular sieves were synthesized directly by hydrothermal method with rice husk ash(RHA)used as the silicon source.The crystal structure,composition,surface morphology and acidity of the synthesized products weresieves had a high crystallinity,without any impure phase.Compared with the SAPO-34 prepared by the silica sol,RHA-SAPO-34 had similar acid properties in strength.The methanol to olefins(MTO)experiments showed that the SAPO-34molecular sieve synthesized from RHA exhibited both a good catalytic activity and ethylene selectivity.展开更多
The nanostructure of cementitious materials has important effects on concrete properties. The effects of rice husk ash(RHA) on cement hydration product phases and interfacial transition zone(ITZ) in mortar were in...The nanostructure of cementitious materials has important effects on concrete properties. The effects of rice husk ash(RHA) on cement hydration product phases and interfacial transition zone(ITZ) in mortar were investigated from the nano-scale structure perspective. The experimental results indicate that, with the increase of RHA dosages of samples, the volume fraction of high-density calcium-silicate-hydrate(HD C-S-H) in porosity and hydration product phases increases. The volume fractions of HD C-S-H in C-S-H of samples show an increasing trend with the increase of RHA dosages. RHA decreases the thickness of ITZ and increases the matrix elastic moduli of samples, however, the RHA dosoges hardly affect the thickness and elastic moduli.展开更多
The strength and durability properties of concrete with or without three types of rice husk ash (RHA), namely, amorphous, partial crystalline, and crystalline RHA, were investigates. The three types of RHA were adde...The strength and durability properties of concrete with or without three types of rice husk ash (RHA), namely, amorphous, partial crystalline, and crystalline RHA, were investigates. The three types of RHA were added into concrete at a 20% replacement level. Consequently, the pozzolanic reactivity of amorphous RHA was higher than that of partial crystalline and crystalline RHA. Concrete added with amorphous RHA showed excellent characteristics in its mechanical and durability properties. The results showed that the higher the amount of crystalline silica in RHA, the lower the concrete resistivity value became. When compared with each other, concretes with 20% of the ce- ment replaced with these types of RHA achieved similar ultrasonic pulse velocity values, but all were lower than that of the control concrete. The incorporation of these kinds of RHA significantly reduced chloride penetration. The results not only encourage the use of amorphous materials, they also support the application of crystalline or partial crystalline RHA as mineral and pozzolanic admixtures for cement.展开更多
Nowadays an alternate source of filler from renewable and plant derivatives are being thought of in rubber industries due to their reliability,environmental and economic benefits.Rice Husk Ash(RHA)a byproduct of the r...Nowadays an alternate source of filler from renewable and plant derivatives are being thought of in rubber industries due to their reliability,environmental and economic benefits.Rice Husk Ash(RHA)a byproduct of the rice milling industry is obtained on partial and as well as full combustion of the rice husks.This ash is a good source of silica,silicates and needle shaped carbon and hence can be used as filler for cements.In the present study,a detailed investigation was carried out to understand the RHA as reinforcing material using mechanical properties and fractography using SEM.The rubbers studied were natural rubber(NR),poly chloroprene(CR)and ethylene propylene diene monomer(EPDM).Interestingly,the RHA added NR stock on open mill mixing generated considerable amount of static charges.The properties of NR were found to be as good as regular formulations.EPDM compounds behaved well during mixing.But the properties were found to be poor.CR-RHA compounds were found to result in higher viscosity and the properties were not as good.The SEM studies showed surprisingly cohesive failure as evidenced with the presence of flow lines and the fibrous filler(RHA)remains embedded in the matrix regardless of the chemistry of the repeating unit,NR,EPDM and the chlorine containing monomer inCR.展开更多
The overall aim was to investigate the effect of highly active rice husk ash (RHA) produced by an industrial furnace on some properties of concrete. The strength, pore volume and pore distribution of concrete and the ...The overall aim was to investigate the effect of highly active rice husk ash (RHA) produced by an industrial furnace on some properties of concrete. The strength, pore volume and pore distribution of concrete and the Ca(OH)-2 content in concrete were investigated by JIS A 1108 (Method of test for compressive strength of concrete), a mercury instrument porosimeter, and the thermogravimetric analysis, respectively. The results show that,with RHA replacement of cement,the compressive strength of concrete is increased evidently;the average pore radius of concrete is greatly decreased, especially the portion of the pores greater than 20nm in radius is decreased while the amount of smaller pores is increased, and the more the RHA replacement, the less the amount of Ca(OH)-2 in concrete. The latter two results are the main reasons for the strength enhancement of concrete.展开更多
[Objective] The aim was to study the mechanism of the removal effect of methylene blue(MB) by rice husk ash(RHA).[Method] The effects of contact time and pH on the adsorption of MB by rice husk ash were investigated,a...[Objective] The aim was to study the mechanism of the removal effect of methylene blue(MB) by rice husk ash(RHA).[Method] The effects of contact time and pH on the adsorption of MB by rice husk ash were investigated,and the mechanism was discussed.[Result] RHA exhibited a remarkable ability on the adsorption of MB.The process of adsorption reached the equilibrium after 30 min,at about pH 9.The adsorption effect was explored with the aid of ion beam etching technique,which displayed that there were two main adsorption manners.One was the electrostatic interactions,through which the negatively charged RHA could adsorb the positively charged MB,the other was the porous effect due to the huge specific surface area of the micro/nano-scale porous silica in RHA,and MB could be adsorbed and deposited into the pores.[Conclusion] RHA could be used in the treatment of textile wastewater.Ion beam technology might be used as an effective way to investigate the adsorption effect.展开更多
Delivery of housing units in adequate quantity and quality has been the pursuits of individuals and successive governments in Nigeria. Still, the gap between demand and supply is becoming wider on daily basis due to e...Delivery of housing units in adequate quantity and quality has been the pursuits of individuals and successive governments in Nigeria. Still, the gap between demand and supply is becoming wider on daily basis due to exorbitant cost of building materials that is beyond the reach of average Nigerians. Concrete being the most acceptable construction material is expensive due to high cost of cement. Efforts made to reduce the cost of cement were to no avail, thus there is need to look elsewhere. Past researches showed that substituting cement with 15% of RHA (rice husk ash) in concrete improves the performance of concrete and reduces global warming as a result of emissions from cement production. This paper looks into the effect of using RHA as partial substitute of cement on the cost of a low-cost housing unit. Results showed that cement based construction materials are responsible for 82.58% of the total cost in which cement is responsible for 42%. When 15% RHA was used to substitute cement over N90,000 was saved, amounting to about 7% of the total cost of the building. In addition, depletion of natural resources was reduced.展开更多
In several countries, the residual RHA (rice husk ash) has been produced in rice processing industries or in thermoelectric plants that use rice husk to generate heat and/or electrical energy, usually without burnin...In several countries, the residual RHA (rice husk ash) has been produced in rice processing industries or in thermoelectric plants that use rice husk to generate heat and/or electrical energy, usually without burning process control. This causes a reduction in the amorphous silica content of residual RHA, which distinguishes them from the RHA produced according to controlled burning process, which is totally amorphous and considered a highly reactive pozzolan. In this paper, the hydration products and the porous structure of binders paste were studied by replacing, in weight of 5%, 10% and 20% of Portland cement OPC (ordinary Portland cement), by residual RHAs named A and B, which have high and low content of amorphous silica, respectively, using microstructure evaluation techniques as XRD (X-ray diffraction), TG (thermogravimetric) tests and MIP (mercury intrusion porosimetry). A reducing the size of the pores of the pastes was observed according to the increase of content replacement of RHA A and RHA B.展开更多
Thailand rice husk ash was used to synthesize zeolite by hydrothermal treatment. Raw rice husk ash material and zeolitic products were characterized in terms of specific surface area (BET method), morphological anal...Thailand rice husk ash was used to synthesize zeolite by hydrothermal treatment. Raw rice husk ash material and zeolitic products were characterized in terms of specific surface area (BET method), morphological analysis (SEM), mineralogical composition (XRD) and CEC (cation exchange capacity). LOI (Loss of ignition) of rice husk ash was also evaluated. Result indicated that the rice husk ash sample from Roi-Et Green power plant in the Northeastern of Thailand with combustion temperature of 650 ℃ has a high content of SiO2 (above 90 wt.%). Zeolite-X from rice husk ash with high content of Si was successfully synthesized using hydrothermal treatment. The zeolitic material synthesized with the optimal condition possessed a maximum value of CEC of 503 meq/100g, and it has potentiality to be used as ion exchangers.展开更多
The cost of cement has made concrete production expensive such that the housing deficit in developing countries is on the rise despite all the efforts by governments and other stakeholders to produce affordable housin...The cost of cement has made concrete production expensive such that the housing deficit in developing countries is on the rise despite all the efforts by governments and other stakeholders to produce affordable housing units for the populace. Ashes of agricultural products such as rice husk, known as mineral admixtures may have pozzolanic characteristics which would be more beneficial to the housing industry in terms of strength gain and economy than being pollutants to the environment. Rice Husk Ash (RHA), because of its finely divided form and very high silica content and amorphousness, proved to be useful for strength gain of Rice Husk Ash Concrete (RHAC). Rice husk ash was manufactured by uncontrolled burning, ground, sieved and replaced with cement at 0%, 5%, 10%, 15%, 20% and 25% in mass for the mixes C20, C25, C30 and C35 where their compressive strengths were verified at 3, 7, 14, 21, 28, 56, 90 and 180 days. The X-ray diffraction pattern list indicated amorphous as well as diffused peak of about 8000 counts of SiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> representing crystalline structures identified as cristobalite. A physical examination of the RHA showed very fine appearance, grey color and specific gravity of 2.06. The chemical analysis also revealed the existence of oxide content to be 55.8% representing 0.78% of Fe</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">O</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">, 54% of SiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> and 1.06% of Al</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">O</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;"> representing 20.23% lower than the minimum value of 70% required for pozzolans. Generally, the compressive strength values decreased as the RHA content in the mixes increased but when compared to the control concrete the optimum replacement percentage of Ordinary Portland Cement (OPC) with RHA at 5% showed an increase above the control concrete for C20 mix. The increase in the RHA in the mixes resulted in the high demand for water in all the mixes.展开更多
This experimental investigation aims at evaluating the thermal properties of rice husk ash (RHA)—filled gypsum plaster composite for potential applications, as insulating materials. The thermal conductivities of comp...This experimental investigation aims at evaluating the thermal properties of rice husk ash (RHA)—filled gypsum plaster composite for potential applications, as insulating materials. The thermal conductivities of composites of gypsum plaster reinforced with RHA at 0%, 10%, 20%, 30%, and 40% volume fractions were determined experimentally using Lee’s disc method. The experimental results show that integrating RHA reduces the thermal conductivity of gypsum plaster and improves its insulation capacity. The results obtained from the experiments were compared with the Rule of Mixture Model, Maxwell Model, and Russell Model. It was observed that the thermal conductivities obtained from experiments and the theoretical models decreased with an increase in the volume fraction of RHA. The errors associated with the models with respect to experimental results are on the average of 28.7% for Mixture Rule, 31.6% for Russel Model, and 18.8% for the Maxwell Model. An agricultural waste like RHA can be beneficially used for the preparation of composites and, due to improved insulation capability, these composites can be used for applications such as insulation boards and sheathing, hardboard, ceilings of roofs, decorations, etc.展开更多
文摘Increasing the population and infrastructure in both emerging and developed countries requires a considerable amount of cement, which significantly affects the environment. The primary materials of concrete (‘cement’) production emit a large quantity of CO<sub>2</sub> into the environment. Also, the cost of conventional building materials like cement gives motivation to find geopolymer waste materials for concrete. To reduce harmful effects on the environment and cost of traditional concrete substance, alternative waste materials like rice husk ash (RHA), ground granulated blast-furnace (GGBS), fly ash (FA), and metakaolin (MK) can be used due to their pozzolanic behavior. RHA waste material with a high silica concentration obtained from burning rice husks can possibly be used as a supplementary cementitious material (SCM) in the manufacturing of concrete, and its strong pozzolanic properties can contribute to the strength and impermeability of concrete. This review paper highlights a summary of the positive effect of using RHA as a partial substitute for cement in building construction, as well as its optimal inclusion of enhanced mechanical properties like compressive strength, flexural strength, and split tensile strength of mortar and concrete.
基金the Commission on Higher Education (MUA) of Thailandthe Sustainable Infrastructure Research and Development Center of Khon Kaen University (SIRDC)Department of Civil Engineering of Rajamangala University of Technology Phra Nakhon (RMUTP)
文摘The effect of grinding on the chemical and physical properties of rice husk ash was studied. Four rice husk ashes with different finenesses, i.e. coarse original rice husk ash (RHA0), RHA1, RHA2, and RHA3 were used for the study. Ordinary Portland cement (OPC) was partially replaced with rice husk ash at 20% by weight of binder. The water to binder ratio (W/B) of the mortar was maintained at 110%±5% with flow table test. Specific gravity, fineness, chemical properties, compressive strength, and porosity test of mortars were determined. The differences in chemical composition of the rice husk ashes with different finenesses from the same batch are small. The use of RHA3 produces the mortars with good strength and low porosity. The strength of the mortar improves with partial replacement of RHA3 in comparison with normal coarse rice husk ash. The use of RHA3 results in a strong and dense mortar, which is due to the better dispersion and filling effect, as well as an increase in the pozzolanic reaction.
基金supported by the National Science and Technology Development Agency (NSTDA) through the Reversed Brain Drain Program (No.01-49-005), Thailand
文摘The geopolymer of fly ash (FA) and rice husk ash (RHA) was prepared. The burning temperature of rice husk, the RHA fineness and the ratio of FA to RHA were studied. The density and strength of the geopolymer mortars with RHA/FA mass ratios of 0/100, 20/80, 40/60, and 60/40 were tested. The geopolymers were activated with sodium hydroxide (NaOH), sodium silicate, and heat. It is revealed that the optimum burning temperature of RHA for making FA-RHA geopolymer is 690oC. The as-received FA and the ground RHA with 1%-5% retained on No.325 sieve are suitable source materials for making geopolymer, and the obtained compressive strengths are between 12.5-56.0 MPa and are dependent on the ratio of FA/RHA, the RHA fineness, and the ratio of sodium silicate to NaOH. Relatively high strength FA-RHA geopolymer mortars are obtained using a sodium silicate/NaOH mass ratio of 4.0, delay time before subjecting the samples to heat for 1 h, and heat curing at 60oC for 48 h.
基金Projects(51808300,51778302)supported by the National Natural Science Foundation of ChinaProject supported by the K.C.Wong Magna Fund in Ningbo University,China。
文摘Thermogravimetric analysis and electrical resistivity were used to determine the hydration process of cement paste with rice husk ash(RHA)(0−15%)and water-cement ratio of 0.4 in this work.X-ray diffraction(XRD)method and scanning electron microscopy(SEM)were used to survey crystal composition and microstructures of specimens cured for 3 h,1 d,7 d and 28 d.Finally,electrical parameters(electrical resistance and AC impedance spectroscopy)of steel bars reinforced cement paste were investigated to study the effect of RHA on the corrosion resistance.Results showed that RHA could affect the cement hydration by hydration promotion and pozzolanic effect.The evaluation function for electrical resistivity and curing ages fitted well with linear increasing function.The addition of RHA higher than 5%demonstrated a decreasing role in the electrical resistivity of cement paste at earlier curing ages(3−7 d).Meanwhile,when at later curing ages(7−28 d)the result was the opposite.Moreover,RHA demonstrated positive effects on corrosion resistance of steel bars in cement paste.
文摘Preparation of rice husk ash with high specific surface area and chemical reactivity of the product are reported in this paper. The amorphous rice husk ash with high specific surface area of 311 m2·g-1 was produced by heating acid treated rice husk at 700℃ for 4 h. The isotherms of rice husk ash are similar in shape to type Ⅱof Brunaner's classification with mesopores being predominant. The rice husk ash has a high chemical reactivity,especially that pretreated with acid. This chemical reactivity depends on ashing temperature and pretreatment conditions. There is an exponential relation between the specific surface area of rice husk ash and the change in the conductivity of saturated Ca(OH)2 solution with rice husk ash, from which the specific surface area can be known according to the conductivity change.
文摘In order to study the production of porous silica compacts by the combustion of rice husk ash (RHA) for tundish lining, the experimental design technique was used to evaluate the effect of firing temperature, soaking time and compaction pressure on controlling both the porosity degree and compressive strength of rice husk ash compacts. The results revealed that while the porosity degree of the compacts decreased with the increase in the entire studied parameters, the compressive strength exhibited another trend especially at a lower soaking time. At a lower soaking time, the increase in firing temperature led to a slight decrease in compressive strength and then increasing thereafter. The porous silica compacts having 30% porosity and 〉 2.5 MPa compressive strength suitable for tundish lining could be obtained from the combustion of rice husk ash compacts.
文摘The development of high volume rice husk ash (RHA) alumino silicate composites (ASC) was studied. RHA was used as the source of silica and aluminium in the ASC. The mass ratios of RHA:Al(OH)3 of 70:30 to 99:1 were tested. The results indicate that the obtained ASC mortars are not stable and disintegrate in water. Boric acid was introduced to the mixture to overcome this problem. Stable ASC mortars with high RHA:Al(OH)3 mass ratios of 90:10 to 97.5:2.5 were obtained with the use of boric acid and 115oC curing. The compressive strength of the mortar of 20 MPa was gained. The immersion test indicates that high volume RHA ASC mortars show good resistance in 3vol% H2SO4 solution, but is slightly less durable in 5wt% MgSO4 solution.
文摘This paper reports the results of an investigation carried out on clay soil stabilized with pond ash(PA),rice husk ash(RHA) and cement. Modified Proctor compaction tests were performed in order to investigate the compaction behavior of clay, and California bearing ratio(CBR) tests were performed to determine the strength characteristics of clay. For evaluation purpose, the specimens containing different amounts of admixtures were prepared. Clay was replaced with PA and RHA at a dosage of 30%e45% and5%e20%, respectively. The influence of stabilizer types and dosages on mechanical properties of clay was evaluated. In order to study the surface morphology and crystallization characteristics of the soil samples, scanning electron microscopy(SEM) and X-ray diffraction(XRD) analyses were carried out,respectively. The results obtained indicated a decrease in the maximum dry density(MDD) and a simultaneous increase in the optimum moisture content(OMC) with the addition of PA and RHA.Multiple linear regression analysis(MLRA) showed that the predicted values of CBR tests are in good agreement with the experimental values. Developed stabilized soil mixtures showed satisfactory strength and can be used for construction of embankments and stabilization of sub-grade soil. The use of locally available soils, PA, RHA, and cement in the production of stabilized soils for such applications can provide sustainability for the local construction industry.
基金funded by Faculty of Engineering,King Mongkut’s University of Technology North Bangkok,Contact No.ENG-62-48funding from the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No.777823.
文摘According to empirical evidence,high levels of energy and considerable amounts of natural resources are used in the production of concrete.Given the context,this study explores self-consolidating concrete(SCC)that includes rice husk ash(RHA)and metal furnace slag(MFS)as an alternative to cement and the natural aggregates in standard SCC mixes.In this study,mixture designs are investigated with 20 wt.%of RHA,10–30 wt.%of MFS and water-to-powder material ratios of 0.30 and 0.40.Based on the findings regarding the fresh-state,hardened-state,and durability properties of the resulting SCC mixes,it is evident that the use of RHA and MFS can significantly improve the properties of concrete.The highest compressive strength was achieved for SCC with 20 wt.%RHA and 10 wt.%MFS.This outcome should be used as a basis for further investigations into the production of concrete materials that are both high-performance and sustainable.
基金supported by the Cultivation Foundation of Northeast Petroleum University(2017PYYL-03)
文摘SAPO-34 molecular sieves were synthesized directly by hydrothermal method with rice husk ash(RHA)used as the silicon source.The crystal structure,composition,surface morphology and acidity of the synthesized products weresieves had a high crystallinity,without any impure phase.Compared with the SAPO-34 prepared by the silica sol,RHA-SAPO-34 had similar acid properties in strength.The methanol to olefins(MTO)experiments showed that the SAPO-34molecular sieve synthesized from RHA exhibited both a good catalytic activity and ethylene selectivity.
基金Funded by the National Natural Science Foundation of China(Nos.51602198,41427802 and 41302257)the Zhejiang Provincial Natural Science Foundation of China(No.LQ13D020001)the Shaoxing University Scientific Research Project(No.20145030)
文摘The nanostructure of cementitious materials has important effects on concrete properties. The effects of rice husk ash(RHA) on cement hydration product phases and interfacial transition zone(ITZ) in mortar were investigated from the nano-scale structure perspective. The experimental results indicate that, with the increase of RHA dosages of samples, the volume fraction of high-density calcium-silicate-hydrate(HD C-S-H) in porosity and hydration product phases increases. The volume fractions of HD C-S-H in C-S-H of samples show an increasing trend with the increase of RHA dosages. RHA decreases the thickness of ITZ and increases the matrix elastic moduli of samples, however, the RHA dosoges hardly affect the thickness and elastic moduli.
文摘The strength and durability properties of concrete with or without three types of rice husk ash (RHA), namely, amorphous, partial crystalline, and crystalline RHA, were investigates. The three types of RHA were added into concrete at a 20% replacement level. Consequently, the pozzolanic reactivity of amorphous RHA was higher than that of partial crystalline and crystalline RHA. Concrete added with amorphous RHA showed excellent characteristics in its mechanical and durability properties. The results showed that the higher the amount of crystalline silica in RHA, the lower the concrete resistivity value became. When compared with each other, concretes with 20% of the ce- ment replaced with these types of RHA achieved similar ultrasonic pulse velocity values, but all were lower than that of the control concrete. The incorporation of these kinds of RHA significantly reduced chloride penetration. The results not only encourage the use of amorphous materials, they also support the application of crystalline or partial crystalline RHA as mineral and pozzolanic admixtures for cement.
文摘Nowadays an alternate source of filler from renewable and plant derivatives are being thought of in rubber industries due to their reliability,environmental and economic benefits.Rice Husk Ash(RHA)a byproduct of the rice milling industry is obtained on partial and as well as full combustion of the rice husks.This ash is a good source of silica,silicates and needle shaped carbon and hence can be used as filler for cements.In the present study,a detailed investigation was carried out to understand the RHA as reinforcing material using mechanical properties and fractography using SEM.The rubbers studied were natural rubber(NR),poly chloroprene(CR)and ethylene propylene diene monomer(EPDM).Interestingly,the RHA added NR stock on open mill mixing generated considerable amount of static charges.The properties of NR were found to be as good as regular formulations.EPDM compounds behaved well during mixing.But the properties were found to be poor.CR-RHA compounds were found to result in higher viscosity and the properties were not as good.The SEM studies showed surprisingly cohesive failure as evidenced with the presence of flow lines and the fibrous filler(RHA)remains embedded in the matrix regardless of the chemistry of the repeating unit,NR,EPDM and the chlorine containing monomer inCR.
文摘The overall aim was to investigate the effect of highly active rice husk ash (RHA) produced by an industrial furnace on some properties of concrete. The strength, pore volume and pore distribution of concrete and the Ca(OH)-2 content in concrete were investigated by JIS A 1108 (Method of test for compressive strength of concrete), a mercury instrument porosimeter, and the thermogravimetric analysis, respectively. The results show that,with RHA replacement of cement,the compressive strength of concrete is increased evidently;the average pore radius of concrete is greatly decreased, especially the portion of the pores greater than 20nm in radius is decreased while the amount of smaller pores is increased, and the more the RHA replacement, the less the amount of Ca(OH)-2 in concrete. The latter two results are the main reasons for the strength enhancement of concrete.
基金Supported by National Natural Science Foundation of China (No.10975154)State Key Lab of Electroanalytical Chemistry,Changchun Institute of Applied Chemistry,CAS (SKLEA 201104)
文摘[Objective] The aim was to study the mechanism of the removal effect of methylene blue(MB) by rice husk ash(RHA).[Method] The effects of contact time and pH on the adsorption of MB by rice husk ash were investigated,and the mechanism was discussed.[Result] RHA exhibited a remarkable ability on the adsorption of MB.The process of adsorption reached the equilibrium after 30 min,at about pH 9.The adsorption effect was explored with the aid of ion beam etching technique,which displayed that there were two main adsorption manners.One was the electrostatic interactions,through which the negatively charged RHA could adsorb the positively charged MB,the other was the porous effect due to the huge specific surface area of the micro/nano-scale porous silica in RHA,and MB could be adsorbed and deposited into the pores.[Conclusion] RHA could be used in the treatment of textile wastewater.Ion beam technology might be used as an effective way to investigate the adsorption effect.
文摘Delivery of housing units in adequate quantity and quality has been the pursuits of individuals and successive governments in Nigeria. Still, the gap between demand and supply is becoming wider on daily basis due to exorbitant cost of building materials that is beyond the reach of average Nigerians. Concrete being the most acceptable construction material is expensive due to high cost of cement. Efforts made to reduce the cost of cement were to no avail, thus there is need to look elsewhere. Past researches showed that substituting cement with 15% of RHA (rice husk ash) in concrete improves the performance of concrete and reduces global warming as a result of emissions from cement production. This paper looks into the effect of using RHA as partial substitute of cement on the cost of a low-cost housing unit. Results showed that cement based construction materials are responsible for 82.58% of the total cost in which cement is responsible for 42%. When 15% RHA was used to substitute cement over N90,000 was saved, amounting to about 7% of the total cost of the building. In addition, depletion of natural resources was reduced.
文摘In several countries, the residual RHA (rice husk ash) has been produced in rice processing industries or in thermoelectric plants that use rice husk to generate heat and/or electrical energy, usually without burning process control. This causes a reduction in the amorphous silica content of residual RHA, which distinguishes them from the RHA produced according to controlled burning process, which is totally amorphous and considered a highly reactive pozzolan. In this paper, the hydration products and the porous structure of binders paste were studied by replacing, in weight of 5%, 10% and 20% of Portland cement OPC (ordinary Portland cement), by residual RHAs named A and B, which have high and low content of amorphous silica, respectively, using microstructure evaluation techniques as XRD (X-ray diffraction), TG (thermogravimetric) tests and MIP (mercury intrusion porosimetry). A reducing the size of the pores of the pastes was observed according to the increase of content replacement of RHA A and RHA B.
文摘Thailand rice husk ash was used to synthesize zeolite by hydrothermal treatment. Raw rice husk ash material and zeolitic products were characterized in terms of specific surface area (BET method), morphological analysis (SEM), mineralogical composition (XRD) and CEC (cation exchange capacity). LOI (Loss of ignition) of rice husk ash was also evaluated. Result indicated that the rice husk ash sample from Roi-Et Green power plant in the Northeastern of Thailand with combustion temperature of 650 ℃ has a high content of SiO2 (above 90 wt.%). Zeolite-X from rice husk ash with high content of Si was successfully synthesized using hydrothermal treatment. The zeolitic material synthesized with the optimal condition possessed a maximum value of CEC of 503 meq/100g, and it has potentiality to be used as ion exchangers.
文摘The cost of cement has made concrete production expensive such that the housing deficit in developing countries is on the rise despite all the efforts by governments and other stakeholders to produce affordable housing units for the populace. Ashes of agricultural products such as rice husk, known as mineral admixtures may have pozzolanic characteristics which would be more beneficial to the housing industry in terms of strength gain and economy than being pollutants to the environment. Rice Husk Ash (RHA), because of its finely divided form and very high silica content and amorphousness, proved to be useful for strength gain of Rice Husk Ash Concrete (RHAC). Rice husk ash was manufactured by uncontrolled burning, ground, sieved and replaced with cement at 0%, 5%, 10%, 15%, 20% and 25% in mass for the mixes C20, C25, C30 and C35 where their compressive strengths were verified at 3, 7, 14, 21, 28, 56, 90 and 180 days. The X-ray diffraction pattern list indicated amorphous as well as diffused peak of about 8000 counts of SiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> representing crystalline structures identified as cristobalite. A physical examination of the RHA showed very fine appearance, grey color and specific gravity of 2.06. The chemical analysis also revealed the existence of oxide content to be 55.8% representing 0.78% of Fe</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">O</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">, 54% of SiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> and 1.06% of Al</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">O</span><sub><span style="font-family:Verdana;">3</span></sub><span style="font-family:Verdana;"> representing 20.23% lower than the minimum value of 70% required for pozzolans. Generally, the compressive strength values decreased as the RHA content in the mixes increased but when compared to the control concrete the optimum replacement percentage of Ordinary Portland Cement (OPC) with RHA at 5% showed an increase above the control concrete for C20 mix. The increase in the RHA in the mixes resulted in the high demand for water in all the mixes.
文摘This experimental investigation aims at evaluating the thermal properties of rice husk ash (RHA)—filled gypsum plaster composite for potential applications, as insulating materials. The thermal conductivities of composites of gypsum plaster reinforced with RHA at 0%, 10%, 20%, 30%, and 40% volume fractions were determined experimentally using Lee’s disc method. The experimental results show that integrating RHA reduces the thermal conductivity of gypsum plaster and improves its insulation capacity. The results obtained from the experiments were compared with the Rule of Mixture Model, Maxwell Model, and Russell Model. It was observed that the thermal conductivities obtained from experiments and the theoretical models decreased with an increase in the volume fraction of RHA. The errors associated with the models with respect to experimental results are on the average of 28.7% for Mixture Rule, 31.6% for Russel Model, and 18.8% for the Maxwell Model. An agricultural waste like RHA can be beneficially used for the preparation of composites and, due to improved insulation capability, these composites can be used for applications such as insulation boards and sheathing, hardboard, ceilings of roofs, decorations, etc.