A scheme for identifying rolling layers in roller-compacted concrete (RCC) dam automatically was presented. First, a conceptual model was developed. Second, by using a computational geometry method, the auto identific...A scheme for identifying rolling layers in roller-compacted concrete (RCC) dam automatically was presented. First, a conceptual model was developed. Second, by using a computational geometry method, the auto identification of rolling layers and auto matching between rolling compaction machines and rolling layers were realized based on spatial control points. An application to the construction of Guandi RCC dam showed that the auto identification of rolling layers played an important role in ensuring the engineering quality.展开更多
The abstract roller-compacted concrete (RCC) is a zero slump concrete comprising the same materials as that of conventional concrete with different proportions. The RCC must be compacted to reach its final form. The...The abstract roller-compacted concrete (RCC) is a zero slump concrete comprising the same materials as that of conventional concrete with different proportions. The RCC must be compacted to reach its final form. The effects of hydration and aggregate interlock on its strength are considerable. For similar binder contents, the compressive strength of the RCC is generally higher than that of the conventional concrete; however, the tensile strength of RCC may not be superior to that of the conventional concrete. Adequate tensile strength is necessary to resist fatigue cracking, particularly in pavement applications. However, the compressive strength is frequently used in assessing the quality control and quality assurance of pavements. Therefore, the relationship between the compressive and tensile strengths of the RCC should be analyzed. Unfortunately, only a few studies have been conducted on this relationship. The objective of this study is to identify the difference between the indirect tensile strengths of the RCC and those of the conventional concrete as well as develop relationship equations to evaluate the compressive and tensile strengths. In this study, regression equations are developed to estimate the indirect tensile strengths, which are known as flexural and splitting tensile strengths, using the compressive strength of the RCC. The results show that the flexural strength of the RCC is within the predicted values obtained from the conventional concrete equations for a given compressive strength. In contrast, the splitting tensile strength of the RCC is relatively lower than that of the conventional concrete for the given compressive strength.展开更多
In the structural design of a roller-compacted concrete pavement(RCCP), it is crucial to estimate strain and stress developments in the RCCP slab realistically. Since the RCCP mix uses less cement and lower amount of ...In the structural design of a roller-compacted concrete pavement(RCCP), it is crucial to estimate strain and stress developments in the RCCP slab realistically. Since the RCCP mix uses less cement and lower amount of water, shrinkage strain and concrete temperature during the hardening stage are expected to be reduced as compared to those of conventional concrete mixture, resulting in a reduction of the concrete early-age deformation and stress developments in the RCCP slab. In this paper, early-age concrete strain and stress developments in RCCP slab subjected to environmental loads were evaluated. A full-scale test section of RCCP under real climatic conditions was monitored. The early-age total strains,stress-independent strains, shrinkage strains, and coefficient of thermal expansion(CTE) of the RCCP were measured and analyzed. Using the results of measured strains, in-situ CTE and shrinkage strain, and temperature, the early-age concrete stress development is computed by incorporating a viscoelastic property of the early-age concrete. The results revealed that the shrinkage strain of the RCCP is quite low as compared to that of conventional concrete. The early-age stress developments in the RCCP slab are strongly governed by the thermal-induced stresses. Shrinkage-induced stresses were quite small and might be negligible in a preliminary estimation of early-age stress developments in the RCCP slab.展开更多
By means of fracture testing on roller-compacted concrete (RCC) three-point bending beams with two different specimen sizes, the P-CMOD complete curve for RCC was gained. Furthermore, by applying double-K fracture t...By means of fracture testing on roller-compacted concrete (RCC) three-point bending beams with two different specimen sizes, the P-CMOD complete curve for RCC was gained. Furthermore, by applying double-K fracture theory, KiniⅠC,KunⅠC, as well as the critical effective crack length and the critical crack tip opening displacement, were evaluated. Based on the double-K fracture parameters above, the calculation model of equivalent strength for induced crack was established, thus the calculation method on its initiation, stable propagation and unstable fracture was ascertained. Moreover, the finite element simulation analysis of stress field in ShaPai arch dam and the on-site observational splaying points of induced crack at different altitudes validated the reliability of the model. Finally, crack inducer′s optimal setting in RCC arch dam was studied. It improves the design level of induced crack in RCC arch dam and satisfies the necessity of engineering practice.展开更多
基金Supported by Foundation for Innovative Research Groups of National Natural Science Foundation of China (No. 51021004)National Natural Science Foundation of China (No. 50879056)Key Project in the National Science and Technology Pillar Program during the Eleventh Five-Year Plan Period(No. 2008BAB29B05)
文摘A scheme for identifying rolling layers in roller-compacted concrete (RCC) dam automatically was presented. First, a conceptual model was developed. Second, by using a computational geometry method, the auto identification of rolling layers and auto matching between rolling compaction machines and rolling layers were realized based on spatial control points. An application to the construction of Guandi RCC dam showed that the auto identification of rolling layers played an important role in ensuring the engineering quality.
基金conducted under research project (Development of Eco-Friendly Pavements to Minimize Greenhouse Gas Emissions) funded by the Ministry of Land, Infrastructure and Transport (MOLIT) and the Korea Agency for Infrastructure Technology Advancement (KAIA)
文摘The abstract roller-compacted concrete (RCC) is a zero slump concrete comprising the same materials as that of conventional concrete with different proportions. The RCC must be compacted to reach its final form. The effects of hydration and aggregate interlock on its strength are considerable. For similar binder contents, the compressive strength of the RCC is generally higher than that of the conventional concrete; however, the tensile strength of RCC may not be superior to that of the conventional concrete. Adequate tensile strength is necessary to resist fatigue cracking, particularly in pavement applications. However, the compressive strength is frequently used in assessing the quality control and quality assurance of pavements. Therefore, the relationship between the compressive and tensile strengths of the RCC should be analyzed. Unfortunately, only a few studies have been conducted on this relationship. The objective of this study is to identify the difference between the indirect tensile strengths of the RCC and those of the conventional concrete as well as develop relationship equations to evaluate the compressive and tensile strengths. In this study, regression equations are developed to estimate the indirect tensile strengths, which are known as flexural and splitting tensile strengths, using the compressive strength of the RCC. The results show that the flexural strength of the RCC is within the predicted values obtained from the conventional concrete equations for a given compressive strength. In contrast, the splitting tensile strength of the RCC is relatively lower than that of the conventional concrete for the given compressive strength.
基金supported by the Ministry of Land,Infrastructure and Transport(MOLIT),South Korea and the Korea Agency for Infrastructure Technology Advancement(KAIA),South Korea(project No:18TLRP-B146707-01)supported by the 2017 Academic Research Program funded by Gangneung-Wonju National University,South Korea。
文摘In the structural design of a roller-compacted concrete pavement(RCCP), it is crucial to estimate strain and stress developments in the RCCP slab realistically. Since the RCCP mix uses less cement and lower amount of water, shrinkage strain and concrete temperature during the hardening stage are expected to be reduced as compared to those of conventional concrete mixture, resulting in a reduction of the concrete early-age deformation and stress developments in the RCCP slab. In this paper, early-age concrete strain and stress developments in RCCP slab subjected to environmental loads were evaluated. A full-scale test section of RCCP under real climatic conditions was monitored. The early-age total strains,stress-independent strains, shrinkage strains, and coefficient of thermal expansion(CTE) of the RCCP were measured and analyzed. Using the results of measured strains, in-situ CTE and shrinkage strain, and temperature, the early-age concrete stress development is computed by incorporating a viscoelastic property of the early-age concrete. The results revealed that the shrinkage strain of the RCCP is quite low as compared to that of conventional concrete. The early-age stress developments in the RCCP slab are strongly governed by the thermal-induced stresses. Shrinkage-induced stresses were quite small and might be negligible in a preliminary estimation of early-age stress developments in the RCCP slab.
文摘By means of fracture testing on roller-compacted concrete (RCC) three-point bending beams with two different specimen sizes, the P-CMOD complete curve for RCC was gained. Furthermore, by applying double-K fracture theory, KiniⅠC,KunⅠC, as well as the critical effective crack length and the critical crack tip opening displacement, were evaluated. Based on the double-K fracture parameters above, the calculation model of equivalent strength for induced crack was established, thus the calculation method on its initiation, stable propagation and unstable fracture was ascertained. Moreover, the finite element simulation analysis of stress field in ShaPai arch dam and the on-site observational splaying points of induced crack at different altitudes validated the reliability of the model. Finally, crack inducer′s optimal setting in RCC arch dam was studied. It improves the design level of induced crack in RCC arch dam and satisfies the necessity of engineering practice.