The Lannigou deposit is a large-sized sedimentary rock-hosted disseminated gold (SRHDG) deposit located in the Youjiang Basin. It is hosted by the Middle Triassic turbidite. Wall rock alterations, including silicifi...The Lannigou deposit is a large-sized sedimentary rock-hosted disseminated gold (SRHDG) deposit located in the Youjiang Basin. It is hosted by the Middle Triassic turbidite. Wall rock alterations, including silicification, pyritization, arsenopyritization, carbonatization and argillization, commonly occur along fractures. PGE study demonstrates that either Permian basalts or Triassic ultrabasic intrnsives are unlikely to be the main source of gold mineralization. Coupled with the lack of other nmgmatic activity in the vicinity of the mining area, an amagmatic origin is proposed. Organic matter compositions and GC-MS analysis of the ores and host rocks show that the organics in the ores and the host rocks have a common source; the organic matter in the ores was mainly indigenous. The positive correlation between S2 and Au contents, along with the common occurrence of organic inclusions, suggest involvement of organic matter in the ore-forming process in terms of promoting Au leaching from the source rocks, making colloidal Au migration possible, as well as hydrocarbon reduction of sulphate. Geological and geochemical characteristics of the Lannigou deposit suggest that it was formed through circulation of meteoric water and probably less importantly organic bearing formation water driven by high geothermal gradient caused by late Yanshanian extension, which leached Au from the source bed, and then migrated as Au-bisnlfides and colloidal Au, culminating in deposition by reduction-adsorption and surface complexation of gold onto the growth surface of arsenlan pyrite.展开更多
The Aqishan-Yamansu metallogenic belt(AYMB)in East Tianshan hosts abundant sub-marine volcanic-hosted iron deposits.Although there is agreement with the magmatic source of the ore-forming materials and the role of hyd...The Aqishan-Yamansu metallogenic belt(AYMB)in East Tianshan hosts abundant sub-marine volcanic-hosted iron deposits.Although there is agreement with the magmatic source of the ore-forming materials and the role of hydrothermal replacement in iron ore formation,the mineraliza-tion processes of these iron deposits remain uncertain.Three ore types are identified on the basis of the geological occurrences of minerals and the sequence of mineral in ores.The typeⅠores are characte-rized by magnetite,diopside,amphibole with a few pyrite,and chalcopyrite.The type II ores are mainly composed of magnetite,garnet,chlorite with a few pyrite,while the type III ores are mainly composed of magnetite,quartz,calcite with a few pyrite.In order to constrain the mineralization processes of these ore types,we performed iron isotopes and trace element compositions of magnetite from three typical iron deposits(Yamansu,Duotoushan and Luotuofeng).Trace element and Fe isotope investiga-tions of the three ore types reveal two major groups.The groupⅠconsists of analyses of the typeⅠandⅡores,with both showing a narrow range of positiveδ56Fe values(+0.08‰to+0.22‰for typeⅠores and+0.15‰ to+0.22‰ for typeⅡores)and plotting in the range of the ortho-magmatic field.In contrast,the group 2 is composed merely of the typeⅢores,showing a wider range of negativeδ56Fe values(-0.49‰ to-0.01‰),which is similar to the features of Fe-skarn magnetite.As shown in the binary dia-grams of magnetite trace elements and a fractionation of the Fe isotopes,different ore types were likely produced during gradually changing ore-forming stages from magmatic to hydrothermal.Collectively,the submarine volcanic-hosted iron deposits in the East Tianshan are likely the results of a continuous magmatic-hydrothermal mineralization process.展开更多
文摘The Lannigou deposit is a large-sized sedimentary rock-hosted disseminated gold (SRHDG) deposit located in the Youjiang Basin. It is hosted by the Middle Triassic turbidite. Wall rock alterations, including silicification, pyritization, arsenopyritization, carbonatization and argillization, commonly occur along fractures. PGE study demonstrates that either Permian basalts or Triassic ultrabasic intrnsives are unlikely to be the main source of gold mineralization. Coupled with the lack of other nmgmatic activity in the vicinity of the mining area, an amagmatic origin is proposed. Organic matter compositions and GC-MS analysis of the ores and host rocks show that the organics in the ores and the host rocks have a common source; the organic matter in the ores was mainly indigenous. The positive correlation between S2 and Au contents, along with the common occurrence of organic inclusions, suggest involvement of organic matter in the ore-forming process in terms of promoting Au leaching from the source rocks, making colloidal Au migration possible, as well as hydrocarbon reduction of sulphate. Geological and geochemical characteristics of the Lannigou deposit suggest that it was formed through circulation of meteoric water and probably less importantly organic bearing formation water driven by high geothermal gradient caused by late Yanshanian extension, which leached Au from the source bed, and then migrated as Au-bisnlfides and colloidal Au, culminating in deposition by reduction-adsorption and surface complexation of gold onto the growth surface of arsenlan pyrite.
基金This study was financially supported by National Natural Science Foundation of China(No.41672078)the China Geological Survey(No.DD20190606).
文摘The Aqishan-Yamansu metallogenic belt(AYMB)in East Tianshan hosts abundant sub-marine volcanic-hosted iron deposits.Although there is agreement with the magmatic source of the ore-forming materials and the role of hydrothermal replacement in iron ore formation,the mineraliza-tion processes of these iron deposits remain uncertain.Three ore types are identified on the basis of the geological occurrences of minerals and the sequence of mineral in ores.The typeⅠores are characte-rized by magnetite,diopside,amphibole with a few pyrite,and chalcopyrite.The type II ores are mainly composed of magnetite,garnet,chlorite with a few pyrite,while the type III ores are mainly composed of magnetite,quartz,calcite with a few pyrite.In order to constrain the mineralization processes of these ore types,we performed iron isotopes and trace element compositions of magnetite from three typical iron deposits(Yamansu,Duotoushan and Luotuofeng).Trace element and Fe isotope investiga-tions of the three ore types reveal two major groups.The groupⅠconsists of analyses of the typeⅠandⅡores,with both showing a narrow range of positiveδ56Fe values(+0.08‰to+0.22‰for typeⅠores and+0.15‰ to+0.22‰ for typeⅡores)and plotting in the range of the ortho-magmatic field.In contrast,the group 2 is composed merely of the typeⅢores,showing a wider range of negativeδ56Fe values(-0.49‰ to-0.01‰),which is similar to the features of Fe-skarn magnetite.As shown in the binary dia-grams of magnetite trace elements and a fractionation of the Fe isotopes,different ore types were likely produced during gradually changing ore-forming stages from magmatic to hydrothermal.Collectively,the submarine volcanic-hosted iron deposits in the East Tianshan are likely the results of a continuous magmatic-hydrothermal mineralization process.