Aiming at the problems of large deformation and difficult maintenance of deep soft rock roadway under the influence of high ground stress and strong dynamic pressure, taking the surrounding rock control of 1105 lane i...Aiming at the problems of large deformation and difficult maintenance of deep soft rock roadway under the influence of high ground stress and strong dynamic pressure, taking the surrounding rock control of 1105 lane in Hudi Coal Industry as an example, the deformation characteristics and surrounding rock control measures of deep soft rock roadway are analyzed and discussed by means of geological data analysis, roadway deformation monitoring, rock crack drilling and field test. The results show that the main causes of roadway deformation are high ground stress, synclinal tectonic stress, advance mining stress, roadway penetration and surrounding rock fissure development. Based on the deformation characteristics and mechanism of lane 1105, the supporting countermeasures of “roof synergic support, layered grouting, anchor cable beam support, closed hardening of roadway surface” are proposed, which can provide reference for the control of deep roadway surrounding rock under similar conditions.展开更多
To accommodate surrounding rock structure stability control problem in underground mining, we study the coupling effect principle between hydraulic support and surrounding rock, and develop a series of longwall mining...To accommodate surrounding rock structure stability control problem in underground mining, we study the coupling effect principle between hydraulic support and surrounding rock, and develop a series of longwall mining technology and equipment, which solves four common technical problems that significantly undermine coal mining safety, efficiency, and high recovery and extraction rates. Based on the coupling characteristic between mining-induced stress field and supporting stress field of hydraulic support, we identify six controllable factors in the application of hydraulic support to surrounding rock, and further reveal the relationship between hydraulic support and surrounding rock in terms of the strength, the stiffness, and the stability coupling. Our findings provide a plausible solution to the longwall mining technical problem with 6-8 m mining height. By analyzing the dynamic disequilibrium characteristics between hydraulic support and surrounding rock, we propose the intelligent top coal caving control method and the high-coal-recovery-rate tech- nology for fully mechanized caving faces. With the invention of this technology, China is likely to lead the world in terms of the fully mechanized top coal caving mining technology. We are also the first to employ the intelligent coupling technology between hydraulic support and surrounding rock, and automated mining mode, and supporting system coop- erative control with automatic organization. We develop the comprehensive multi-index intelligence adjusting height decision-making mechanism and three-dimensional navigation automatic adjusting straightness technology based on shearer cutting height memory association, cutting power parameters, vibration, and video information, leading to the first set of intelligent longwall mining technology and equipment for thin seam. Our innovation makes a solid contribution to the revolution of intelligence mining technology. With the innovative use of three-dimensional coupling control principle for surrounding rock, we successfully resolve the technological difficulties of longwall mining equipment and surrounding rock control for steep dipping seam, making a breakthrough of longwall mining technology with steep dipping seam.展开更多
Objective The Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation is one of the priority interval for shale gas exploration in the Sichuan Basin and its peripheral areas, and commercial shale gas has b...Objective The Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation is one of the priority interval for shale gas exploration in the Sichuan Basin and its peripheral areas, and commercial shale gas has been discovered from this interval in Jiaoshiba, Changning and Weiyuan shale gas fields in Sichuan Province. However, there is no significant discovery in other parts of the basin due to the different quality of black shale and the differences of tectonic evolution. Based on the progress of shale gas geological theory and exploration discoveries, as well as the theory of "source rock and cap rock controls on hydrocarbon accumulation", of the Upper Ordovician the main controlling factors Wufeng Formation-Lower Silurian Longmaxi Formation shale gas enrichment in the Sichuan Basin and its peripheral areas were analyzed, and the source rock and cap rock controls on the shale gas were also discussed. The results can provide new insights for the next shale gas exploration in this area.展开更多
The mechanical principle and surrounding rock deformation feature of highstress coal roadway was analyzed.The condition of stress balance of the kind of theroadway was put forward.The surrounding rock control principl...The mechanical principle and surrounding rock deformation feature of highstress coal roadway was analyzed.The condition of stress balance of the kind of theroadway was put forward.The surrounding rock control principle and supporting techniqueof high stress coal roadway were discussed.It was very important to control early daysdeformation of coal sides.The supporting strength is should increased,so the strengthloss of coal sides is decreased.The range of plastic fluid zone is reduced.The abovemention-ned principle is applied in industrial test,and the new supporting technique is ap-plied successfully.展开更多
The occurrence of overlying coal pillar(OCP)exerts a strong effect on the stress and strain distribution of the surrounding rock in the stope.In this paper,the stress distribution characteristics are analyzed via the ...The occurrence of overlying coal pillar(OCP)exerts a strong effect on the stress and strain distribution of the surrounding rock in the stope.In this paper,the stress distribution characteristics are analyzed via the numerical calculation with the account of OCP presence or absence.In addition,this study revealed the joint effect of side pressure relief area of the goaf and stress concentration in OCP on the final stress distribution.Furthermore,the rules of abutment stress distribution affected by three influencing factors,namely horizontal-vertical distances between OCP and working face and buried depth of OCP,are analyzed.The functional model linking the peak stress of surrounding rock with the above influencing factors is developed.The field application of the above results proved that the rib spalling and deformation of a 2.95 m-high and 5.66 m-wide roadway could be efficiently controlled by rationally adjusting working states of the support,and adopting the hydraulic prop coordinated with the p type metal beam and anchor cable to strengthen the surrounding rock of working face and roadway,respectively.The proposed measures are considered appropriate to satisfy the safe operation requirements.展开更多
Gob-side entry driving can increase coal recovery ratio, and it is implied in many coal mines. Based on geological condition of 10416 working face tailentry in Yangliu Coal Mine, the surrounding rock deformation chara...Gob-side entry driving can increase coal recovery ratio, and it is implied in many coal mines. Based on geological condition of 10416 working face tailentry in Yangliu Coal Mine, the surrounding rock deformation characteristics of gob-side entry driving with narrow coal pillar is analysed, reasonable size of coal pillar and reasonable roadway excavation time after mining are achieved. Surrounding rock control technology and effective roadway side sealing technology are proposed and are taken into field practice. The results showed that a safer and more efficient mining of working face can be achieved. In addition, results of this paper also have important theoretical significance and valuable reference for surrounding rock control technology of gob-side entry driving with narrow coal pillar under special geological condition.展开更多
In view of the buckling failure caused by large deformation of Mesozoic soft rock roadway in Shajihai mining area, such as serious roof fall, rib spalling, floor heave, etc., based on the detail site investigation,the...In view of the buckling failure caused by large deformation of Mesozoic soft rock roadway in Shajihai mining area, such as serious roof fall, rib spalling, floor heave, etc., based on the detail site investigation,theoretical analysis, mineral composition test, microstructure test, water-physical property test and field experiments were carried out. And we revealed the compound failure mechanism of Mesozoic soft rock roadway in Shajihai mining area, namely the molecule expansion-shear slip of weak structural plane-construction disturbance. On this basis, the coupling support technology whose core is constant resistance with large deformation bolt was proposed. The feature of this supporting technology is that a new type of structural composite material was used, which makes the supporting system not only has the ideal deformation characteristics, but also has high supporting resistance. Thus the fully release of plastic energy within surrounding rock and reasonable control of the thickness of the plastic ring were realized. Then the differential deformation between the surrounding rock and support was eliminated by the secondary coupling support of bolt–mesh–cable, and the bolt with high strength was applied in the base angle to control floor. Eventually the collaborative bearing system of surrounding rock–support was formed. Through field tests the validity and rationality of support was also verified.展开更多
In order to optimize gob-side entry in fully-mechanized working face in moderate-thick-coal seams, we adopt a new attempt to pack roadside by pumping ordinary concrete, which is very important for the development of g...In order to optimize gob-side entry in fully-mechanized working face in moderate-thick-coal seams, we adopt a new attempt to pack roadside by pumping ordinary concrete, which is very important for the development of gob-side entry technology. The concrete has a long initial setting time and a low initial strength. So it is difficult to control the surrounding rock. In this paper, we analyze the effect of using roadside cable to reinforce supporting in gob-side entry surrounding rock controlling based on elas-tic-plastic and material mechanics knowledge. And then we propose a scheme that cable is used to reinforce roadside supporting and a single hydraulic prop is used as the temporary supporting in gob side. Using the numerical simulation software FLAC2D, we numerically simulated supporting scheme. Results of both the 2D modeling and the industrial test on No.3117 face in Jingang Mine prove that the scheme is feasible. The results show that the technology of protecting the roadway in gob-entry retained efficiently make up the deficiency of roadside packing with ordinary concrete, effectively control the roof strata and acquire a good result of retaining roadway.展开更多
The load-bearing performance(LBP)of pumpable supports(PPS)is crucial for the stability of longwall pre-driven recovery room(PRR)surrounding rock.However,the unbalanced bearing coefficient(UBC)of the PPS(undertaking un...The load-bearing performance(LBP)of pumpable supports(PPS)is crucial for the stability of longwall pre-driven recovery room(PRR)surrounding rock.However,the unbalanced bearing coefficient(UBC)of the PPS(undertaking unequal load along the mining direction)has not been investigated.A mechanical model of the PRR was established,considering the main roof cantilever beam structure,to derive an assessment formula for the load,the failure criteria,and the UBC of the PPS.Subsequently,the generation mechanisms,and influencing factors of the UBC were revealed.Global sensitivity analysis shows that the main roof hanging length(l_(2))and the spacing between the PPS(r)significantly impact the UBC.A novel design of the PPS and the coupling control technology were proposed and applied to reduce the UBC of the PPS in the adjacent longwall PRR.Monitor results showed no failure of the PPS at the test site,with the UBC(ζ)reduced to 1.1 consistent with the design value(1.15)basically,fully utilizing the collaborative LBP of the PPS.Finally,the maximum roof-to-floor convergence of the PRR was 234 mm,effectively controlling the stability of the surrounding rock of the PRR and ensuring the mining equipment recovery.展开更多
The damage and failure law of rock mass with holes is of great significance to the stability control of roadways. This study investigates the mechanical properties and failure modes of porous rock masses under cyclic ...The damage and failure law of rock mass with holes is of great significance to the stability control of roadways. This study investigates the mechanical properties and failure modes of porous rock masses under cyclic loading, elucidates the acoustic emission (AE) characteristics and their spatial evolution, and establishes the interrelation among AE, stress, strain, time, and cumulative damage. The results reveal that the rock mass with holes and the intact rock mass show softening and hardening characteristics after cyclic loading. The plastic strain of the rock mass with holes is smaller than that of the intact rock mass, and the stress −strain curve shows hysteresis characteristics. Under uniaxial compression, the pore-bearing rock mass shows the characteristics of higher ringing count, AE energy, b-value peak, and more cumulative ringing count in the failure stage, while it shows lower characteristics under cyclic action. At the initial stage of loading, compared with the intact rock mass, the pore-containing rock mass shows the characteristics of a low b-value. The AE positioning and cumulative damage percentage are larger, and the AE positioning is denser around the hole. The specimen with holes is mainly shear failure, and the complete specimen is mainly tensile shear failure.展开更多
Roof pre-splitting is an effective method to control the roof with potential rock burst risk.In this study,three-point bending tests were carried out by using fine sandstone specimens with different pre-cracked length...Roof pre-splitting is an effective method to control the roof with potential rock burst risk.In this study,three-point bending tests were carried out by using fine sandstone specimens with different pre-cracked lengths as test objects,and digital speckle correlation method(DSCM)and acoustic emission(AE)technology were used to track the entire process of crack propagation.The effect of pre-cracks on the fracture of rock beams was evaluated,and the mechanical mechanism of the rock beam fracture process was analyzed.The rock beam pre-splitting design method was developed,and the application effect of the method was proved by the microseismic monitoring data obtained from the 10303 working face of Jining No.2 coal mine in China.The results show that the loading time history curve of pre-cracked beams exhibits obvious residual characteristics.Compared with the intact rock beam,the tensile strength,and maximum tensile strain of 35 mm pre-cracked rock beam are decreased by 32.4% and 33.1%,respectively and the acoustic emission b value is increased by 30.2%.According to the pre-splitting design method of rock beam,the maximum and average microseismic energy of the 10303 working face after pre-splitting construction are reduced by 25.6% and 6.4%,respectively,with excellent prevention and control effect of thick roof.展开更多
Hitherto, perilous rock is the weakest topic in disasters studies. Specially, damage of control fissure under loads is one key technique in study of develop mechanism of perilous rock. Damage division of end area of c...Hitherto, perilous rock is the weakest topic in disasters studies. Specially, damage of control fissure under loads is one key technique in study of develop mechanism of perilous rock. Damage division of end area of control fissure was defined by authors, then calculation methods of timed-Poisson's ratio and timed-Young's modulus were established in damage mechanics theory. Further, the authors set up damage constitutive equation of control fissure, which founds important basis to numerical simulation for control fissure to develop.展开更多
Rupture and safety of perilous rock are dominated by control fissure behind perilous rock block. Based on model-Ⅰ and model-Ⅱ stress strength factors of control fissure under acting of weight of perilous rock, water...Rupture and safety of perilous rock are dominated by control fissure behind perilous rock block. Based on model-Ⅰ and model-Ⅱ stress strength factors of control fissure under acting of weight of perilous rock, water pressure in control fissure and earth- quake forces, method to calculate critical linking length of control fissure is established. Take water pressure in control fissure as a variable periodic load, and abide by P-M criterion, when control fissure is filled with water, establish the method to calculate fatigue fracture life of control fissure in critical status by contributing value of stress strength factor stemming from water pressure of control fissure in Paris's fatigue equation. Further, parameters (C and m) of sandstone with quartz and feldspar in the area of the Three Gorges Reservoir of China are obtained by fatigue fracture testing.展开更多
Bridges designed following a conventional approach minimize the risk of collapse,but often require challenging,costly,and time-consuming restoration after an earthquake occurs.The new seismic design philosophy require...Bridges designed following a conventional approach minimize the risk of collapse,but often require challenging,costly,and time-consuming restoration after an earthquake occurs.The new seismic design philosophy requires bridges to maintain functionality even after severe earthquakes.In this context,this paper proposes a controlled rocking pile foundation(CRPF)system and numerically evaluates bridges′degree of seismic resilience.The CRPF system allows a pile cap to rock on a pile foundation and dissipate seismic energy through inelastic deformations of replaceable bar fuses that connect a pile cap and piles.Following the conceptual design of the CRPF system,two analytical models were developed for a bridge pier utilizing the CRPF system and a pier designed to develop a plastic hinge in its column.The analytical results indicate that,after experiencing a severe earthquake,a conventionally designed bridge pier sustained substantial damage in its column and exhibited significant residual displacement.In contrast,a pier using the CRPF system showed negligible residual displacement and maintained elastic behavior except,as expected,for bar fuses.The damaged fuses can be rapidly replaced to recover bridge seismic resistance following an earthquake.Therefore,the CRPF system helps to achieve the desired postearthquake performance objectives.展开更多
By analyzing the characteristics and the production mechanism of rock burstthat goes with abnormal gas emission in deep coal seams,the essential method of eliminatingabnormal gas emission by eliminating the occurrence...By analyzing the characteristics and the production mechanism of rock burstthat goes with abnormal gas emission in deep coal seams,the essential method of eliminatingabnormal gas emission by eliminating the occurrence of rock burst or depressingthe magnitude of rock burst was considered.The No.237 working face was selected asthe typical working face contacting gas in deep mining;aimed at this working face,a systemof rock burst prediction and control for coal seam contacting gas in deep mining wasestablished.This system includes three parts:① regional prediction of rock burst hazardbefore mining,② local prediction of rock burst hazard during mining,and ③ rock burstcontrol.展开更多
In order to study the failure characteristics and control method of deep tunnel surrounding rock, based on the stress test, the structure and stress state of the main transportation tunnel surrounding rock in Mine Zha...In order to study the failure characteristics and control method of deep tunnel surrounding rock, based on the stress test, the structure and stress state of the main transportation tunnel surrounding rock in Mine Zhaogezhuang level 14 was analyzed, and it shows that the surrounding rock is exposed to an interphase hard and soft disadvantageous structure state and complex high stress repeated addition area;Through the theoretical analysis and the statistical data, the relation between the tunnel stress transformation and the surrounding rock deformation was proposed;Through the numerical simulation of the tunnel surrounding rock failure process with the help of RFPA procedure, the results show that the damage of the transportation tunnel level 14 mainly occurs in the bottom and the two coal ribs, and the failure process is spreading from the bottom to the two coal ribs, and the effect of the surrounding rock deformation control is obvious by using the way of 2.5 m anchor with 1.0 m grouting strengthening.展开更多
As the excavation of roadway, new fractures will be formed and the pre-existing fractures extend with the redistribution of stress in surrounding rocks. Eventually, fracture zone and bed separation are formed in rocks...As the excavation of roadway, new fractures will be formed and the pre-existing fractures extend with the redistribution of stress in surrounding rocks. Eventually, fracture zone and bed separation are formed in rocks because of the developed fractures. Therefore, mastering the fracture evolution of surrounding rocks is very important to maintain the stability of roadway. The surrounding rocks of main haulage road- way in a certain coal mine is so broken and loose that the supporting is very difficult. Based on compre- hensive anal[ysis of the engineering geological conditions, a sight instrument was used to observe the fractures of internal surrounding rocks, Four indices, i.e., the width of fracture zone W, the number of fractures n, the width of fractures d and rock fracture designation RFD, are put forward to evaluate the fracture dewelopment. According to the evolution rules of the soft rock roadway from this paper, control principles by stages and by regions are presented through the research. At the same time, the best time of grouting reinforcement is determined on the basis of fracture saturation. Field practice shows that the roadway can satisfy normal production during service periods by suitable first support and grouting reinforcement.展开更多
Controlled blasting techniques are used to control overbreak and to aid in the stability of the remaining rock formation. Presplitting is one of the most common methods which is used in many open pit mining and surfac...Controlled blasting techniques are used to control overbreak and to aid in the stability of the remaining rock formation. Presplitting is one of the most common methods which is used in many open pit mining and surface blast design. The purpose of presplitting is to form a fracture plane across which the radial cracks from the production blast cannot travel. The purpose of this study is to investigate of effect of presplitting on the generation of a smooth wall in continuum and jointed rock mass. The 2D distinct element code was used to simulate the presplitting in a rock slope. The blast load history as a function of time was applied to the inner wall of each blasthole. Important parameters that were considered in the analysis were stress tensor and fracturing pattern. The blast loading magnitude and blasthole spacing and jointing pattern were found to be very significant in the final results.展开更多
Aiming at soft rock ground support issues under conditions of high stress and long-term water immersion, the ground failure mechanism is revealed by taking the deep-water sumps of Jiulong Mine as the engineering backg...Aiming at soft rock ground support issues under conditions of high stress and long-term water immersion, the ground failure mechanism is revealed by taking the deep-water sumps of Jiulong Mine as the engineering background and employing field investigation, tests of rock structure, mechanical properties and mineral composition. The main factors leading to the surrounding rock failure include the high and complex stress state of the water sumps, high-clay content and water-weakened rock, and the unreasonable support design. In this paper, the broken and fractured rock mass near roadway opening is considered as ground small-structure, and deep stable rock mass as ground large-structure. A support technology focusing on cutting off the water, strengthening the small structure of the rock and transferring the large structure of the rock is proposed. The proposed support technology of interconnecting the large and small structures, based on high-strength bolts, high-stiffness shotcrete layer plugging water,strengthening the small structure with deep-hole grouting and shallow-hole grouting, highpretensioned cables tensioned twice to make the large and small structures bearing the pressure evenly,channel-steel and high-pretensioned cables are used to control floor heave. The numerical simulation and field test show that this support system can control the rock deformation of the water sumps and provide technical support to similar roadway support designs.展开更多
In deep geological disposal of high-level nuclear waste,one of the most important subjects is to estimate long-term stability and strength of host rock under high temperature conditions caused by radioactive decay of ...In deep geological disposal of high-level nuclear waste,one of the most important subjects is to estimate long-term stability and strength of host rock under high temperature conditions caused by radioactive decay of the waste.In this paper,some experimental researches on the thermo-mechanical characteristics of soft sedimentary rock have been presented.For this reason,a new temperature-controlled triaxial compression and creep test device,operated automatically by a computer-controlled system,whose control software has been developed by the authors,was developed to conduct the thermo-mechanical tests in different thermal loading paths,including an isothermal path.The new device is proved to be able to conduct typical thermo-mechanical element tests for soft rock.The test device and the related testing method were introduced in detail.Finally,some test results have been simulated with a thermo-elasto-viscoplastic model that was also developed by the authors.展开更多
文摘Aiming at the problems of large deformation and difficult maintenance of deep soft rock roadway under the influence of high ground stress and strong dynamic pressure, taking the surrounding rock control of 1105 lane in Hudi Coal Industry as an example, the deformation characteristics and surrounding rock control measures of deep soft rock roadway are analyzed and discussed by means of geological data analysis, roadway deformation monitoring, rock crack drilling and field test. The results show that the main causes of roadway deformation are high ground stress, synclinal tectonic stress, advance mining stress, roadway penetration and surrounding rock fissure development. Based on the deformation characteristics and mechanism of lane 1105, the supporting countermeasures of “roof synergic support, layered grouting, anchor cable beam support, closed hardening of roadway surface” are proposed, which can provide reference for the control of deep roadway surrounding rock under similar conditions.
文摘To accommodate surrounding rock structure stability control problem in underground mining, we study the coupling effect principle between hydraulic support and surrounding rock, and develop a series of longwall mining technology and equipment, which solves four common technical problems that significantly undermine coal mining safety, efficiency, and high recovery and extraction rates. Based on the coupling characteristic between mining-induced stress field and supporting stress field of hydraulic support, we identify six controllable factors in the application of hydraulic support to surrounding rock, and further reveal the relationship between hydraulic support and surrounding rock in terms of the strength, the stiffness, and the stability coupling. Our findings provide a plausible solution to the longwall mining technical problem with 6-8 m mining height. By analyzing the dynamic disequilibrium characteristics between hydraulic support and surrounding rock, we propose the intelligent top coal caving control method and the high-coal-recovery-rate tech- nology for fully mechanized caving faces. With the invention of this technology, China is likely to lead the world in terms of the fully mechanized top coal caving mining technology. We are also the first to employ the intelligent coupling technology between hydraulic support and surrounding rock, and automated mining mode, and supporting system coop- erative control with automatic organization. We develop the comprehensive multi-index intelligence adjusting height decision-making mechanism and three-dimensional navigation automatic adjusting straightness technology based on shearer cutting height memory association, cutting power parameters, vibration, and video information, leading to the first set of intelligent longwall mining technology and equipment for thin seam. Our innovation makes a solid contribution to the revolution of intelligence mining technology. With the innovative use of three-dimensional coupling control principle for surrounding rock, we successfully resolve the technological difficulties of longwall mining equipment and surrounding rock control for steep dipping seam, making a breakthrough of longwall mining technology with steep dipping seam.
基金supported by the National Natural Science Foundation of China(grant No.41202103)
文摘Objective The Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation is one of the priority interval for shale gas exploration in the Sichuan Basin and its peripheral areas, and commercial shale gas has been discovered from this interval in Jiaoshiba, Changning and Weiyuan shale gas fields in Sichuan Province. However, there is no significant discovery in other parts of the basin due to the different quality of black shale and the differences of tectonic evolution. Based on the progress of shale gas geological theory and exploration discoveries, as well as the theory of "source rock and cap rock controls on hydrocarbon accumulation", of the Upper Ordovician the main controlling factors Wufeng Formation-Lower Silurian Longmaxi Formation shale gas enrichment in the Sichuan Basin and its peripheral areas were analyzed, and the source rock and cap rock controls on the shale gas were also discussed. The results can provide new insights for the next shale gas exploration in this area.
基金National Natural Science Foundation(50674045)Youth Project of Hunan Education Office(04B020)
文摘The mechanical principle and surrounding rock deformation feature of highstress coal roadway was analyzed.The condition of stress balance of the kind of theroadway was put forward.The surrounding rock control principle and supporting techniqueof high stress coal roadway were discussed.It was very important to control early daysdeformation of coal sides.The supporting strength is should increased,so the strengthloss of coal sides is decreased.The range of plastic fluid zone is reduced.The abovemention-ned principle is applied in industrial test,and the new supporting technique is ap-plied successfully.
基金supported by the Special Funding Projects of Sanjin Scholars” Supporting Plan (No. 2050205)the National Key Research Projects (No. 2016YFC0600701)Ordinary University Graduate Student Scientific Research Innovation Projects of Jiangsu Province of China (No. KYLX16_0564)
文摘The occurrence of overlying coal pillar(OCP)exerts a strong effect on the stress and strain distribution of the surrounding rock in the stope.In this paper,the stress distribution characteristics are analyzed via the numerical calculation with the account of OCP presence or absence.In addition,this study revealed the joint effect of side pressure relief area of the goaf and stress concentration in OCP on the final stress distribution.Furthermore,the rules of abutment stress distribution affected by three influencing factors,namely horizontal-vertical distances between OCP and working face and buried depth of OCP,are analyzed.The functional model linking the peak stress of surrounding rock with the above influencing factors is developed.The field application of the above results proved that the rib spalling and deformation of a 2.95 m-high and 5.66 m-wide roadway could be efficiently controlled by rationally adjusting working states of the support,and adopting the hydraulic prop coordinated with the p type metal beam and anchor cable to strengthen the surrounding rock of working face and roadway,respectively.The proposed measures are considered appropriate to satisfy the safe operation requirements.
基金Financial support for this work was provided by the National Natural Science Foundation of China(Nos.51474005,51004002)
文摘Gob-side entry driving can increase coal recovery ratio, and it is implied in many coal mines. Based on geological condition of 10416 working face tailentry in Yangliu Coal Mine, the surrounding rock deformation characteristics of gob-side entry driving with narrow coal pillar is analysed, reasonable size of coal pillar and reasonable roadway excavation time after mining are achieved. Surrounding rock control technology and effective roadway side sealing technology are proposed and are taken into field practice. The results showed that a safer and more efficient mining of working face can be achieved. In addition, results of this paper also have important theoretical significance and valuable reference for surrounding rock control technology of gob-side entry driving with narrow coal pillar under special geological condition.
基金support by the National Natural Science Foundation of China (Nos. 51374106 and 51434006)
文摘In view of the buckling failure caused by large deformation of Mesozoic soft rock roadway in Shajihai mining area, such as serious roof fall, rib spalling, floor heave, etc., based on the detail site investigation,theoretical analysis, mineral composition test, microstructure test, water-physical property test and field experiments were carried out. And we revealed the compound failure mechanism of Mesozoic soft rock roadway in Shajihai mining area, namely the molecule expansion-shear slip of weak structural plane-construction disturbance. On this basis, the coupling support technology whose core is constant resistance with large deformation bolt was proposed. The feature of this supporting technology is that a new type of structural composite material was used, which makes the supporting system not only has the ideal deformation characteristics, but also has high supporting resistance. Thus the fully release of plastic energy within surrounding rock and reasonable control of the thickness of the plastic ring were realized. Then the differential deformation between the surrounding rock and support was eliminated by the secondary coupling support of bolt–mesh–cable, and the bolt with high strength was applied in the base angle to control floor. Eventually the collaborative bearing system of surrounding rock–support was formed. Through field tests the validity and rationality of support was also verified.
基金support from the National Nature Science Foundation of China (No50874124)
文摘In order to optimize gob-side entry in fully-mechanized working face in moderate-thick-coal seams, we adopt a new attempt to pack roadside by pumping ordinary concrete, which is very important for the development of gob-side entry technology. The concrete has a long initial setting time and a low initial strength. So it is difficult to control the surrounding rock. In this paper, we analyze the effect of using roadside cable to reinforce supporting in gob-side entry surrounding rock controlling based on elas-tic-plastic and material mechanics knowledge. And then we propose a scheme that cable is used to reinforce roadside supporting and a single hydraulic prop is used as the temporary supporting in gob side. Using the numerical simulation software FLAC2D, we numerically simulated supporting scheme. Results of both the 2D modeling and the industrial test on No.3117 face in Jingang Mine prove that the scheme is feasible. The results show that the technology of protecting the roadway in gob-entry retained efficiently make up the deficiency of roadside packing with ordinary concrete, effectively control the roof strata and acquire a good result of retaining roadway.
基金financial support provided by the Xinjiang Uygur Autonomous Region Key R&D Project Task Special-Department and Department Linkage Project(No.2022B01051)Major Project of Regional Joint Foundation of China(No.U21A20107)+1 种基金Hunan Provincial Natural Science Foundation of China(No.2024JJ4021)the Xinjiang Uygur Autonomous Region Tianchi Introduction Plan(No.2024XGYTCYC03)。
文摘The load-bearing performance(LBP)of pumpable supports(PPS)is crucial for the stability of longwall pre-driven recovery room(PRR)surrounding rock.However,the unbalanced bearing coefficient(UBC)of the PPS(undertaking unequal load along the mining direction)has not been investigated.A mechanical model of the PRR was established,considering the main roof cantilever beam structure,to derive an assessment formula for the load,the failure criteria,and the UBC of the PPS.Subsequently,the generation mechanisms,and influencing factors of the UBC were revealed.Global sensitivity analysis shows that the main roof hanging length(l_(2))and the spacing between the PPS(r)significantly impact the UBC.A novel design of the PPS and the coupling control technology were proposed and applied to reduce the UBC of the PPS in the adjacent longwall PRR.Monitor results showed no failure of the PPS at the test site,with the UBC(ζ)reduced to 1.1 consistent with the design value(1.15)basically,fully utilizing the collaborative LBP of the PPS.Finally,the maximum roof-to-floor convergence of the PRR was 234 mm,effectively controlling the stability of the surrounding rock of the PRR and ensuring the mining equipment recovery.
基金Projects(U22A20165, 52004289) supported by the National Natural Science Foundation of ChinaProjects(2022XJNY01, BBJ2024001) supported by the Fundamental Research Funds for the Central Universities,China。
文摘The damage and failure law of rock mass with holes is of great significance to the stability control of roadways. This study investigates the mechanical properties and failure modes of porous rock masses under cyclic loading, elucidates the acoustic emission (AE) characteristics and their spatial evolution, and establishes the interrelation among AE, stress, strain, time, and cumulative damage. The results reveal that the rock mass with holes and the intact rock mass show softening and hardening characteristics after cyclic loading. The plastic strain of the rock mass with holes is smaller than that of the intact rock mass, and the stress −strain curve shows hysteresis characteristics. Under uniaxial compression, the pore-bearing rock mass shows the characteristics of higher ringing count, AE energy, b-value peak, and more cumulative ringing count in the failure stage, while it shows lower characteristics under cyclic action. At the initial stage of loading, compared with the intact rock mass, the pore-containing rock mass shows the characteristics of a low b-value. The AE positioning and cumulative damage percentage are larger, and the AE positioning is denser around the hole. The specimen with holes is mainly shear failure, and the complete specimen is mainly tensile shear failure.
基金Project(2019SDZY02)supported by Major Scientific and Technological Innovation Project of Shandong Provincial Key Research Development Program,ChinaProject(ZR2019ZD13)supported by Major Program of Shandong Provincial Natural Science Foundation,ChinaProject(52274086)supported by the National Natural Science Foundation of China。
文摘Roof pre-splitting is an effective method to control the roof with potential rock burst risk.In this study,three-point bending tests were carried out by using fine sandstone specimens with different pre-cracked lengths as test objects,and digital speckle correlation method(DSCM)and acoustic emission(AE)technology were used to track the entire process of crack propagation.The effect of pre-cracks on the fracture of rock beams was evaluated,and the mechanical mechanism of the rock beam fracture process was analyzed.The rock beam pre-splitting design method was developed,and the application effect of the method was proved by the microseismic monitoring data obtained from the 10303 working face of Jining No.2 coal mine in China.The results show that the loading time history curve of pre-cracked beams exhibits obvious residual characteristics.Compared with the intact rock beam,the tensile strength,and maximum tensile strain of 35 mm pre-cracked rock beam are decreased by 32.4% and 33.1%,respectively and the acoustic emission b value is increased by 30.2%.According to the pre-splitting design method of rock beam,the maximum and average microseismic energy of the 10303 working face after pre-splitting construction are reduced by 25.6% and 6.4%,respectively,with excellent prevention and control effect of thick roof.
基金Project supported by the Natural Science Foundation of Chongqing (No.2005BA7008)the Fund of Key Laboratory of the Ministry of Education of China (No.200310)
文摘Hitherto, perilous rock is the weakest topic in disasters studies. Specially, damage of control fissure under loads is one key technique in study of develop mechanism of perilous rock. Damage division of end area of control fissure was defined by authors, then calculation methods of timed-Poisson's ratio and timed-Young's modulus were established in damage mechanics theory. Further, the authors set up damage constitutive equation of control fissure, which founds important basis to numerical simulation for control fissure to develop.
基金Project supported by the National Natural Science Foundation of China (No.50678182)the Chunhui International Fundation of China (No.Z2005155002)
文摘Rupture and safety of perilous rock are dominated by control fissure behind perilous rock block. Based on model-Ⅰ and model-Ⅱ stress strength factors of control fissure under acting of weight of perilous rock, water pressure in control fissure and earth- quake forces, method to calculate critical linking length of control fissure is established. Take water pressure in control fissure as a variable periodic load, and abide by P-M criterion, when control fissure is filled with water, establish the method to calculate fatigue fracture life of control fissure in critical status by contributing value of stress strength factor stemming from water pressure of control fissure in Paris's fatigue equation. Further, parameters (C and m) of sandstone with quartz and feldspar in the area of the Three Gorges Reservoir of China are obtained by fatigue fracture testing.
基金Supported by:National Natural Science Foundation of China under Grant Nos.52008092,U1934205,51908123the China Postdoctoral Science Foundation under Grant No.2021M690034+1 种基金the International Postdoctoral Exchange Fellowship Program of Chinathe Zhishan Postdoctoral Fellowship Program。
文摘Bridges designed following a conventional approach minimize the risk of collapse,but often require challenging,costly,and time-consuming restoration after an earthquake occurs.The new seismic design philosophy requires bridges to maintain functionality even after severe earthquakes.In this context,this paper proposes a controlled rocking pile foundation(CRPF)system and numerically evaluates bridges′degree of seismic resilience.The CRPF system allows a pile cap to rock on a pile foundation and dissipate seismic energy through inelastic deformations of replaceable bar fuses that connect a pile cap and piles.Following the conceptual design of the CRPF system,two analytical models were developed for a bridge pier utilizing the CRPF system and a pier designed to develop a plastic hinge in its column.The analytical results indicate that,after experiencing a severe earthquake,a conventionally designed bridge pier sustained substantial damage in its column and exhibited significant residual displacement.In contrast,a pier using the CRPF system showed negligible residual displacement and maintained elastic behavior except,as expected,for bar fuses.The damaged fuses can be rapidly replaced to recover bridge seismic resistance following an earthquake.Therefore,the CRPF system helps to achieve the desired postearthquake performance objectives.
基金Supported by the National Natural Science Foundation(Instrument)of China(50427401)the National High Technology Research and Development Program of China(2006AA06Z119)+1 种基金the National Key Technology R&D Program in 11th Five Years Plan of China(2007BA29B01)the New Century Excellent Talents in University(NCET-06-0477)
文摘By analyzing the characteristics and the production mechanism of rock burstthat goes with abnormal gas emission in deep coal seams,the essential method of eliminatingabnormal gas emission by eliminating the occurrence of rock burst or depressingthe magnitude of rock burst was considered.The No.237 working face was selected asthe typical working face contacting gas in deep mining;aimed at this working face,a systemof rock burst prediction and control for coal seam contacting gas in deep mining wasestablished.This system includes three parts:① regional prediction of rock burst hazardbefore mining,② local prediction of rock burst hazard during mining,and ③ rock burstcontrol.
文摘In order to study the failure characteristics and control method of deep tunnel surrounding rock, based on the stress test, the structure and stress state of the main transportation tunnel surrounding rock in Mine Zhaogezhuang level 14 was analyzed, and it shows that the surrounding rock is exposed to an interphase hard and soft disadvantageous structure state and complex high stress repeated addition area;Through the theoretical analysis and the statistical data, the relation between the tunnel stress transformation and the surrounding rock deformation was proposed;Through the numerical simulation of the tunnel surrounding rock failure process with the help of RFPA procedure, the results show that the damage of the transportation tunnel level 14 mainly occurs in the bottom and the two coal ribs, and the failure process is spreading from the bottom to the two coal ribs, and the effect of the surrounding rock deformation control is obvious by using the way of 2.5 m anchor with 1.0 m grouting strengthening.
基金provided by the National Natural Science Foundation of China (No. 50974118)the Program for New Century Excellent Talents in University (No. NCET-09-0727)+1 种基金the Program for Post graduates Research Innovation in Universities of Jiangsu Province (No. CX10B_149Z)the Priority Academic Program Development of Jiangsu Higher Education Institutions and the State Key Laboratory of Coal Resources and Mine Safety (No.SKLCRSM08X04)
文摘As the excavation of roadway, new fractures will be formed and the pre-existing fractures extend with the redistribution of stress in surrounding rocks. Eventually, fracture zone and bed separation are formed in rocks because of the developed fractures. Therefore, mastering the fracture evolution of surrounding rocks is very important to maintain the stability of roadway. The surrounding rocks of main haulage road- way in a certain coal mine is so broken and loose that the supporting is very difficult. Based on compre- hensive anal[ysis of the engineering geological conditions, a sight instrument was used to observe the fractures of internal surrounding rocks, Four indices, i.e., the width of fracture zone W, the number of fractures n, the width of fractures d and rock fracture designation RFD, are put forward to evaluate the fracture dewelopment. According to the evolution rules of the soft rock roadway from this paper, control principles by stages and by regions are presented through the research. At the same time, the best time of grouting reinforcement is determined on the basis of fracture saturation. Field practice shows that the roadway can satisfy normal production during service periods by suitable first support and grouting reinforcement.
文摘Controlled blasting techniques are used to control overbreak and to aid in the stability of the remaining rock formation. Presplitting is one of the most common methods which is used in many open pit mining and surface blast design. The purpose of presplitting is to form a fracture plane across which the radial cracks from the production blast cannot travel. The purpose of this study is to investigate of effect of presplitting on the generation of a smooth wall in continuum and jointed rock mass. The 2D distinct element code was used to simulate the presplitting in a rock slope. The blast load history as a function of time was applied to the inner wall of each blasthole. Important parameters that were considered in the analysis were stress tensor and fracturing pattern. The blast loading magnitude and blasthole spacing and jointing pattern were found to be very significant in the final results.
基金sponsored by the National Natural Science Foundation of China(Nos.51134025 and 51274204)the New Century Excellent Talents in University(No.NCET-12-0965)
文摘Aiming at soft rock ground support issues under conditions of high stress and long-term water immersion, the ground failure mechanism is revealed by taking the deep-water sumps of Jiulong Mine as the engineering background and employing field investigation, tests of rock structure, mechanical properties and mineral composition. The main factors leading to the surrounding rock failure include the high and complex stress state of the water sumps, high-clay content and water-weakened rock, and the unreasonable support design. In this paper, the broken and fractured rock mass near roadway opening is considered as ground small-structure, and deep stable rock mass as ground large-structure. A support technology focusing on cutting off the water, strengthening the small structure of the rock and transferring the large structure of the rock is proposed. The proposed support technology of interconnecting the large and small structures, based on high-strength bolts, high-stiffness shotcrete layer plugging water,strengthening the small structure with deep-hole grouting and shallow-hole grouting, highpretensioned cables tensioned twice to make the large and small structures bearing the pressure evenly,channel-steel and high-pretensioned cables are used to control floor heave. The numerical simulation and field test show that this support system can control the rock deformation of the water sumps and provide technical support to similar roadway support designs.
文摘In deep geological disposal of high-level nuclear waste,one of the most important subjects is to estimate long-term stability and strength of host rock under high temperature conditions caused by radioactive decay of the waste.In this paper,some experimental researches on the thermo-mechanical characteristics of soft sedimentary rock have been presented.For this reason,a new temperature-controlled triaxial compression and creep test device,operated automatically by a computer-controlled system,whose control software has been developed by the authors,was developed to conduct the thermo-mechanical tests in different thermal loading paths,including an isothermal path.The new device is proved to be able to conduct typical thermo-mechanical element tests for soft rock.The test device and the related testing method were introduced in detail.Finally,some test results have been simulated with a thermo-elasto-viscoplastic model that was also developed by the authors.