The mechanism of cracks propagation and cracks coalescence due to compressive loading of the brittle substances containing pre-existing cracks (flaws) was modeled experimentally using specially made rock-like specim...The mechanism of cracks propagation and cracks coalescence due to compressive loading of the brittle substances containing pre-existing cracks (flaws) was modeled experimentally using specially made rock-like specimens from Portland Pozzolana Cement (PPC). The breakage process of the specimens was studied by inserting single and double flaws with different inclination angles at the center and applying uniaxial compressive stress at both ends of the specimen. The first crack was oriented at 50° from the horizontal direction and kept constant throughout the analysis while the orientation of the second crack was changed. It is experimentally observed that the wing cracks are produced at the first stage of loading and start their propagation toward the direction of uniaxial compressive loading. The secondary cracks may also be produced in form of quasi-coplanar and/or oblique cracks in a stable manner. The secondary cracks may eventually continue their propagation in the direction of maximum principle stress. These experimental works were also simulated numerically by a modified higher order displacement discontinuity method and the cracks propagation and cracks coalescence were studied based on Mode I and Mode II stress intensity factors (SIFs). It is concluded that the wing cracks initiation stresses for the specimens change from 11.3 to 14.1 MPain the case of numerical simulations and from 7.3 to 13.8 MPa in the case of experimental works. It is observed that cracks coalescence stresses change from 21.8 to 25.3 MPa and from 19.5 to 21.8 MPa in the numerical and experimental analyses, respectively. Comparing some of the numerical and experimental results with those recently cited in the literature validates the results obtained by the proposed study. Finally, a numerical simulation was accomplished to study the effect of confining pressure on the crack propagation process, showing that the SIFs increase and the crack initiation angles change in this case.展开更多
To describe the deformation and strength characteristics of the corroded rock-like specimens containing a single crack under uniaxial compression,a damage constitutive model combining hydro-chemical damage with coupli...To describe the deformation and strength characteristics of the corroded rock-like specimens containing a single crack under uniaxial compression,a damage constitutive model combining hydro-chemical damage with coupling damage of micro-flaws and macro-cracks is proposed.Firstly,based on phenomenological theory,the damage variable of the rock-like specimens subjected to water environment erosion and chemical corrosion is obtained.Secondly,a coupled damage variable for cracked rock-like specimens is derived based on the Lemaitre strain equivalence hypothesis,which combines the Weibull statistical damage model for micro-flaws and the fracture mechanics model for a macro single crack.Then,considering the residual strength characteristics of the rock-like materials,the damage variable is modified by introducing the correction coefficient,and the damage constitutive model of the corroded rock-like specimens with a single crack under uniaxial compression is established.The model is verified by comparing the experimental stress−strain curves,and the results are in good agreement with those provided in the literature.Finally,the correction coefficient of the damage variable proposed in this paper is discussed.The damage constitutive model developed in this paper provides an effective method to describe the stress−strain relationship and residual strength characteristics of the corroded rock-like specimens with a single crack under uniaxial compression.展开更多
The compression test on rock-like specimens with prefabricated closed multi-fissures made by pulling out the embedded metal inserts in the precured period was done on the servo control uniaxial loading instrument. The...The compression test on rock-like specimens with prefabricated closed multi-fissures made by pulling out the embedded metal inserts in the precured period was done on the servo control uniaxial loading instrument. The influence of fissure inclination angle and distribution density on the failure characteristics of fissure bodies was researched. It was found that, the fissure inclination angle was the major influencing factor on the failure modes of fissure bodies. The different developmental states of micro-cracks would appear on specimens under different fissure inclination angles. However, the influence of fissure distribution density on the failure mode of fissure bodies was achieved by influencing the transfixion pattern of fissures. It was shown by the sliding crack model that, the effective shear, which drove the relative sliding of the fissure, was a function of fissure inclination angle and friction coefficient of the fissure surface. The strain-softening model of fissure bodies was established based on the mechanical parameters that were obtained by the test of rock-like materials under the same experimental condition. And the reliability of experimental results was identified by using this model.展开更多
Coalescence among fractures would have influence on the stability of rock masses. Deep understanding of mechanical behavior of fractured rock masses is an important mean to identify failure mechanism of geological dis...Coalescence among fractures would have influence on the stability of rock masses. Deep understanding of mechanical behavior of fractured rock masses is an important mean to identify failure mechanism of geological disaster. In this study, crack propagation processing was studied through loading pre-fractured specimens of concrete block, termed as rock-like material, in uniaxial compression tests. New non-parallel double-crack geometry was introduced to observe crack coalescence. The flaw combinations are different from the normally used flaw configurations. In addition, ultrasonic detection tests were performed on the test blocks. The stress and strain data of these tests and characteristic parameters of sound wave were recorded. The stress-strain curves of each test block under the uniaxial compression test were drawn, relations among deformation characteristics and crack angle of the crack specimens, and their overall strength were analyzed. It is found that strength of the specimen decreases as crack inclination increases under two crack inclinations. The highest uniaxial compressive strength is found in the specimen with the cracks at the same angle in different directions. Based on description of the crack initiation location, crack surface and the ultimate failure patterns, failure modes of eight subtype for test blocks are divided into three categories. It is expected that the study results could be beneficial for engineering application of jointed rock masses.展开更多
Strength and deformability characteristics of rock with pre-existing fissures are governed by cracking behavior. To further research the effects of pre-existing fissures on the mechanical properties and crack coalesce...Strength and deformability characteristics of rock with pre-existing fissures are governed by cracking behavior. To further research the effects of pre-existing fissures on the mechanical properties and crack coalescence process, a series of uniaxial compression tests were carried out for rock-like material with two unparallel fissures.In the present study, cement, quartz sand, and water were used to fabricate a kind of brittle rock-like material cylindrical model specimen. The mechanical properties of rock-like material specimen used in this research were all in good agreement with the brittle rock materials. Two unparallel fissures(a horizontal fissure and an inclined fissure) were created by inserting steel during molding the model specimen.Then all the pre-fissured rock-like specimens were tested under uniaxial compression by a rock mechanics servocontrolled testing system. The peak strength and Young's modulus of pre-fissured specimen all first decreased and then increased when the fissure angle increased from 0?to 75?.In order to investigate the crack initiation, propagation and coalescence process, photographic monitoring was adopted to capture images during the entire deformation process.Moreover, acoustic emission(AE) monitoring technique was also used to obtain the AE evolution characteristic of prefissured specimen. The relationship between axial stress, AE events, and the crack coalescence process was set up: when a new crack was initiated or a crack coalescence occurred, thecorresponding axial stress dropped in the axial stress–time curve and a big AE event could be observed simultaneously.Finally, the mechanism of crack propagation under microscopic observation was discussed. These experimental results are expected to increase the understanding of the strength failure behavior and the cracking mechanism of rock containing unparallel fissures.展开更多
In this study, p o ly u reth an e foam ty p e th e rm o se t polym erizing, d u e to chem ical reaction b e tw e e n itsliquid ingredients, w as teste d as b in d e r afte r solidifying and th e n a rock-like m ateria...In this study, p o ly u reth an e foam ty p e th e rm o se t polym erizing, d u e to chem ical reaction b e tw e e n itsliquid ingredients, w as teste d as b in d e r afte r solidifying and th e n a rock-like m aterial m ixing w ith asandy silt ty p e soil w as prep ared . The uniaxial com pressive stren g th s (UCSs) o f p o ly u reth an e foamreinforced soil specim ens w ere d e term in ed for different p o ly u reth an e ratios in th e m ixture. A dditionally,a series o f te sts o n slake durability, im pact value, freezing-th aw in g resistance, and ab rasio n resistance ofp o ly u reth an e reinforced soil (PRS) m ix tu re w as co n d u cted . The UCS values over 3 M Pa w ere m easuredfrom th e PRS specim ens. The testin g results show ed th a t tre a te d soil can econom ically b ecom e adesirable rock-like m aterial in term s o f slake d u ra b ility a n d resistances ag ain st freezing-thaw ing, im pacteffect an d abrasion. As a n o th e r ch aracteristic o f th e rock-like m aterial m ade w ith p o ly u reth an e foam,u n it volum e w eig h t w as found to be q uite low er th a n th o se o f n atu ral rock m aterials.展开更多
The critical bifurcation orientation and its corresponding hardening modulus for rock-like geomaterials are derived by considering the effect of stiffness degradation and volumetric dilatancy under the assumption of i...The critical bifurcation orientation and its corresponding hardening modulus for rock-like geomaterials are derived by considering the effect of stiffness degradation and volumetric dilatancy under the assumption of isotropic damage. The dependency of the localized orientation on the degree of damage and initial Poisson's ratio of rock is examined and the bifurcation behavior of the uniaxial compression sample under the plane-stress condition is compared with that under plane-strain condition. It is shown that the localization orientation angle intimately depends on both the initial Poisson's ratio and degree of damage for the rock sample under the uniaxial compression condition. As the initial Poisson's ratio or degree of damage increases, the orientation angle of the plane on which localization tends to be initiated gets to decrease. At the same time, the localization orientation angle of a rock sample under the plane-stress condition is larger than that under the plane-strain condition.展开更多
The complexity of a rock masses structure can lead to high uncertainties and risk during underground engineering construction.Laboratory tests on fractured rock-like materials containing a tunnel were conducted,and tw...The complexity of a rock masses structure can lead to high uncertainties and risk during underground engineering construction.Laboratory tests on fractured rock-like materials containing a tunnel were conducted,and twodimensional particle flow models were established.The principal stress and principal strain distributions surrounding the four-arc-shaped and inverted U-shaped tunnels were investigated,respectively.Numerical results indicated that the dip angle combination of preexisting fractures directly affects the principal stress,principal strain distribution and the failure characteristics around the tunnel.The larger the absolute value of the preexisting fracture inclination angle,the higher the crushing degree of compression splitting near the hance and the larger the V-shaped failure zone.With a decrease in the absolute value of the preexisting fracture inclination angle,the compressive stress concentration of the sidewall with preexisting fractures gradually increases.The types of cracks initiated around the four-arc-shaped tunnel and the inverted U-shape tunnel are different.When the fractures are almost vertical,they have a significant influence on the stress of the sidewall force of the four-arc-shaped tunnel.When the fractures are almost horizontal,they have a significant influence on the stress of the sidewall of the inverted U-shaped tunnel.The findings provide a theoretical support for the local strengthening design of the tunnel supporting structure.展开更多
An inverse method for parameters identification of discrete element model combined with experiment is proposed.The inverse problem of parameter identification is transmitted to solve an optimization problem by minimiz...An inverse method for parameters identification of discrete element model combined with experiment is proposed.The inverse problem of parameter identification is transmitted to solve an optimization problem by minimizing the distance between the numerical calculations and experiment responses.In this method,the discrete element method is employed as numerical calculator for the forward problem.Then,the orthogonal experiment design with range analysis was used to carry out parameters sensitivity analysis.In addition,to improve the computational efficiency,the approximate model technique is used to replace the actual computational model.The intergeneration projection genetic algorithm(IP-GA)is employed as the optimization algorithm.Consequently,the parameters of the discrete element model are determined.To verify the effectiveness and accuracy of the inverse results,the comparisons of shape deviation experiments with discrete element simulations are provided.It indicates that the effective and reliable discrete element model parameters can be quickly obtained through several sets of experimental data.Hence,this inverse method can be applied more widely to determine the parameters of discrete element model for other materials.展开更多
The expanded distinct element method(EDEM)was used to investigate the crack growth in rock-like materials under uniaxial compression.The tensile-shear failure criterion and the Griffith failure criterion were implante...The expanded distinct element method(EDEM)was used to investigate the crack growth in rock-like materials under uniaxial compression.The tensile-shear failure criterion and the Griffith failure criterion were implanted into the EDEM to determine the initiation and propagation of pre-existing cracks,respectively.Uniaxial compression experiments were also performed with the artificial rock-like samples to verify the validity of the EDEM.Simulation results indicated that the EDEM model with the tensile-shear failure criterion has strong capabilities for modeling the growth of pre-existing cracks,and model results have strong agreement with the failure and mechanical properties of experimental samples.The EDEM model with the Griffith failure criterion can only simulate the splitting failure of samples due to tensile stresses and is incapable of providing a comprehensive interpretation for the overall failure of rock masses.Research results demonstrated that sample failure primarily resulted from the growth of single cracks(in the form of tensile wing cracks and shear secondary cracks)and the coalescence of two cracks due to the growth of wing cracks in the rock bridge zone.Additionally,the inclination angle of the pre-existing crack clearly influences the final failure pattern of the samples.展开更多
为研究高应力围岩扰动破坏机制,开展了不同围压下类岩石试件的三轴常规压缩和三轴循环扰动试验,得到了试件的扰动应力–应变规律和变形破坏特征,并对试件开展了核磁共振(Nuclear Magnetic Resonance)成像试验,从微观角度进一步阐明了试...为研究高应力围岩扰动破坏机制,开展了不同围压下类岩石试件的三轴常规压缩和三轴循环扰动试验,得到了试件的扰动应力–应变规律和变形破坏特征,并对试件开展了核磁共振(Nuclear Magnetic Resonance)成像试验,从微观角度进一步阐明了试件扰动破坏机理。研究结果表明:(1)试件在不同围压下均存在一个阈值强度,轴向荷载超过阈值强度后,轴向变形对扰动变得敏感,再次施加扰动会引起试件显著变形,当轴向荷载低于阈值强度时,变形对扰动不敏感。阈值强度与极限强度的比值可以反映试件的抗扰动能力,随着围压增大,该比值呈现逐步递减的规律,说明高围压下试件抗扰动能力下降,对扰动作用更敏感。(2)扰动作用下类岩石试件存在弱化效应,如常规三轴10MPa围压下试件表现出腰鼓破坏,而受扰动作用后,试件呈现斜切脆性破坏,与常规三轴5MPa围压下破坏形态相近。(3)岩石试件在高应力作用下进入塑性流动状态,内部颗粒重新排列,内部小孔隙与大孔隙的占比减少,而中孔隙的占比显著增多,试件内部孔隙率整体降低。展开更多
文摘The mechanism of cracks propagation and cracks coalescence due to compressive loading of the brittle substances containing pre-existing cracks (flaws) was modeled experimentally using specially made rock-like specimens from Portland Pozzolana Cement (PPC). The breakage process of the specimens was studied by inserting single and double flaws with different inclination angles at the center and applying uniaxial compressive stress at both ends of the specimen. The first crack was oriented at 50° from the horizontal direction and kept constant throughout the analysis while the orientation of the second crack was changed. It is experimentally observed that the wing cracks are produced at the first stage of loading and start their propagation toward the direction of uniaxial compressive loading. The secondary cracks may also be produced in form of quasi-coplanar and/or oblique cracks in a stable manner. The secondary cracks may eventually continue their propagation in the direction of maximum principle stress. These experimental works were also simulated numerically by a modified higher order displacement discontinuity method and the cracks propagation and cracks coalescence were studied based on Mode I and Mode II stress intensity factors (SIFs). It is concluded that the wing cracks initiation stresses for the specimens change from 11.3 to 14.1 MPain the case of numerical simulations and from 7.3 to 13.8 MPa in the case of experimental works. It is observed that cracks coalescence stresses change from 21.8 to 25.3 MPa and from 19.5 to 21.8 MPa in the numerical and experimental analyses, respectively. Comparing some of the numerical and experimental results with those recently cited in the literature validates the results obtained by the proposed study. Finally, a numerical simulation was accomplished to study the effect of confining pressure on the crack propagation process, showing that the SIFs increase and the crack initiation angles change in this case.
基金Project(FRF-IDRY-20-013)supported by the Fundamental Research Funds for the Central Universities,ChinaProjects(51974014,52074020)supported by the National Natural Science Foundation of China。
文摘To describe the deformation and strength characteristics of the corroded rock-like specimens containing a single crack under uniaxial compression,a damage constitutive model combining hydro-chemical damage with coupling damage of micro-flaws and macro-cracks is proposed.Firstly,based on phenomenological theory,the damage variable of the rock-like specimens subjected to water environment erosion and chemical corrosion is obtained.Secondly,a coupled damage variable for cracked rock-like specimens is derived based on the Lemaitre strain equivalence hypothesis,which combines the Weibull statistical damage model for micro-flaws and the fracture mechanics model for a macro single crack.Then,considering the residual strength characteristics of the rock-like materials,the damage variable is modified by introducing the correction coefficient,and the damage constitutive model of the corroded rock-like specimens with a single crack under uniaxial compression is established.The model is verified by comparing the experimental stress−strain curves,and the results are in good agreement with those provided in the literature.Finally,the correction coefficient of the damage variable proposed in this paper is discussed.The damage constitutive model developed in this paper provides an effective method to describe the stress−strain relationship and residual strength characteristics of the corroded rock-like specimens with a single crack under uniaxial compression.
基金Project (10972238) supported by the National Natural Science Foundation of ChinaProject supported by the Open-End Fund of the Valuable and Precision Instruments of Central South University
文摘The compression test on rock-like specimens with prefabricated closed multi-fissures made by pulling out the embedded metal inserts in the precured period was done on the servo control uniaxial loading instrument. The influence of fissure inclination angle and distribution density on the failure characteristics of fissure bodies was researched. It was found that, the fissure inclination angle was the major influencing factor on the failure modes of fissure bodies. The different developmental states of micro-cracks would appear on specimens under different fissure inclination angles. However, the influence of fissure distribution density on the failure mode of fissure bodies was achieved by influencing the transfixion pattern of fissures. It was shown by the sliding crack model that, the effective shear, which drove the relative sliding of the fissure, was a function of fissure inclination angle and friction coefficient of the fissure surface. The strain-softening model of fissure bodies was established based on the mechanical parameters that were obtained by the test of rock-like materials under the same experimental condition. And the reliability of experimental results was identified by using this model.
文摘Coalescence among fractures would have influence on the stability of rock masses. Deep understanding of mechanical behavior of fractured rock masses is an important mean to identify failure mechanism of geological disaster. In this study, crack propagation processing was studied through loading pre-fractured specimens of concrete block, termed as rock-like material, in uniaxial compression tests. New non-parallel double-crack geometry was introduced to observe crack coalescence. The flaw combinations are different from the normally used flaw configurations. In addition, ultrasonic detection tests were performed on the test blocks. The stress and strain data of these tests and characteristic parameters of sound wave were recorded. The stress-strain curves of each test block under the uniaxial compression test were drawn, relations among deformation characteristics and crack angle of the crack specimens, and their overall strength were analyzed. It is found that strength of the specimen decreases as crack inclination increases under two crack inclinations. The highest uniaxial compressive strength is found in the specimen with the cracks at the same angle in different directions. Based on description of the crack initiation location, crack surface and the ultimate failure patterns, failure modes of eight subtype for test blocks are divided into three categories. It is expected that the study results could be beneficial for engineering application of jointed rock masses.
基金supported by the National Natural Science Foundation of China (Grant 51179189)the National Basic Research 973 Program of China (Grant 2013CB036003)+2 种基金the Program for New Century Excellent Talents in University (Grant NCET-120961)Outstanding Innovation Team Project in China University of Mining and Technology (Grant 2014QN002)the Fundamental Research Funds for the Central Universities (Grants 2014YC10 and 2014XT03)
文摘Strength and deformability characteristics of rock with pre-existing fissures are governed by cracking behavior. To further research the effects of pre-existing fissures on the mechanical properties and crack coalescence process, a series of uniaxial compression tests were carried out for rock-like material with two unparallel fissures.In the present study, cement, quartz sand, and water were used to fabricate a kind of brittle rock-like material cylindrical model specimen. The mechanical properties of rock-like material specimen used in this research were all in good agreement with the brittle rock materials. Two unparallel fissures(a horizontal fissure and an inclined fissure) were created by inserting steel during molding the model specimen.Then all the pre-fissured rock-like specimens were tested under uniaxial compression by a rock mechanics servocontrolled testing system. The peak strength and Young's modulus of pre-fissured specimen all first decreased and then increased when the fissure angle increased from 0?to 75?.In order to investigate the crack initiation, propagation and coalescence process, photographic monitoring was adopted to capture images during the entire deformation process.Moreover, acoustic emission(AE) monitoring technique was also used to obtain the AE evolution characteristic of prefissured specimen. The relationship between axial stress, AE events, and the crack coalescence process was set up: when a new crack was initiated or a crack coalescence occurred, thecorresponding axial stress dropped in the axial stress–time curve and a big AE event could be observed simultaneously.Finally, the mechanism of crack propagation under microscopic observation was discussed. These experimental results are expected to increase the understanding of the strength failure behavior and the cracking mechanism of rock containing unparallel fissures.
文摘In this study, p o ly u reth an e foam ty p e th e rm o se t polym erizing, d u e to chem ical reaction b e tw e e n itsliquid ingredients, w as teste d as b in d e r afte r solidifying and th e n a rock-like m aterial m ixing w ith asandy silt ty p e soil w as prep ared . The uniaxial com pressive stren g th s (UCSs) o f p o ly u reth an e foamreinforced soil specim ens w ere d e term in ed for different p o ly u reth an e ratios in th e m ixture. A dditionally,a series o f te sts o n slake durability, im pact value, freezing-th aw in g resistance, and ab rasio n resistance ofp o ly u reth an e reinforced soil (PRS) m ix tu re w as co n d u cted . The UCS values over 3 M Pa w ere m easuredfrom th e PRS specim ens. The testin g results show ed th a t tre a te d soil can econom ically b ecom e adesirable rock-like m aterial in term s o f slake d u ra b ility a n d resistances ag ain st freezing-thaw ing, im pacteffect an d abrasion. As a n o th e r ch aracteristic o f th e rock-like m aterial m ade w ith p o ly u reth an e foam,u n it volum e w eig h t w as found to be q uite low er th a n th o se o f n atu ral rock m aterials.
基金Project supported by the National Natural Sciences Foundation of China (No. 10172022).
文摘The critical bifurcation orientation and its corresponding hardening modulus for rock-like geomaterials are derived by considering the effect of stiffness degradation and volumetric dilatancy under the assumption of isotropic damage. The dependency of the localized orientation on the degree of damage and initial Poisson's ratio of rock is examined and the bifurcation behavior of the uniaxial compression sample under the plane-stress condition is compared with that under plane-strain condition. It is shown that the localization orientation angle intimately depends on both the initial Poisson's ratio and degree of damage for the rock sample under the uniaxial compression condition. As the initial Poisson's ratio or degree of damage increases, the orientation angle of the plane on which localization tends to be initiated gets to decrease. At the same time, the localization orientation angle of a rock sample under the plane-stress condition is larger than that under the plane-strain condition.
基金Project(41807241) supported by the National Natural Science Foundation of ChinaProject(2021M693544) supported by China Postdoctoral Science FoundationProject(2022JM-160) supported by the Natural Science Basic Research Program of Shaanxi,China。
文摘The complexity of a rock masses structure can lead to high uncertainties and risk during underground engineering construction.Laboratory tests on fractured rock-like materials containing a tunnel were conducted,and twodimensional particle flow models were established.The principal stress and principal strain distributions surrounding the four-arc-shaped and inverted U-shaped tunnels were investigated,respectively.Numerical results indicated that the dip angle combination of preexisting fractures directly affects the principal stress,principal strain distribution and the failure characteristics around the tunnel.The larger the absolute value of the preexisting fracture inclination angle,the higher the crushing degree of compression splitting near the hance and the larger the V-shaped failure zone.With a decrease in the absolute value of the preexisting fracture inclination angle,the compressive stress concentration of the sidewall with preexisting fractures gradually increases.The types of cracks initiated around the four-arc-shaped tunnel and the inverted U-shape tunnel are different.When the fractures are almost vertical,they have a significant influence on the stress of the sidewall force of the four-arc-shaped tunnel.When the fractures are almost horizontal,they have a significant influence on the stress of the sidewall of the inverted U-shaped tunnel.The findings provide a theoretical support for the local strengthening design of the tunnel supporting structure.
基金supported by the National Natural Science Foundation of China(11602212)the Natural Science Foundation of Hunan Province of China(2018JJ3509)supported by the National Natural Science Foundation of China(51605409,11802258,51775468).
文摘An inverse method for parameters identification of discrete element model combined with experiment is proposed.The inverse problem of parameter identification is transmitted to solve an optimization problem by minimizing the distance between the numerical calculations and experiment responses.In this method,the discrete element method is employed as numerical calculator for the forward problem.Then,the orthogonal experiment design with range analysis was used to carry out parameters sensitivity analysis.In addition,to improve the computational efficiency,the approximate model technique is used to replace the actual computational model.The intergeneration projection genetic algorithm(IP-GA)is employed as the optimization algorithm.Consequently,the parameters of the discrete element model are determined.To verify the effectiveness and accuracy of the inverse results,the comparisons of shape deviation experiments with discrete element simulations are provided.It indicates that the effective and reliable discrete element model parameters can be quickly obtained through several sets of experimental data.Hence,this inverse method can be applied more widely to determine the parameters of discrete element model for other materials.
文摘The expanded distinct element method(EDEM)was used to investigate the crack growth in rock-like materials under uniaxial compression.The tensile-shear failure criterion and the Griffith failure criterion were implanted into the EDEM to determine the initiation and propagation of pre-existing cracks,respectively.Uniaxial compression experiments were also performed with the artificial rock-like samples to verify the validity of the EDEM.Simulation results indicated that the EDEM model with the tensile-shear failure criterion has strong capabilities for modeling the growth of pre-existing cracks,and model results have strong agreement with the failure and mechanical properties of experimental samples.The EDEM model with the Griffith failure criterion can only simulate the splitting failure of samples due to tensile stresses and is incapable of providing a comprehensive interpretation for the overall failure of rock masses.Research results demonstrated that sample failure primarily resulted from the growth of single cracks(in the form of tensile wing cracks and shear secondary cracks)and the coalescence of two cracks due to the growth of wing cracks in the rock bridge zone.Additionally,the inclination angle of the pre-existing crack clearly influences the final failure pattern of the samples.
文摘为研究高应力围岩扰动破坏机制,开展了不同围压下类岩石试件的三轴常规压缩和三轴循环扰动试验,得到了试件的扰动应力–应变规律和变形破坏特征,并对试件开展了核磁共振(Nuclear Magnetic Resonance)成像试验,从微观角度进一步阐明了试件扰动破坏机理。研究结果表明:(1)试件在不同围压下均存在一个阈值强度,轴向荷载超过阈值强度后,轴向变形对扰动变得敏感,再次施加扰动会引起试件显著变形,当轴向荷载低于阈值强度时,变形对扰动不敏感。阈值强度与极限强度的比值可以反映试件的抗扰动能力,随着围压增大,该比值呈现逐步递减的规律,说明高围压下试件抗扰动能力下降,对扰动作用更敏感。(2)扰动作用下类岩石试件存在弱化效应,如常规三轴10MPa围压下试件表现出腰鼓破坏,而受扰动作用后,试件呈现斜切脆性破坏,与常规三轴5MPa围压下破坏形态相近。(3)岩石试件在高应力作用下进入塑性流动状态,内部颗粒重新排列,内部小孔隙与大孔隙的占比减少,而中孔隙的占比显著增多,试件内部孔隙率整体降低。