Unloading failure of rocks,especially highly stressed rocks,is one of the key issues in construction of underground structures.Based on this,analytical models for rocks under quasi-static and intensive unloading condi...Unloading failure of rocks,especially highly stressed rocks,is one of the key issues in construction of underground structures.Based on this,analytical models for rocks under quasi-static and intensive unloading conditions are established to study the failure behavior of highly stressed rocks.In case of rock failure under quasi-static unloading,the rock mass ahead of working face is regarded as an elasto-brittle material,and the stress-displacement curves are used to characterize the tensile fracture of peak-stress area.It is observed that,when intensive unloading happens,there is an elastic unloading wave(perturbation wave) propagating in the rock mass.If the initial stress exceeds the critical stress,there will be a fracture wave,following the elastic unloading wave.To study the propagation feature of fracture wave,the conservation laws of mass,momentum and energy are employed.Results show that the post-peak deformation,strength and energy dissipation are essential to the failure process of highly stressed rocks.展开更多
This paper expatiated the field test of large diameter cast in place piles embedded in soft rock, including static loading test, high or low strain dynamic test, measurement of stresses and strains of pile body, and p...This paper expatiated the field test of large diameter cast in place piles embedded in soft rock, including static loading test, high or low strain dynamic test, measurement of stresses and strains of pile body, and pressure measurements between pile tip and soft rock. The relative in situ test problems are discussed. Based on the limit equilibrium theory and the load transfer equation, a synthesis method of analyzing the ultimate carrying capacity of single large diameter pile is put forward. The research results show that the key to determining the ultimate carrying capacity of single pile with a large diameter is the analysis of the intensity of soft rock.展开更多
This study was conducted to evaluate the weathering intensity of the major soils developed on igneous rocks in semiarid region of northwestern Iran.Eight parent materials were selected including monzodiorite,alkali gr...This study was conducted to evaluate the weathering intensity of the major soils developed on igneous rocks in semiarid region of northwestern Iran.Eight parent materials were selected including monzodiorite,alkali granite,granodiorite,syenite,pyroxene diorite,hornblende andesite,pyroxene andesite,and dacite.Representative soil profiles were described and soil samples were collected and analyzed for selected chemical and physical properties and total concentrations of major elements and Zr,V,Ti and Y.Bulk densities as well as Ti,Zr and V concentrations were used to estimate the strain factors and mass balance equations were used to quantify the net result of pedogenic weathering,i.e.elemental loss and gain.The results of clay content and pedogenic iron variability as well as index of compositional variability(ICV),chemical index of alteration(CIA) and,A-CN-K and MFW ternary plots showed that the soils developed on volcanic rocks(hornblende andesite> pyroxene andesite> dacite) were more weathered than those on the plutonic parent rocks(alkali granite,granodiorite,monzodiorite,syenite,pyroxene diorite).The results of mass balance calculations based on the strain factors revealed that the Ca and Na depleted during weathering progress mostly from plagioclase grains.In the semiarid regions Ca is precipitated as pedogenic calcite in the soil horizons.K and Mg depletion is less than Ca and Na especially in the profiles on the hornblende andesite with the highest clay and LOI content.The results of this study clearly suggest that the behavior of K and Mg during the weathering cannot only be explained by the disintegration of the primary minerals,since they are fixed on the secondary clay minerals.Iron did not change in the soils compared to the parent material and was precipitated as the pedogenic iron and conserved in the soil horizons.Overall,the results on the weathering indicators and major elements mass balance enrichment/depletion in the study area confirmed that the soil profiles developed on volcanic rocks are more weathered than those on the plutonic igneous rocks.展开更多
基金sponsored by the National Science Fund for Distinguished Young Scholars(50825403)the National Key Basic Research Program of China(2010CB732003,2013CB036005)the Science Fund for Creative Research Group of the National Natural Science Foundation of China(51021001)
文摘Unloading failure of rocks,especially highly stressed rocks,is one of the key issues in construction of underground structures.Based on this,analytical models for rocks under quasi-static and intensive unloading conditions are established to study the failure behavior of highly stressed rocks.In case of rock failure under quasi-static unloading,the rock mass ahead of working face is regarded as an elasto-brittle material,and the stress-displacement curves are used to characterize the tensile fracture of peak-stress area.It is observed that,when intensive unloading happens,there is an elastic unloading wave(perturbation wave) propagating in the rock mass.If the initial stress exceeds the critical stress,there will be a fracture wave,following the elastic unloading wave.To study the propagation feature of fracture wave,the conservation laws of mass,momentum and energy are employed.Results show that the post-peak deformation,strength and energy dissipation are essential to the failure process of highly stressed rocks.
文摘This paper expatiated the field test of large diameter cast in place piles embedded in soft rock, including static loading test, high or low strain dynamic test, measurement of stresses and strains of pile body, and pressure measurements between pile tip and soft rock. The relative in situ test problems are discussed. Based on the limit equilibrium theory and the load transfer equation, a synthesis method of analyzing the ultimate carrying capacity of single large diameter pile is put forward. The research results show that the key to determining the ultimate carrying capacity of single pile with a large diameter is the analysis of the intensity of soft rock.
文摘This study was conducted to evaluate the weathering intensity of the major soils developed on igneous rocks in semiarid region of northwestern Iran.Eight parent materials were selected including monzodiorite,alkali granite,granodiorite,syenite,pyroxene diorite,hornblende andesite,pyroxene andesite,and dacite.Representative soil profiles were described and soil samples were collected and analyzed for selected chemical and physical properties and total concentrations of major elements and Zr,V,Ti and Y.Bulk densities as well as Ti,Zr and V concentrations were used to estimate the strain factors and mass balance equations were used to quantify the net result of pedogenic weathering,i.e.elemental loss and gain.The results of clay content and pedogenic iron variability as well as index of compositional variability(ICV),chemical index of alteration(CIA) and,A-CN-K and MFW ternary plots showed that the soils developed on volcanic rocks(hornblende andesite> pyroxene andesite> dacite) were more weathered than those on the plutonic parent rocks(alkali granite,granodiorite,monzodiorite,syenite,pyroxene diorite).The results of mass balance calculations based on the strain factors revealed that the Ca and Na depleted during weathering progress mostly from plagioclase grains.In the semiarid regions Ca is precipitated as pedogenic calcite in the soil horizons.K and Mg depletion is less than Ca and Na especially in the profiles on the hornblende andesite with the highest clay and LOI content.The results of this study clearly suggest that the behavior of K and Mg during the weathering cannot only be explained by the disintegration of the primary minerals,since they are fixed on the secondary clay minerals.Iron did not change in the soils compared to the parent material and was precipitated as the pedogenic iron and conserved in the soil horizons.Overall,the results on the weathering indicators and major elements mass balance enrichment/depletion in the study area confirmed that the soil profiles developed on volcanic rocks are more weathered than those on the plutonic igneous rocks.