The use of robots to augment human capabilities and assist in work has long been an aspiration.Robotics has been developing since the 1960s when the first industrial robot was introduced.As technology has advanced,rob...The use of robots to augment human capabilities and assist in work has long been an aspiration.Robotics has been developing since the 1960s when the first industrial robot was introduced.As technology has advanced,robotic-assisted surgery has shown numerous advantages,including more precision,efficiency,minimal invasiveness,and safety than is possible with conventional techniques,which are research hotspots and cutting-edge trends.This article reviewed the history of medical robot development and seminal research papers about current research progress.Taking the autonomous dental implant robotic system as an example,the advantages and prospects of medical robotic systems would be discussed which would provide a reference for future research.展开更多
Physical assistive robotics are oriented to support and improve functional capacities of people.In physical rehabilitation,robots are indeed useful for functional recovery of affected limb.However,there are still open...Physical assistive robotics are oriented to support and improve functional capacities of people.In physical rehabilitation,robots are indeed useful for functional recovery of affected limb.However,there are still open questions related to technological aspects.This work presents a systematic review of upper limb rehabilitation robotics in order to analyze and establish technological challenges and future directions in this area.A bibliometric analysis was performed for the systematic literature review.Literature from the last six years,conducted between August 2020 and May 2021,was reviewed.The methodology for the literature search and a bibliometric analysis of the metadata are presented.After a preliminary search resulted in 820 articles,a total of 66 articles were included.A concurrency network and bibliographic analysis were provided.And an analysis of occurrences,taxonomy,and rehabilitation robotics reported in the literature is presented.This review aims to provide to the scientific community an overview of the state of the art in assistive robotics for upper limb physical rehabilitation.The literature analysis allows access to a gap of unexplored options to define the technological prospects applied to upper limb physical rehabilitation robotics.展开更多
The advancement of the intelligent manufacturing industry(IMI)represents the future direction for the world's manufactur-ing sector,offering a promising avenue to bolster national competitiveness and enhance indus...The advancement of the intelligent manufacturing industry(IMI)represents the future direction for the world's manufactur-ing sector,offering a promising avenue to bolster national competitiveness and enhance industrial manufacturing efficiency.In this study,we took the industrial robot industry(IRI)as a case study to elucidate the spatial distribution and interconnections of IMI from a geographical perspective,and the modified diamond model(DM)was used to analyze the influencing factors.Results show that:1)the spatial pattern of IRI with various investment attributes in different industrial chain links is generally similar,centered in the southeast.Key investment areas are in the east and south.The spatial distribution of China's IRI covers a multitude of provinces and obtains differ-ent scales of investment in different countries(regions).2)The spatial correlation between foreign investors and China's provincial-level administrative regions(PARs)forms a network,and the network of foreign-invested enterprises is more stable.Different countries(regions)have distinct location preferences in China,with significant spatial differences in correlation degrees.3)Overall,the interac-tion of these factors shapes the location decisions and correlation patterns of industrial robot enterprises.This study not only contributes to our theoretical knowledge of the industrial spatial structure and industrial economy but also offers valuable references and sugges-tions for national IMI planning and relevant industry investors.展开更多
Robotic total knee replacement(TKR)surgery has evolved over the years with the aim of improving the overall 80% satisfaction rate associated with TKR surgery.Proponents claim higher precision in executing the pre-oper...Robotic total knee replacement(TKR)surgery has evolved over the years with the aim of improving the overall 80% satisfaction rate associated with TKR surgery.Proponents claim higher precision in executing the pre-operative plan which results in improved alignment and possibly better clinical outcomes.Opponents suggest longer operative times with potentially higher complications and no superiority in clinical outcomes alongside increased costs.This editorial will summarize where we currently stand and the future implications of using robotics in knee replacement surgery.展开更多
Artificial intelligence(AI)technology is vital for practitioners to incorporate AI and robotics in day-to-day regional anesthesia practice.Recent literature is encouraging on its applications in regional anesthesia,bu...Artificial intelligence(AI)technology is vital for practitioners to incorporate AI and robotics in day-to-day regional anesthesia practice.Recent literature is encouraging on its applications in regional anesthesia,but the data are limited.AI can help us identify and guide the needle tip precisely to the location.This may help us reduce the time,improve precision,and reduce the associated side effects of improper distribution of drugs.In this article,we discuss the potential roles of AI and robotics in regional anesthesia.展开更多
“Galbot,please help fetch a plush toy!”After receiving the order,Galbot,a humanoid robot,was able to identify and deliver the toy from among a range of items.The demonstration was given at the 2024 World Artificial ...“Galbot,please help fetch a plush toy!”After receiving the order,Galbot,a humanoid robot,was able to identify and deliver the toy from among a range of items.The demonstration was given at the 2024 World Artificial Intelligence Conference(WAIC)held in Shanghai from July 4 to 6.展开更多
It is innovative if people can be free from aged body and continue their career with assistance of robotics. It is supposed to see the change soon as smart phone changed life style. This research aims to figure out th...It is innovative if people can be free from aged body and continue their career with assistance of robotics. It is supposed to see the change soon as smart phone changed life style. This research aims to figure out the direction of this change, development in technique for elders. It also studies various theories to justify various methods for ambient assistance robotic design for elders. In the long life expectancy world, this design will enhance the life quality of elders and encourage young people get pride in their own job, because their career will continue and it deserves to invest all their energy and sincerity in a specific area. As ambient robotics are a design for elders' adjacent assistive design and part of everyday, it is related with quality of elders' life. Some theories are cited for the importance of meaningful life. Meaningfulness is regarded as the fundamental goal of design purpose, because meaning stands upon the concept of human being and its consciousness activity. Phenomenological background of this research is introduced. It can be suggested in field observation to get real stories containing meanings and essence of life of elders. In conclusion, this study is a beginning of long process to prepare aging society with technique as well as perspective to see elders as valuable work force.展开更多
This paper presents a review of recent rolling robots including Rollo from Helsinki University of Technology, Spherical Mobile Robot from the Politecnico of Bad, Sphericle from the University of Pisa, Spberobot from M...This paper presents a review of recent rolling robots including Rollo from Helsinki University of Technology, Spherical Mobile Robot from the Politecnico of Bad, Sphericle from the University of Pisa, Spberobot from Michigan State University, August from Azad University of Qazvin and the University of Tehran, Deformable Robot from Ritsumeijan University, Kickbot from the Massachusetts Institute of Technology, Gravitational Wheeled Robot from Kinki University, Gyrover from Carnegie Mellon University, Roball from the Université de Sherbrooke, and Rotundus from the Angstroem Space Technology Center. Seven rolling robot design principles are presented and discussed (Sprung central member, Car driven, Mobile masses, Hemispherical wheels, Gyroscopic stabilisation, Ballast mass - fixed axis, and Ballast mass - moving axis). Robots based on each of the design principles are shown and the performances of the robots are tabulated. An attempt is made to grade the design principles based on their suitability for movement over an unknown and varied but relatively smooth terrain. The result of this comparison suggests that a rolling robot based on a mobile masses principle would be best suited to this specific application. Some wonderful rolling organisms are introduced and defined as "active" or "passive" depending on whether they generate their own rolling motion or external forces cause their rolling.展开更多
The research progress of swarm robotics is reviewed in details. The swarm robotics inspired from nature is a combination of swarm intelligence and robotics, which shows a great potential in several aspects. First of a...The research progress of swarm robotics is reviewed in details. The swarm robotics inspired from nature is a combination of swarm intelligence and robotics, which shows a great potential in several aspects. First of all, the cooperation of nature swarm and swarm intelligence are briefly introduced, and the special features of the swarm robotics are summarized compared to a single robot and other multi-individual systems. Then the modeling methods for swarm robotics are described by a list of several widely used swarm robotics entity projects and simulation platforms. Finally, as a main part of this paper, the current research on the swarm robotic algorithms are presented in detail, including cooperative control mechanisms in swarm robotics for flocking, navigating and searching applications.展开更多
Multiple robotic flexible endoscope platforms have been developed based on cross specialty collaboration between engineers and medical doctors. However, significant number of these platforms have been developed for th...Multiple robotic flexible endoscope platforms have been developed based on cross specialty collaboration between engineers and medical doctors. However, significant number of these platforms have been developed for the natural orifice transluminal endo-scopic surgery paradigm. Increasing amount of evidence suggest the focus of development should be placed on advanced endolumenal procedures such as endoscopic submucosal dissection instead. A thorough literature analysis was performed to assess the current status of robotic flexible endoscopic platforms designed for advanced endolumenal procedures. Current efforts are mainly focused on robotic locomotion and robotic instrument control. In the future, advances in actuation and servoing technology, optical analysis, augmented reality and wireless power transmission technology will no doubt further advance the field of robotic endoscopy. Globally, health systems have become increasingly budget conscious; widespread acceptance of robotic endoscopy will depend on careful design to ensure its delivery of a cost effective service.展开更多
A complete characterization of the behavior in human-robot interactions(HRI) includes both: the behavioral dynamics and the control laws that characterize how the behavior is regulated with the perception data. In thi...A complete characterization of the behavior in human-robot interactions(HRI) includes both: the behavioral dynamics and the control laws that characterize how the behavior is regulated with the perception data. In this way, this work proposes a leader-follower coordinate control based on an impedance control that allows to establish a dynamic relation between social forces and motion error. For this, a scheme is presented to identify the impedance based on fictitious social forces, which are described by distance-based potential fields.As part of the validation procedure, we present an experimental comparison to select the better of two different fictitious force structures. The criteria are determined by two qualities: least impedance errors during the validation procedure and least parameter variance during the recursive estimation procedure.Finally, with the best fictitious force and its identified impedance,an impedance control is designed for a mobile robot Pioneer 3AT,which is programmed to follow a human in a structured scenario.According to results, and under the hypothesis that moving like humans will be acceptable by humans, it is believed that the proposed control improves the social acceptance of the robot for this kind of interaction.展开更多
Collaborative Robotics is one of the high-interest research topics in the area of academia and industry.It has been progressively utilized in numerous applications,particularly in intelligent surveillance systems.It a...Collaborative Robotics is one of the high-interest research topics in the area of academia and industry.It has been progressively utilized in numerous applications,particularly in intelligent surveillance systems.It allows the deployment of smart cameras or optical sensors with computer vision techniques,which may serve in several object detection and tracking tasks.These tasks have been considered challenging and high-level perceptual problems,frequently dominated by relative information about the environment,where main concerns such as occlusion,illumination,background,object deformation,and object class variations are commonplace.In order to show the importance of top view surveillance,a collaborative robotics framework has been presented.It can assist in the detection and tracking of multiple objects in top view surveillance.The framework consists of a smart robotic camera embedded with the visual processing unit.The existing pre-trained deep learning models named SSD and YOLO has been adopted for object detection and localization.The detection models are further combined with different tracking algorithms,including GOTURN,MEDIANFLOW,TLD,KCF,MIL,and BOOSTING.These algorithms,along with detection models,help to track and predict the trajectories of detected objects.The pre-trained models are employed;therefore,the generalization performance is also investigated through testing the models on various sequences of top view data set.The detection models achieved maximum True Detection Rate 93%to 90%with a maximum 0.6%False Detection Rate.The tracking results of different algorithms are nearly identical,with tracking accuracy ranging from 90%to 94%.Furthermore,a discussion has been carried out on output results along with future guidelines.展开更多
基金supported by the National Natural Science Foundation of China[grant number 81970987].
文摘The use of robots to augment human capabilities and assist in work has long been an aspiration.Robotics has been developing since the 1960s when the first industrial robot was introduced.As technology has advanced,robotic-assisted surgery has shown numerous advantages,including more precision,efficiency,minimal invasiveness,and safety than is possible with conventional techniques,which are research hotspots and cutting-edge trends.This article reviewed the history of medical robot development and seminal research papers about current research progress.Taking the autonomous dental implant robotic system as an example,the advantages and prospects of medical robotic systems would be discussed which would provide a reference for future research.
基金Supported by Militar Nueva Granada University of Colombia (Grant No.IMP-ING-3127)。
文摘Physical assistive robotics are oriented to support and improve functional capacities of people.In physical rehabilitation,robots are indeed useful for functional recovery of affected limb.However,there are still open questions related to technological aspects.This work presents a systematic review of upper limb rehabilitation robotics in order to analyze and establish technological challenges and future directions in this area.A bibliometric analysis was performed for the systematic literature review.Literature from the last six years,conducted between August 2020 and May 2021,was reviewed.The methodology for the literature search and a bibliometric analysis of the metadata are presented.After a preliminary search resulted in 820 articles,a total of 66 articles were included.A concurrency network and bibliographic analysis were provided.And an analysis of occurrences,taxonomy,and rehabilitation robotics reported in the literature is presented.This review aims to provide to the scientific community an overview of the state of the art in assistive robotics for upper limb physical rehabilitation.The literature analysis allows access to a gap of unexplored options to define the technological prospects applied to upper limb physical rehabilitation robotics.
基金Under the auspices of the Natural Science Foundation Project of Heilongjiang Province(No.LH2019D009)。
文摘The advancement of the intelligent manufacturing industry(IMI)represents the future direction for the world's manufactur-ing sector,offering a promising avenue to bolster national competitiveness and enhance industrial manufacturing efficiency.In this study,we took the industrial robot industry(IRI)as a case study to elucidate the spatial distribution and interconnections of IMI from a geographical perspective,and the modified diamond model(DM)was used to analyze the influencing factors.Results show that:1)the spatial pattern of IRI with various investment attributes in different industrial chain links is generally similar,centered in the southeast.Key investment areas are in the east and south.The spatial distribution of China's IRI covers a multitude of provinces and obtains differ-ent scales of investment in different countries(regions).2)The spatial correlation between foreign investors and China's provincial-level administrative regions(PARs)forms a network,and the network of foreign-invested enterprises is more stable.Different countries(regions)have distinct location preferences in China,with significant spatial differences in correlation degrees.3)Overall,the interac-tion of these factors shapes the location decisions and correlation patterns of industrial robot enterprises.This study not only contributes to our theoretical knowledge of the industrial spatial structure and industrial economy but also offers valuable references and sugges-tions for national IMI planning and relevant industry investors.
文摘Robotic total knee replacement(TKR)surgery has evolved over the years with the aim of improving the overall 80% satisfaction rate associated with TKR surgery.Proponents claim higher precision in executing the pre-operative plan which results in improved alignment and possibly better clinical outcomes.Opponents suggest longer operative times with potentially higher complications and no superiority in clinical outcomes alongside increased costs.This editorial will summarize where we currently stand and the future implications of using robotics in knee replacement surgery.
文摘Artificial intelligence(AI)technology is vital for practitioners to incorporate AI and robotics in day-to-day regional anesthesia practice.Recent literature is encouraging on its applications in regional anesthesia,but the data are limited.AI can help us identify and guide the needle tip precisely to the location.This may help us reduce the time,improve precision,and reduce the associated side effects of improper distribution of drugs.In this article,we discuss the potential roles of AI and robotics in regional anesthesia.
文摘“Galbot,please help fetch a plush toy!”After receiving the order,Galbot,a humanoid robot,was able to identify and deliver the toy from among a range of items.The demonstration was given at the 2024 World Artificial Intelligence Conference(WAIC)held in Shanghai from July 4 to 6.
文摘It is innovative if people can be free from aged body and continue their career with assistance of robotics. It is supposed to see the change soon as smart phone changed life style. This research aims to figure out the direction of this change, development in technique for elders. It also studies various theories to justify various methods for ambient assistance robotic design for elders. In the long life expectancy world, this design will enhance the life quality of elders and encourage young people get pride in their own job, because their career will continue and it deserves to invest all their energy and sincerity in a specific area. As ambient robotics are a design for elders' adjacent assistive design and part of everyday, it is related with quality of elders' life. Some theories are cited for the importance of meaningful life. Meaningfulness is regarded as the fundamental goal of design purpose, because meaning stands upon the concept of human being and its consciousness activity. Phenomenological background of this research is introduced. It can be suggested in field observation to get real stories containing meanings and essence of life of elders. In conclusion, this study is a beginning of long process to prepare aging society with technique as well as perspective to see elders as valuable work force.
文摘This paper presents a review of recent rolling robots including Rollo from Helsinki University of Technology, Spherical Mobile Robot from the Politecnico of Bad, Sphericle from the University of Pisa, Spberobot from Michigan State University, August from Azad University of Qazvin and the University of Tehran, Deformable Robot from Ritsumeijan University, Kickbot from the Massachusetts Institute of Technology, Gravitational Wheeled Robot from Kinki University, Gyrover from Carnegie Mellon University, Roball from the Université de Sherbrooke, and Rotundus from the Angstroem Space Technology Center. Seven rolling robot design principles are presented and discussed (Sprung central member, Car driven, Mobile masses, Hemispherical wheels, Gyroscopic stabilisation, Ballast mass - fixed axis, and Ballast mass - moving axis). Robots based on each of the design principles are shown and the performances of the robots are tabulated. An attempt is made to grade the design principles based on their suitability for movement over an unknown and varied but relatively smooth terrain. The result of this comparison suggests that a rolling robot based on a mobile masses principle would be best suited to this specific application. Some wonderful rolling organisms are introduced and defined as "active" or "passive" depending on whether they generate their own rolling motion or external forces cause their rolling.
基金Sponsored by National Natural Science Foundation of China under Grant( 61170057,60875080)
文摘The research progress of swarm robotics is reviewed in details. The swarm robotics inspired from nature is a combination of swarm intelligence and robotics, which shows a great potential in several aspects. First of all, the cooperation of nature swarm and swarm intelligence are briefly introduced, and the special features of the swarm robotics are summarized compared to a single robot and other multi-individual systems. Then the modeling methods for swarm robotics are described by a list of several widely used swarm robotics entity projects and simulation platforms. Finally, as a main part of this paper, the current research on the swarm robotic algorithms are presented in detail, including cooperative control mechanisms in swarm robotics for flocking, navigating and searching applications.
文摘Multiple robotic flexible endoscope platforms have been developed based on cross specialty collaboration between engineers and medical doctors. However, significant number of these platforms have been developed for the natural orifice transluminal endo-scopic surgery paradigm. Increasing amount of evidence suggest the focus of development should be placed on advanced endolumenal procedures such as endoscopic submucosal dissection instead. A thorough literature analysis was performed to assess the current status of robotic flexible endoscopic platforms designed for advanced endolumenal procedures. Current efforts are mainly focused on robotic locomotion and robotic instrument control. In the future, advances in actuation and servoing technology, optical analysis, augmented reality and wireless power transmission technology will no doubt further advance the field of robotic endoscopy. Globally, health systems have become increasingly budget conscious; widespread acceptance of robotic endoscopy will depend on careful design to ensure its delivery of a cost effective service.
文摘A complete characterization of the behavior in human-robot interactions(HRI) includes both: the behavioral dynamics and the control laws that characterize how the behavior is regulated with the perception data. In this way, this work proposes a leader-follower coordinate control based on an impedance control that allows to establish a dynamic relation between social forces and motion error. For this, a scheme is presented to identify the impedance based on fictitious social forces, which are described by distance-based potential fields.As part of the validation procedure, we present an experimental comparison to select the better of two different fictitious force structures. The criteria are determined by two qualities: least impedance errors during the validation procedure and least parameter variance during the recursive estimation procedure.Finally, with the best fictitious force and its identified impedance,an impedance control is designed for a mobile robot Pioneer 3AT,which is programmed to follow a human in a structured scenario.According to results, and under the hypothesis that moving like humans will be acceptable by humans, it is believed that the proposed control improves the social acceptance of the robot for this kind of interaction.
基金the Framework of International Cooperation Program managed by the National Research Foundation of Korea(2019K1A3A1A8011295711).
文摘Collaborative Robotics is one of the high-interest research topics in the area of academia and industry.It has been progressively utilized in numerous applications,particularly in intelligent surveillance systems.It allows the deployment of smart cameras or optical sensors with computer vision techniques,which may serve in several object detection and tracking tasks.These tasks have been considered challenging and high-level perceptual problems,frequently dominated by relative information about the environment,where main concerns such as occlusion,illumination,background,object deformation,and object class variations are commonplace.In order to show the importance of top view surveillance,a collaborative robotics framework has been presented.It can assist in the detection and tracking of multiple objects in top view surveillance.The framework consists of a smart robotic camera embedded with the visual processing unit.The existing pre-trained deep learning models named SSD and YOLO has been adopted for object detection and localization.The detection models are further combined with different tracking algorithms,including GOTURN,MEDIANFLOW,TLD,KCF,MIL,and BOOSTING.These algorithms,along with detection models,help to track and predict the trajectories of detected objects.The pre-trained models are employed;therefore,the generalization performance is also investigated through testing the models on various sequences of top view data set.The detection models achieved maximum True Detection Rate 93%to 90%with a maximum 0.6%False Detection Rate.The tracking results of different algorithms are nearly identical,with tracking accuracy ranging from 90%to 94%.Furthermore,a discussion has been carried out on output results along with future guidelines.