It is of great interest to estimate quantile residual lifetime in medical science and many other fields. In survival analysis, Kaplan-Meier(K-M) estimator has been widely used to estimate the survival distribution. ...It is of great interest to estimate quantile residual lifetime in medical science and many other fields. In survival analysis, Kaplan-Meier(K-M) estimator has been widely used to estimate the survival distribution. However, it is well-known that the K-M estimator is not continuous, thus it can not always be used to calculate quantile residual lifetime. In this paper, the authors propose a kernel smoothing method to give an estimator of quantile residual lifetime. By using modern empirical process techniques, the consistency and the asymptotic normality of the proposed estimator are provided neatly.The authors also present the empirical small sample performances of the estimator. Deficiency is introduced to compare the performance of the proposed estimator with the naive unsmoothed estimator of the quantile residaul lifetime. Further simulation studies indicate that the proposed estimator performs very well.展开更多
We assume T1,..., Tn are i.i.d. data sampled from distribution function F with density function f and C1,...,Cn are i.i.d. data sampled from distribution function G. Observed data consists of pairs (Xi, δi), em= 1,...We assume T1,..., Tn are i.i.d. data sampled from distribution function F with density function f and C1,...,Cn are i.i.d. data sampled from distribution function G. Observed data consists of pairs (Xi, δi), em= 1,..., n, where Xi = min{Ti,Ci}, δi = I(Ti 6 Ci), I(A) denotes the indicator function of the set A. Based on the right censored data {Xi, δi}, em=1,..., n, we consider the problem of estimating the level set {f 〉 c} of an unknown one-dimensional density function f and study the asymptotic behavior of the plug-in level set estimators. Under some regularity conditions, we establish the asymptotic normality and the exact convergence rate of the λg-measure of the symmetric difference between the level set {f ≥ c} and its plug-in estimator {fn ≥ c}, where f is the density function of F, and fn is a kernel-type density estimator of f. Simulation studies demonstrate that the proposed method is feasible. Illustration with a real data example is also provided.展开更多
The maximum entropy method has been widely used in many fields, such as statistical mechanics,economics, etc. Its crucial idea is that when we make inference based on partial information, we must use the distribution ...The maximum entropy method has been widely used in many fields, such as statistical mechanics,economics, etc. Its crucial idea is that when we make inference based on partial information, we must use the distribution with maximum entropy subject to whatever is known. In this paper, we investigate the empirical entropy method for right censored data and use simulation to compare the empirical entropy method with the empirical likelihood method. Simulations indicate that the empirical entropy method gives better coverage probability than that of the empirical likelihood method for contaminated and censored lifetime data.展开更多
This paper presents a hierarchical Bayesian approach to the estimation of components’ reliability (survival) using a Weibull model for each of them. The proposed method can be used to estimation with general survival...This paper presents a hierarchical Bayesian approach to the estimation of components’ reliability (survival) using a Weibull model for each of them. The proposed method can be used to estimation with general survival censored data, because the estimation of a component’s reliability in a series (parallel) system is equivalent to the estimation of its survival function with right- (left-) censored data. Besides the Weibull parametric model for reliability data, independent gamma distributions are considered at the first hierarchical level for the Weibull parameters and independent uniform distributions over the real line as priors for the parameters of the gammas. In order to evaluate the model, an example and a simulation study are discussed.展开更多
The random weighting method is an emerging computing method in statistics.In this paper,we propose a novel estimation of the survival function for right censored data based on the random weighting method.Under some re...The random weighting method is an emerging computing method in statistics.In this paper,we propose a novel estimation of the survival function for right censored data based on the random weighting method.Under some regularity conditions,we prove the strong consistency of this estimation.展开更多
In clinical studies,it is often that the medical treatments take a period of time before having an effect on patients and the delayed time may vary from person to person.Even though there exists a rich literature deve...In clinical studies,it is often that the medical treatments take a period of time before having an effect on patients and the delayed time may vary from person to person.Even though there exists a rich literature developing methods to estimate the time-lag period and treatment effects after lag time,most of these existing studies assume a fixed lag time.In this paper,we propose a hazard model incorporating a random treatment time-lag effect to describe the heterogeneous treatment effect among subjects.The EM algorithm is used to obtain the maximum likelihood estimator.We give the asymptotic properties of the proposed estimator and evaluate its performance via simulation studies.An application of the proposed method to real data is provided.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.71271128the State Key Program of National Natural Science Foundation of China under Grant No.71331006+4 种基金NCMISKey Laboratory of RCSDSCAS and IRTSHUFEPCSIRT(IRT13077)supported by Graduate Innovation Fund of Shanghai University of Finance and Economics under Grant No.CXJJ-2011-429
文摘It is of great interest to estimate quantile residual lifetime in medical science and many other fields. In survival analysis, Kaplan-Meier(K-M) estimator has been widely used to estimate the survival distribution. However, it is well-known that the K-M estimator is not continuous, thus it can not always be used to calculate quantile residual lifetime. In this paper, the authors propose a kernel smoothing method to give an estimator of quantile residual lifetime. By using modern empirical process techniques, the consistency and the asymptotic normality of the proposed estimator are provided neatly.The authors also present the empirical small sample performances of the estimator. Deficiency is introduced to compare the performance of the proposed estimator with the naive unsmoothed estimator of the quantile residaul lifetime. Further simulation studies indicate that the proposed estimator performs very well.
基金supposed by National Natural Science Foundation of China (Grant Nos. 11071137 and 11371215)Tsinghua Yue-Yuen Medical Science Fund
文摘We assume T1,..., Tn are i.i.d. data sampled from distribution function F with density function f and C1,...,Cn are i.i.d. data sampled from distribution function G. Observed data consists of pairs (Xi, δi), em= 1,..., n, where Xi = min{Ti,Ci}, δi = I(Ti 6 Ci), I(A) denotes the indicator function of the set A. Based on the right censored data {Xi, δi}, em=1,..., n, we consider the problem of estimating the level set {f 〉 c} of an unknown one-dimensional density function f and study the asymptotic behavior of the plug-in level set estimators. Under some regularity conditions, we establish the asymptotic normality and the exact convergence rate of the λg-measure of the symmetric difference between the level set {f ≥ c} and its plug-in estimator {fn ≥ c}, where f is the density function of F, and fn is a kernel-type density estimator of f. Simulation studies demonstrate that the proposed method is feasible. Illustration with a real data example is also provided.
基金Supported by the National Natural Science Foundation of China(No.11171230,11231010)
文摘The maximum entropy method has been widely used in many fields, such as statistical mechanics,economics, etc. Its crucial idea is that when we make inference based on partial information, we must use the distribution with maximum entropy subject to whatever is known. In this paper, we investigate the empirical entropy method for right censored data and use simulation to compare the empirical entropy method with the empirical likelihood method. Simulations indicate that the empirical entropy method gives better coverage probability than that of the empirical likelihood method for contaminated and censored lifetime data.
文摘This paper presents a hierarchical Bayesian approach to the estimation of components’ reliability (survival) using a Weibull model for each of them. The proposed method can be used to estimation with general survival censored data, because the estimation of a component’s reliability in a series (parallel) system is equivalent to the estimation of its survival function with right- (left-) censored data. Besides the Weibull parametric model for reliability data, independent gamma distributions are considered at the first hierarchical level for the Weibull parameters and independent uniform distributions over the real line as priors for the parameters of the gammas. In order to evaluate the model, an example and a simulation study are discussed.
文摘The random weighting method is an emerging computing method in statistics.In this paper,we propose a novel estimation of the survival function for right censored data based on the random weighting method.Under some regularity conditions,we prove the strong consistency of this estimation.
基金Supported by the National Natural Science Foundation of China(Grant No.11971362)。
文摘In clinical studies,it is often that the medical treatments take a period of time before having an effect on patients and the delayed time may vary from person to person.Even though there exists a rich literature developing methods to estimate the time-lag period and treatment effects after lag time,most of these existing studies assume a fixed lag time.In this paper,we propose a hazard model incorporating a random treatment time-lag effect to describe the heterogeneous treatment effect among subjects.The EM algorithm is used to obtain the maximum likelihood estimator.We give the asymptotic properties of the proposed estimator and evaluate its performance via simulation studies.An application of the proposed method to real data is provided.