To analyze the effects of heterogeneous material characteristics on rock failure,a micro-heterogeneous physical cellular automata (Mh-PCA) model is introduced according to the cellular automata theory from a general...To analyze the effects of heterogeneous material characteristics on rock failure,a micro-heterogeneous physical cellular automata (Mh-PCA) model is introduced according to the cellular automata theory from a general power view.In this model,the neighbor is the Moore pattern and the Weibull distribution is adopted to simulate the rock heterogeneousness.Using this model,the evolvements and acoustic emission of rock failure are simulated for four materials of different degree of homogeneousness (m=1,5,10,15).The results show that the heterogeneous characteristic has a great effect on the rock failure,the more the homogeneousness,the fewer the crack branches and the more concentrated acoustic emissions.The physical cellular automata theory gives a new idea for studying rock failure.展开更多
Brittle failure of rocks is a classical rock mechanical problem. Rock failure not only involves initiation and propagation of single crack, but also is associated with initiation, propagation and coalescence of many c...Brittle failure of rocks is a classical rock mechanical problem. Rock failure not only involves initiation and propagation of single crack, but also is associated with initiation, propagation and coalescence of many cracks. The rock failure process analysis (RFPA) tool has been proposed since 1995. The heterogeneity of rocks at a mesoscopic level is considered by assuming that the material properties follow the Weibull distribution. Elastic damage mechanics is used for describing the constitutive law of the meso-level element. The finite element method (FEM) is employed as the basic stress analysis tool. The maximum tensile strain criterion and the Mohr-Coulomb criterion are utilized as the damage threshold. In order to solve the stability problem related to rock engineering structures, fundamental principles of strength reduction method (SRM) and gravity increase method (GIM) are integrated into the RFPA. And the acoustic emission (AE) event rate is employed as the criterion for rock engineering failure. The prominent feature of the RFPA-SRM and RFPA-GIM for stability analysis of rock engineering is that the factor of safety can be obtained without any presumption for the shape and location of the failure surface. In this paper, several geotechnical engineering applications that use the RFPA method to analyze their stability are presented to provide some references for relevant researches. The principles of the RFPA method in engineering are introduced firstly, and then the stability analysis of tunnel, slope and dam is focused on. The results indicate that the RFPA method is capable of capturing the mechanism of rock engineering stability and has the potential for application in a larger range of geo-engineering.展开更多
In order to investigate the relationship between bar diameter and loading rate of the split Hopkinson pressure bar(SHPB) setup under the failure of rock specimen and realize the medium strain rate loading of specimen,...In order to investigate the relationship between bar diameter and loading rate of the split Hopkinson pressure bar(SHPB) setup under the failure of rock specimen and realize the medium strain rate loading of specimen,new SHPB setups with different elastic bar's diameters of 22,36,50 and 75 mm were constructed.The tests were carried out on these setups at different loading rates,and the specimens had the same diameter of elastic bars and same ratio of length to diameter.The test results show that the larger the elastic bar's diameter is,the less the loading rate is needed to cause specimen failure,they show good power relationship,and that under the same strain rate loading,specimens are broken more seriously with larger diameter SHPB setup than with smaller one.展开更多
Acoustic emission(AE)signals contain substantial information about the internal fracture characteristics of rocks and are useful for revealing the laws governing the release of energy stored therein.Reported here is t...Acoustic emission(AE)signals contain substantial information about the internal fracture characteristics of rocks and are useful for revealing the laws governing the release of energy stored therein.Reported here is the evolution of rock failure with diferent master crack types as investigated using Brazilian splitting tests(BSTs),direct shear tests(DSTs),and uniaxial compression tests(UCTs).The AE parameters and typical modes of each fracture type were obtained,and the energy release characteristics of each fracture mechanism were discussed.From the observed changes in the AE parameters,the rock fracture process exhibits characteristics of staged intensifcation.The scale and energy level of crack activity in the BSTs were signifcantly lower than those in the DSTs and UCTs.The proportion of tensile cracks in the BSTs was 65%–75%,while the proportions of shear cracks in the DSTs and UCTs were 75%–85%and 70%–75%,respectively.During the rock loading process under diferent conditions,failure was accompanied by an increased number of shear cracks.The amplitude,duration,and rise time of the AE signal from rock failure were larger when the failure was dominated by shear cracks rather than tensile ones,and most of the medium-and high-energy signals had medium to low frequencies.After calculating the proposed energy amplitude ratio,the energy release of shear cracks was found to exceed that of tensile cracks at the same fracture scale.展开更多
A study of the characteristics of the accumulative rock failure and its evolution byapplication of the group renormalization method were presented. In addition, the interactionand long-range correlated effects between...A study of the characteristics of the accumulative rock failure and its evolution byapplication of the group renormalization method were presented. In addition, the interactionand long-range correlated effects between the immediate neighboring units was studied.The concept of mechanical transference for model OFC, employed in the study ofself-organized criticality, and the coefficient a were introduced into the calculation model forgroup renormalization. With the introduction, mechanisms for the drastic increase and decrease of failure intensity of rocks were investigated under similar macro-conditions.展开更多
Based on the phenomenon that acoustic emissions (AE) generated by rock mass increase suddenly because of underground excavation, time sequence of AE rate in rock failure has been discussed by using statistical damage ...Based on the phenomenon that acoustic emissions (AE) generated by rock mass increase suddenly because of underground excavation, time sequence of AE rate in rock failure has been discussed by using statistical damage theory. It has been demonstrated that how the influence of confining pressure on the deformation behavior and AE characteristics in rocks can be inferred from a simple mechanics model. The results show that loading confining pressure sharply brings out increasing of AE. On the other hand, few AE emits when confining pressure is loaded sharply, and AE occurs again when axial pressure keeps on increasing. These results have been well simulated with computer and show close correspondence with directly measured curves in experiments.展开更多
This article reviews the current status on the dynamic behavior of highly stressed rocks under disturbances.Firstly,the experimental apparatus,methods,and theories related to the disturbance dynamics of deep,high-stre...This article reviews the current status on the dynamic behavior of highly stressed rocks under disturbances.Firstly,the experimental apparatus,methods,and theories related to the disturbance dynamics of deep,high-stress rock are reviewed,followed by the introduction of scholars’research on deep rock deformation and failure from an energy perspective.Subsequently,with a backdrop of highstress phenomena in deep hard rock,such as rock bursts and core disking,we delve into the current state of research on rock microstructure analysis and residual stresses from the perspective of studying the energy storage mechanisms in rocks.Thereafter,the current state of research on the mechanical response and the energy dissipation of highly stressed rock formations is briefly retrospected.Finally,the insufficient aspects in the current research on the disturbance and failure mechanisms in deep,highly stressed rock formations are summarized,and prospects for future research are provided.This work provides new avenues for the research on the mechanical response and damage-fracture mechanisms of rocks under high-stress conditions.展开更多
Rock failure phenomena,such as rockburst,slabbing(or spalling) and zonal disintegration,related to deep underground excavation of hard rocks are frequently reported and pose a great threat to deep mining.Currently,the...Rock failure phenomena,such as rockburst,slabbing(or spalling) and zonal disintegration,related to deep underground excavation of hard rocks are frequently reported and pose a great threat to deep mining.Currently,the explanation for these failure phenomena using existing dynamic or static rock mechanics theory is not straightforward.In this study,new theory and testing method for deep underground rock mass under coupled static-dynamic loading are introduced.Two types of coupled loading modes,i.e.'critical static stress + slight disturbance' and 'elastic static stress + impact disturbance',are proposed,and associated test devices are developed.Rockburst phenomena of hard rocks under coupled static-dynamic loading are successfully reproduced in the laboratory,and the rockburst mechanism and related criteria are demonstrated.The results of true triaxial unloading compression tests on granite and red sandstone indicate that the unloading can induce slabbing when the confining pressure exceeds a certain threshold,and the slabbing failure strength is lower than the shear failure strength according to the conventional Mohr-Column criterion.Numerical results indicate that the rock unloading failure response under different in situ stresses and unloading rates can be characterized by an equivalent strain energy density.In addition,we present a new microseismic source location method without premeasuring the sound wave velocity in rock mass,which can efficiently and accurately locate the rock failure in hard rock mines.Also,a new idea for deep hard rock mining using a non-explosive continuous mining method is briefly introduced.展开更多
In this paper, a discontinuous numerical model, namely SDDARF3D(three-dimensional spherical discontinuous deformation analysis for rock failure), is proposed for simulating the whole process of rock failure. Firstly, ...In this paper, a discontinuous numerical model, namely SDDARF3D(three-dimensional spherical discontinuous deformation analysis for rock failure), is proposed for simulating the whole process of rock failure. Firstly, within the framework of the classical discontinuous deformation analysis(DDA) method, the formulation of three-dimensional spherical DDA(3D SDDA) is deduced; secondly, a bonding and cracking algorithm is constructed and the SDDARF3 D model is proposed; thirdly, corresponding VC++ calculation code is developed and some verification examples are calculated. The simulated results can intuitively reproduce the failure phenomena of rock mass, indicating that the proposed SDDARF3 D numerical model is correct and effective.展开更多
A modified discontinuous deformation analysis (DDA) algorithm was proposed to simulate the failure behavior of jointed rock. In the proposed algorithm, by using the Monte-Carlo technique, random joint network was gene...A modified discontinuous deformation analysis (DDA) algorithm was proposed to simulate the failure behavior of jointed rock. In the proposed algorithm, by using the Monte-Carlo technique, random joint network was generated in the domain of interest. Based on the joint network, the triangular DDA block system was automatically generated by adopting the advanced front method. In the process of generating blocks, numerous artificial joints came into being, and once the stress states at some artificial joints satisfy the failure criterion given beforehand, artificial joints will turn into real joints. In this way, the whole fragmentation process of rock mass can be replicated. The algorithm logic was described in detail, and several numerical examples were carried out to obtain some insight into the failure behavior of rock mass containing random joints. From the numerical results, it can be found that the crack initiates from the crack tip, the growth direction of the crack depends upon the loading and constraint conditions, and the proposed method can reproduce some complicated phenomena in the whole process of rock failure.展开更多
In this study,the micro-failure process and failure mechanism of a typical brittle rock under uniaxial compression are investigated via continuous real-time measurement of wave velocities.The experimental results indi...In this study,the micro-failure process and failure mechanism of a typical brittle rock under uniaxial compression are investigated via continuous real-time measurement of wave velocities.The experimental results indicate that the evolutions of wave velocities became progressively anisotropic under uniaxial loading due to the direction-dependent development of micro-damage.A wave velocity model considering the inner anisotropic crack evolution is proposed to accurately describe the variations of wave velocities during uniaxial compression testing.Based on which,the effective elastic parameters are inferred by a transverse isotropic constitutive model,and the evolutions of the crack density are inversed using a self-consistent damage model.It is found that the propagation of axial cracks dominates the failure process of brittle rock under uniaxial loading and oblique shear cracks develop with the appearance of macrocrack.展开更多
In view of the buckling failure caused by large deformation of Mesozoic soft rock roadway in Shajihai mining area, such as serious roof fall, rib spalling, floor heave, etc., based on the detail site investigation,the...In view of the buckling failure caused by large deformation of Mesozoic soft rock roadway in Shajihai mining area, such as serious roof fall, rib spalling, floor heave, etc., based on the detail site investigation,theoretical analysis, mineral composition test, microstructure test, water-physical property test and field experiments were carried out. And we revealed the compound failure mechanism of Mesozoic soft rock roadway in Shajihai mining area, namely the molecule expansion-shear slip of weak structural plane-construction disturbance. On this basis, the coupling support technology whose core is constant resistance with large deformation bolt was proposed. The feature of this supporting technology is that a new type of structural composite material was used, which makes the supporting system not only has the ideal deformation characteristics, but also has high supporting resistance. Thus the fully release of plastic energy within surrounding rock and reasonable control of the thickness of the plastic ring were realized. Then the differential deformation between the surrounding rock and support was eliminated by the secondary coupling support of bolt–mesh–cable, and the bolt with high strength was applied in the base angle to control floor. Eventually the collaborative bearing system of surrounding rock–support was formed. Through field tests the validity and rationality of support was also verified.展开更多
The Karhunen-Loeve (KL) expansion and probabilistic collocation method (PCM) are combined and applied to an uncertainty analysis of rock failure behavior by integrating a self- developed numerical method (i.e., t...The Karhunen-Loeve (KL) expansion and probabilistic collocation method (PCM) are combined and applied to an uncertainty analysis of rock failure behavior by integrating a self- developed numerical method (i.e., the elastic-plastic cellular automaton (EPCA)). The results from the method developed are compared using the Monte Carlo Simulation (MCS) method. It is concluded that the method developed requires fewer collocations than MCS method to obtain very high accuracy and greatly reduces the computational cost. Based on the method, the elasto- plastic and elasto-brittle-plastic analyses of rocks under mechanical loadings are conducted to study the uncertainty in heterogeneous rock failure behaviour.展开更多
Considering the heterogeneity of geomechanical materials, seismicity during brittle rock failure under compressive loading on the sample with an original weak zone is simulated by using rock failure process analysis c...Considering the heterogeneity of geomechanical materials, seismicity during brittle rock failure under compressive loading on the sample with an original weak zone is simulated by using rock failure process analysis code (RFPA2D). The run-through process of weak zone, the forming of new fault and associated micro-seismicities are studied. The modeling demonstrates the total process of source development of earthquake from deformation, micro-failure to collapse and the behavior of temporal-spatial distribution of micro-seismicities. The stress, strain and the temporal-spatial distribution of micro-seismicities life-likely portrayed the phenomena of localization and temporal-spatial transitions, which is similar to those observed in our real crust. Also, the results obtained in simulations are in agreement with or similar to the reported experimental observations.展开更多
The failure characteristics of thermal treated surrounding rocks should be studied to evaluate the stability and safety of deep ground engineering under high-ground-temperature and high-ground-stress conditions.The fa...The failure characteristics of thermal treated surrounding rocks should be studied to evaluate the stability and safety of deep ground engineering under high-ground-temperature and high-ground-stress conditions.The failure process of the inner walls of fine-grained granite specimens at different temperatures(25–600℃)was analyzed using a true-triaxial test system.The failure process,peak intensity,overall morphology(characteristics after failure),rock fragment characteristics,and acoustic emission(AE)characteristics were analyzed.The results showed that for the aforementioned type of granite specimens,the trend of the failure stress conditions changed with respect to the critical temperature(200℃).When the temperature was less than 200℃,the initial failure stress increased,final failure stress increased,and failure severity decreased.When the temperature exceeded 200℃,the initial failure stress decreased,final failure stress decreased,and failure severity increased.When the temperature was 600℃,the initial and final failure stresses of the specimens decreased by 60.93%and 19.77%compared with those at 200℃,respectively.The numerical results obtained with the software RFPA3D-Thermal were used to analyze the effect of temperature on the specimen and reveal the mechanism of the failure process in the deep tunnel surrounding rock.展开更多
In actual production,deep coal mine roadways are often under typical static-dynamic coupling stress(SDCS)conditions with high ground stress and strong dynamic disturbances.With the increasing number of disasters and a...In actual production,deep coal mine roadways are often under typical static-dynamic coupling stress(SDCS)conditions with high ground stress and strong dynamic disturbances.With the increasing number of disasters and accidents induced by SDCS conditions,the safe and efficient production of coal mines is seriously threatened.Therefore,it is of great practical significance to study the deformation and failure characteristics of the roadway surrounding rock under SDCS.In this paper,the effects of different in-situ stress fields and dynamic load conditions on the surrounding rock are studied by numerical simulations,and the deformation and failure characteristics are obtained.According to the simulation results,the horizontal stress,vertical stress and dynamic disturbance have a positive correlation with the plastic failure of the surrounding rock.Among these factors,the influence of the dynamic disturbance is the most substantial.Under the same stress conditions,the extents of deformation and plastic failure of the roof and ribs are always greater than those of the floor.The effect of horizontal stresses on the roadway deformation is more notable than that of vertical stresses.The results indicate that for the roadway under high-stress conditions,the in-situ stress test must be strengthened first.After determining the magnitude of the in-situ stress,the location of the roadway should be reasonably arranged in the design to optimize the mining sequence.For roadways that are strongly disturbed by dynamic loads,rock supports(rebar/cable bolts,steel set etc.)that are capable of maintaining their effectiveness without failure after certain dynamic loads are required.The results of this study contribute to understanding the characteristics of the roadway deformation and failure under SDCS,and can be used to provide a basis for the support design and optimization under similar geological and geotechnical circumstances.展开更多
Rock bolting has advanced rapidly during the past 4 decades due to a better understanding of load transfer mechanisms and advances made in the bolt system technology. Bolts are used as permanent and temporary support ...Rock bolting has advanced rapidly during the past 4 decades due to a better understanding of load transfer mechanisms and advances made in the bolt system technology. Bolts are used as permanent and temporary support systems in tunnelling and mining operations. A review of has indicated that three systems of reinforcement devices have evolved as part of rock bolt and ground anchor while the rock is not generally thought of as being a component of the reinforcement system. A classification of rock bolting reinforcement systems is presented, followed by the fundamental theory of the load transfer mechanism. The failure mode of two phases of rock bolting system is formularised. The failure modes of cable bolting are discussed using a bond strength model as well as an iterative method. Finally, the interfacial shear stress model for ribbed bar is introduced and a closed form solution is obtained using a tri-line stress strain relationship.展开更多
A destressing method for reducing the strainburst risk in burst-prone grounds is suggested.In this method,the rock is destressed by cutting notches at the excavation boundary.First,the concept of the proposed method i...A destressing method for reducing the strainburst risk in burst-prone grounds is suggested.In this method,the rock is destressed by cutting notches at the excavation boundary.First,the concept of the proposed method is described both analytically and numerically.Then,the method is applied to a tunneling problem.Several numerical models are built to study the destressing process and the failure mechanism around a circular tunnel.Results show that when the notch is added to the model,the rock at the tunnel wall is destressed,and the stress concentration zones shift to a farther distance away from the wall.Also,the analysis of the failure zone around the tunnel and the velocity of the failed elements show that the failure in the notched tunnel is less violent compared to that in the tunnel without the notch.Finally,a parametric study is conducted to investigate the influences of the notch dimensions on the stress distribution,deformation,and failures around the tunnel.展开更多
For deep tunnel projects,selecting an appropriate initial support distance is critical to improving the self-supporting capacity of surrounding rock.In this work,an intuitive method for determining the tunnel’s initi...For deep tunnel projects,selecting an appropriate initial support distance is critical to improving the self-supporting capacity of surrounding rock.In this work,an intuitive method for determining the tunnel’s initial support distance was proposed.First,based on the convergence-confinement method,a three-dimensional analytical model was constructed by combining an analytical solution of a non-circular tunnel with the Tecplot software.Then,according to the integral failure criteria of rock,the failure tendency coefficients of hard surrounding rock were computed and the spatial distribution plots of that were constructed.On this basis,the tunnel’s key failure positions were identified,and the relationship between the failure tendency coefficient at key failure positions and their distances from the working face was established.Finally,the distance from the working face that corresponds to the critical failure tendency coefficient was taken as the optimal support distance.A practical project was used as an example,and a reasonable initial support distance was successfully determined by applying the developed method.Moreover,it is found that the stability of hard surrounding rock decreases rapidly within the range of 1.0D(D is the tunnel diameter)from the working face,and tends to be stable outside the range of 1.0D.展开更多
A modified failure criterion is proposed to determine the strength of transversely isotropic rocks. Me-chanical properties of some metamorphic and sedimentary rocks including gneiss, slate, marble, schist, shale, sand...A modified failure criterion is proposed to determine the strength of transversely isotropic rocks. Me-chanical properties of some metamorphic and sedimentary rocks including gneiss, slate, marble, schist, shale, sandstone and limestone, which show transversely isotropic behavior, were taken into consider-ation. Afterward, introduced triaxial rock strength criterion was modified for transversely isotropic rocks. Through modification process an index was obtained that can be considered as a strength reduction parameter due to rock strength anisotropy. Comparison of the parameter with previous anisotropy in-dexes in literature showed reasonable results for the studied rock samples. The modified criterion was compared to modified Hoek-Brown and Ramamurthy criteria for different transversely isotropic rocks. It can be concluded that the modified failure criterion proposed in this study can be used for predicting the strength of transversely isotropic rocks.展开更多
文摘To analyze the effects of heterogeneous material characteristics on rock failure,a micro-heterogeneous physical cellular automata (Mh-PCA) model is introduced according to the cellular automata theory from a general power view.In this model,the neighbor is the Moore pattern and the Weibull distribution is adopted to simulate the rock heterogeneousness.Using this model,the evolvements and acoustic emission of rock failure are simulated for four materials of different degree of homogeneousness (m=1,5,10,15).The results show that the heterogeneous characteristic has a great effect on the rock failure,the more the homogeneousness,the fewer the crack branches and the more concentrated acoustic emissions.The physical cellular automata theory gives a new idea for studying rock failure.
基金Supported by the State Key Development Program for Basic Research of China(2007CB209400)Projects of International Cooperation and Exchanges NSFC(50820125405)the National Natural Science Foundation of China(51004020)
文摘Brittle failure of rocks is a classical rock mechanical problem. Rock failure not only involves initiation and propagation of single crack, but also is associated with initiation, propagation and coalescence of many cracks. The rock failure process analysis (RFPA) tool has been proposed since 1995. The heterogeneity of rocks at a mesoscopic level is considered by assuming that the material properties follow the Weibull distribution. Elastic damage mechanics is used for describing the constitutive law of the meso-level element. The finite element method (FEM) is employed as the basic stress analysis tool. The maximum tensile strain criterion and the Mohr-Coulomb criterion are utilized as the damage threshold. In order to solve the stability problem related to rock engineering structures, fundamental principles of strength reduction method (SRM) and gravity increase method (GIM) are integrated into the RFPA. And the acoustic emission (AE) event rate is employed as the criterion for rock engineering failure. The prominent feature of the RFPA-SRM and RFPA-GIM for stability analysis of rock engineering is that the factor of safety can be obtained without any presumption for the shape and location of the failure surface. In this paper, several geotechnical engineering applications that use the RFPA method to analyze their stability are presented to provide some references for relevant researches. The principles of the RFPA method in engineering are introduced firstly, and then the stability analysis of tunnel, slope and dam is focused on. The results indicate that the RFPA method is capable of capturing the mechanism of rock engineering stability and has the potential for application in a larger range of geo-engineering.
基金Project(10472134) supported by the National Natural Science Foundation of China
文摘In order to investigate the relationship between bar diameter and loading rate of the split Hopkinson pressure bar(SHPB) setup under the failure of rock specimen and realize the medium strain rate loading of specimen,new SHPB setups with different elastic bar's diameters of 22,36,50 and 75 mm were constructed.The tests were carried out on these setups at different loading rates,and the specimens had the same diameter of elastic bars and same ratio of length to diameter.The test results show that the larger the elastic bar's diameter is,the less the loading rate is needed to cause specimen failure,they show good power relationship,and that under the same strain rate loading,specimens are broken more seriously with larger diameter SHPB setup than with smaller one.
基金Major Program of Shandong Provincial Natural Science Foundation(No.ZR2019ZD13)Major Scientifc and Technological Innovation Project of Shandong Provincial Key Research Development Program(No.2019SDZY02)Project of Taishan Scholar in Shandong Province.
文摘Acoustic emission(AE)signals contain substantial information about the internal fracture characteristics of rocks and are useful for revealing the laws governing the release of energy stored therein.Reported here is the evolution of rock failure with diferent master crack types as investigated using Brazilian splitting tests(BSTs),direct shear tests(DSTs),and uniaxial compression tests(UCTs).The AE parameters and typical modes of each fracture type were obtained,and the energy release characteristics of each fracture mechanism were discussed.From the observed changes in the AE parameters,the rock fracture process exhibits characteristics of staged intensifcation.The scale and energy level of crack activity in the BSTs were signifcantly lower than those in the DSTs and UCTs.The proportion of tensile cracks in the BSTs was 65%–75%,while the proportions of shear cracks in the DSTs and UCTs were 75%–85%and 70%–75%,respectively.During the rock loading process under diferent conditions,failure was accompanied by an increased number of shear cracks.The amplitude,duration,and rise time of the AE signal from rock failure were larger when the failure was dominated by shear cracks rather than tensile ones,and most of the medium-and high-energy signals had medium to low frequencies.After calculating the proposed energy amplitude ratio,the energy release of shear cracks was found to exceed that of tensile cracks at the same fracture scale.
基金Supported by the National Science Foundation of China (50674002)
文摘A study of the characteristics of the accumulative rock failure and its evolution byapplication of the group renormalization method were presented. In addition, the interactionand long-range correlated effects between the immediate neighboring units was studied.The concept of mechanical transference for model OFC, employed in the study ofself-organized criticality, and the coefficient a were introduced into the calculation model forgroup renormalization. With the introduction, mechanisms for the drastic increase and decrease of failure intensity of rocks were investigated under similar macro-conditions.
文摘Based on the phenomenon that acoustic emissions (AE) generated by rock mass increase suddenly because of underground excavation, time sequence of AE rate in rock failure has been discussed by using statistical damage theory. It has been demonstrated that how the influence of confining pressure on the deformation behavior and AE characteristics in rocks can be inferred from a simple mechanics model. The results show that loading confining pressure sharply brings out increasing of AE. On the other hand, few AE emits when confining pressure is loaded sharply, and AE occurs again when axial pressure keeps on increasing. These results have been well simulated with computer and show close correspondence with directly measured curves in experiments.
基金supported by the National Natural Science Foundation of China(Nos.52004015,51874014,and 52311530070)the fellowship of China National Postdoctoral Program for Innovative Talents(No.BX2021033)+1 种基金the fellowship of China Postdoctoral Science Foundation(Nos.2021M700389 and 2023T0025)the Fundamental Research Funds for the Central Universities of China(No.FRF-IDRY-20-003,Interdisciplinary Research Project for Young Teachers of USTB).
文摘This article reviews the current status on the dynamic behavior of highly stressed rocks under disturbances.Firstly,the experimental apparatus,methods,and theories related to the disturbance dynamics of deep,high-stress rock are reviewed,followed by the introduction of scholars’research on deep rock deformation and failure from an energy perspective.Subsequently,with a backdrop of highstress phenomena in deep hard rock,such as rock bursts and core disking,we delve into the current state of research on rock microstructure analysis and residual stresses from the perspective of studying the energy storage mechanisms in rocks.Thereafter,the current state of research on the mechanical response and the energy dissipation of highly stressed rock formations is briefly retrospected.Finally,the insufficient aspects in the current research on the disturbance and failure mechanisms in deep,highly stressed rock formations are summarized,and prospects for future research are provided.This work provides new avenues for the research on the mechanical response and damage-fracture mechanisms of rocks under high-stress conditions.
基金jointly supported by the State Key Research Development Program of China (Grant No.2016YFC0600706)the National Natural Science Foundation of China (Grant Nos.41630642 and 11472311)
文摘Rock failure phenomena,such as rockburst,slabbing(or spalling) and zonal disintegration,related to deep underground excavation of hard rocks are frequently reported and pose a great threat to deep mining.Currently,the explanation for these failure phenomena using existing dynamic or static rock mechanics theory is not straightforward.In this study,new theory and testing method for deep underground rock mass under coupled static-dynamic loading are introduced.Two types of coupled loading modes,i.e.'critical static stress + slight disturbance' and 'elastic static stress + impact disturbance',are proposed,and associated test devices are developed.Rockburst phenomena of hard rocks under coupled static-dynamic loading are successfully reproduced in the laboratory,and the rockburst mechanism and related criteria are demonstrated.The results of true triaxial unloading compression tests on granite and red sandstone indicate that the unloading can induce slabbing when the confining pressure exceeds a certain threshold,and the slabbing failure strength is lower than the shear failure strength according to the conventional Mohr-Column criterion.Numerical results indicate that the rock unloading failure response under different in situ stresses and unloading rates can be characterized by an equivalent strain energy density.In addition,we present a new microseismic source location method without premeasuring the sound wave velocity in rock mass,which can efficiently and accurately locate the rock failure in hard rock mines.Also,a new idea for deep hard rock mining using a non-explosive continuous mining method is briefly introduced.
基金supported by the Key Research Program of the Chinese Academy of Sciences(Grant No.KZZD-EW-05-03)the National Basic Research Program of China("973"Project)(Grant No.2011CB710602)the National Natural Science Foundation of China(Grant Nos.51139004&40972201)
文摘In this paper, a discontinuous numerical model, namely SDDARF3D(three-dimensional spherical discontinuous deformation analysis for rock failure), is proposed for simulating the whole process of rock failure. Firstly, within the framework of the classical discontinuous deformation analysis(DDA) method, the formulation of three-dimensional spherical DDA(3D SDDA) is deduced; secondly, a bonding and cracking algorithm is constructed and the SDDARF3 D model is proposed; thirdly, corresponding VC++ calculation code is developed and some verification examples are calculated. The simulated results can intuitively reproduce the failure phenomena of rock mass, indicating that the proposed SDDARF3 D numerical model is correct and effective.
基金Projects(50479071, 40672191) supported by the National Natural Science Foundation of ChinaProject(SKLZ0801) supported by the Independent Research Key Project of State Key Laboratory of Geomechanics and Geotechnical EngineeringProject(SKLQ001) supported by the Independent Research Frontier Exploring Project of State Key Laboratory of Geomechanics and Geotechnical Engineering
文摘A modified discontinuous deformation analysis (DDA) algorithm was proposed to simulate the failure behavior of jointed rock. In the proposed algorithm, by using the Monte-Carlo technique, random joint network was generated in the domain of interest. Based on the joint network, the triangular DDA block system was automatically generated by adopting the advanced front method. In the process of generating blocks, numerous artificial joints came into being, and once the stress states at some artificial joints satisfy the failure criterion given beforehand, artificial joints will turn into real joints. In this way, the whole fragmentation process of rock mass can be replicated. The algorithm logic was described in detail, and several numerical examples were carried out to obtain some insight into the failure behavior of rock mass containing random joints. From the numerical results, it can be found that the crack initiates from the crack tip, the growth direction of the crack depends upon the loading and constraint conditions, and the proposed method can reproduce some complicated phenomena in the whole process of rock failure.
基金Projects(41502283,41772309)supported by the National Natural Science Foundation of ChinaProject(2017YFC1501302)supported by the National Key Research and Development Program of ChinaProject(2017ACA102)supported by the Major Program of Technological Innovation of Hubei Province,China。
文摘In this study,the micro-failure process and failure mechanism of a typical brittle rock under uniaxial compression are investigated via continuous real-time measurement of wave velocities.The experimental results indicate that the evolutions of wave velocities became progressively anisotropic under uniaxial loading due to the direction-dependent development of micro-damage.A wave velocity model considering the inner anisotropic crack evolution is proposed to accurately describe the variations of wave velocities during uniaxial compression testing.Based on which,the effective elastic parameters are inferred by a transverse isotropic constitutive model,and the evolutions of the crack density are inversed using a self-consistent damage model.It is found that the propagation of axial cracks dominates the failure process of brittle rock under uniaxial loading and oblique shear cracks develop with the appearance of macrocrack.
基金support by the National Natural Science Foundation of China (Nos. 51374106 and 51434006)
文摘In view of the buckling failure caused by large deformation of Mesozoic soft rock roadway in Shajihai mining area, such as serious roof fall, rib spalling, floor heave, etc., based on the detail site investigation,theoretical analysis, mineral composition test, microstructure test, water-physical property test and field experiments were carried out. And we revealed the compound failure mechanism of Mesozoic soft rock roadway in Shajihai mining area, namely the molecule expansion-shear slip of weak structural plane-construction disturbance. On this basis, the coupling support technology whose core is constant resistance with large deformation bolt was proposed. The feature of this supporting technology is that a new type of structural composite material was used, which makes the supporting system not only has the ideal deformation characteristics, but also has high supporting resistance. Thus the fully release of plastic energy within surrounding rock and reasonable control of the thickness of the plastic ring were realized. Then the differential deformation between the surrounding rock and support was eliminated by the secondary coupling support of bolt–mesh–cable, and the bolt with high strength was applied in the base angle to control floor. Eventually the collaborative bearing system of surrounding rock–support was formed. Through field tests the validity and rationality of support was also verified.
基金supported by the National Natural Science Foundation of China(Nos.51322906 and 41272349)the National Basic Research Program of China(No.2013CB036405)Youth Innovation Promotion Association of CAS(No.2011240)
文摘The Karhunen-Loeve (KL) expansion and probabilistic collocation method (PCM) are combined and applied to an uncertainty analysis of rock failure behavior by integrating a self- developed numerical method (i.e., the elastic-plastic cellular automaton (EPCA)). The results from the method developed are compared using the Monte Carlo Simulation (MCS) method. It is concluded that the method developed requires fewer collocations than MCS method to obtain very high accuracy and greatly reduces the computational cost. Based on the method, the elasto- plastic and elasto-brittle-plastic analyses of rocks under mechanical loadings are conducted to study the uncertainty in heterogeneous rock failure behaviour.
基金The Development Program on National Key Basic Researches under the Project Mechanism and Prediction of Continental Strong Earthquakes (G19980407) State Natural Science Foundation (49974009).
文摘Considering the heterogeneity of geomechanical materials, seismicity during brittle rock failure under compressive loading on the sample with an original weak zone is simulated by using rock failure process analysis code (RFPA2D). The run-through process of weak zone, the forming of new fault and associated micro-seismicities are studied. The modeling demonstrates the total process of source development of earthquake from deformation, micro-failure to collapse and the behavior of temporal-spatial distribution of micro-seismicities. The stress, strain and the temporal-spatial distribution of micro-seismicities life-likely portrayed the phenomena of localization and temporal-spatial transitions, which is similar to those observed in our real crust. Also, the results obtained in simulations are in agreement with or similar to the reported experimental observations.
基金Project(52174098)supported by the National Natural Science Foundation of ChinaProject(2022JJ20063)supported by the Natural Science Foundation of Hunan Province,ChinaProject(2023CXQD011)supported by the Fundamental Research Funds for the Central Universities,China。
文摘The failure characteristics of thermal treated surrounding rocks should be studied to evaluate the stability and safety of deep ground engineering under high-ground-temperature and high-ground-stress conditions.The failure process of the inner walls of fine-grained granite specimens at different temperatures(25–600℃)was analyzed using a true-triaxial test system.The failure process,peak intensity,overall morphology(characteristics after failure),rock fragment characteristics,and acoustic emission(AE)characteristics were analyzed.The results showed that for the aforementioned type of granite specimens,the trend of the failure stress conditions changed with respect to the critical temperature(200℃).When the temperature was less than 200℃,the initial failure stress increased,final failure stress increased,and failure severity decreased.When the temperature exceeded 200℃,the initial failure stress decreased,final failure stress decreased,and failure severity increased.When the temperature was 600℃,the initial and final failure stresses of the specimens decreased by 60.93%and 19.77%compared with those at 200℃,respectively.The numerical results obtained with the software RFPA3D-Thermal were used to analyze the effect of temperature on the specimen and reveal the mechanism of the failure process in the deep tunnel surrounding rock.
基金Projects(52074166,51774195,51704185)supported by the National Natural Science Foundation of ChinaProject(2019M652436)supported by the China Postdoctoral Science Foundation。
文摘In actual production,deep coal mine roadways are often under typical static-dynamic coupling stress(SDCS)conditions with high ground stress and strong dynamic disturbances.With the increasing number of disasters and accidents induced by SDCS conditions,the safe and efficient production of coal mines is seriously threatened.Therefore,it is of great practical significance to study the deformation and failure characteristics of the roadway surrounding rock under SDCS.In this paper,the effects of different in-situ stress fields and dynamic load conditions on the surrounding rock are studied by numerical simulations,and the deformation and failure characteristics are obtained.According to the simulation results,the horizontal stress,vertical stress and dynamic disturbance have a positive correlation with the plastic failure of the surrounding rock.Among these factors,the influence of the dynamic disturbance is the most substantial.Under the same stress conditions,the extents of deformation and plastic failure of the roof and ribs are always greater than those of the floor.The effect of horizontal stresses on the roadway deformation is more notable than that of vertical stresses.The results indicate that for the roadway under high-stress conditions,the in-situ stress test must be strengthened first.After determining the magnitude of the in-situ stress,the location of the roadway should be reasonably arranged in the design to optimize the mining sequence.For roadways that are strongly disturbed by dynamic loads,rock supports(rebar/cable bolts,steel set etc.)that are capable of maintaining their effectiveness without failure after certain dynamic loads are required.The results of this study contribute to understanding the characteristics of the roadway deformation and failure under SDCS,and can be used to provide a basis for the support design and optimization under similar geological and geotechnical circumstances.
文摘Rock bolting has advanced rapidly during the past 4 decades due to a better understanding of load transfer mechanisms and advances made in the bolt system technology. Bolts are used as permanent and temporary support systems in tunnelling and mining operations. A review of has indicated that three systems of reinforcement devices have evolved as part of rock bolt and ground anchor while the rock is not generally thought of as being a component of the reinforcement system. A classification of rock bolting reinforcement systems is presented, followed by the fundamental theory of the load transfer mechanism. The failure mode of two phases of rock bolting system is formularised. The failure modes of cable bolting are discussed using a bond strength model as well as an iterative method. Finally, the interfacial shear stress model for ribbed bar is introduced and a closed form solution is obtained using a tri-line stress strain relationship.
基金the Jiangxi University of Science and Technology,China(Grant No.205200100469)the Distinguished Foreign Expert Talent Program Funding(China)are gratefully acknowledged.
文摘A destressing method for reducing the strainburst risk in burst-prone grounds is suggested.In this method,the rock is destressed by cutting notches at the excavation boundary.First,the concept of the proposed method is described both analytically and numerically.Then,the method is applied to a tunneling problem.Several numerical models are built to study the destressing process and the failure mechanism around a circular tunnel.Results show that when the notch is added to the model,the rock at the tunnel wall is destressed,and the stress concentration zones shift to a farther distance away from the wall.Also,the analysis of the failure zone around the tunnel and the velocity of the failed elements show that the failure in the notched tunnel is less violent compared to that in the tunnel without the notch.Finally,a parametric study is conducted to investigate the influences of the notch dimensions on the stress distribution,deformation,and failures around the tunnel.
基金Project(2021JLM-49) supported by Natural Science Basic Research Program of Shaanxi-Joint Fund of Hanjiang to Weihe River Valley Water Diversion Project,ChinaProject(42077248) supported by the National Natural Science Foundation of China
文摘For deep tunnel projects,selecting an appropriate initial support distance is critical to improving the self-supporting capacity of surrounding rock.In this work,an intuitive method for determining the tunnel’s initial support distance was proposed.First,based on the convergence-confinement method,a three-dimensional analytical model was constructed by combining an analytical solution of a non-circular tunnel with the Tecplot software.Then,according to the integral failure criteria of rock,the failure tendency coefficients of hard surrounding rock were computed and the spatial distribution plots of that were constructed.On this basis,the tunnel’s key failure positions were identified,and the relationship between the failure tendency coefficient at key failure positions and their distances from the working face was established.Finally,the distance from the working face that corresponds to the critical failure tendency coefficient was taken as the optimal support distance.A practical project was used as an example,and a reasonable initial support distance was successfully determined by applying the developed method.Moreover,it is found that the stability of hard surrounding rock decreases rapidly within the range of 1.0D(D is the tunnel diameter)from the working face,and tends to be stable outside the range of 1.0D.
文摘A modified failure criterion is proposed to determine the strength of transversely isotropic rocks. Me-chanical properties of some metamorphic and sedimentary rocks including gneiss, slate, marble, schist, shale, sandstone and limestone, which show transversely isotropic behavior, were taken into consider-ation. Afterward, introduced triaxial rock strength criterion was modified for transversely isotropic rocks. Through modification process an index was obtained that can be considered as a strength reduction parameter due to rock strength anisotropy. Comparison of the parameter with previous anisotropy in-dexes in literature showed reasonable results for the studied rock samples. The modified criterion was compared to modified Hoek-Brown and Ramamurthy criteria for different transversely isotropic rocks. It can be concluded that the modified failure criterion proposed in this study can be used for predicting the strength of transversely isotropic rocks.