Quantum error correction is a crucial technology for realizing quantum computers.These computers achieve faulttolerant quantum computing by detecting and correcting errors using decoding algorithms.Quantum error corre...Quantum error correction is a crucial technology for realizing quantum computers.These computers achieve faulttolerant quantum computing by detecting and correcting errors using decoding algorithms.Quantum error correction using neural network-based machine learning methods is a promising approach that is adapted to physical systems without the need to build noise models.In this paper,we use a distributed decoding strategy,which effectively alleviates the problem of exponential growth of the training set required for neural networks as the code distance of quantum error-correcting codes increases.Our decoding algorithm is based on renormalization group decoding and recurrent neural network decoder.The recurrent neural network is trained through the ResNet architecture to improve its decoding accuracy.Then we test the decoding performance of our distributed strategy decoder,recurrent neural network decoder,and the classic minimum weight perfect matching(MWPM)decoder for rotated surface codes with different code distances under the circuit noise model,the thresholds of these three decoders are about 0.0052,0.0051,and 0.0049,respectively.Our results demonstrate that the distributed strategy decoder outperforms the other two decoders,achieving approximately a 5%improvement in decoding efficiency compared to the MWPM decoder and approximately a 2%improvement compared to the recurrent neural network decoder.展开更多
Numerical simulations of a seismic wavefield are important to analyze seismic wave propagation. Elastic-wave equations are used in data simulation for modeling migration and imaging. In elastic wavefield numerical mod...Numerical simulations of a seismic wavefield are important to analyze seismic wave propagation. Elastic-wave equations are used in data simulation for modeling migration and imaging. In elastic wavefield numerical modeling, the rotated staggered-grid method (RSM) is a modification of the standard staggered-grid method (SSM). The variable-order method is based on the method of variable-length spatial operators and wavefield propagation, and it calculates the real dispersion error by adapting different finite-difference orders to different velocities. In this study, the variable-order rotated staggered-grid method (VRSM) is developed after applying the variable-order method to RSM to solve the numerical dispersion problem of RSM in low-velocity regions and reduce the computation cost. Moreover, based on theoretical dispersion and the real dispersion error of wave propagation calculated with the wave separation method, the application of the original method is extended from acoustic to shear waves, and the calculation is modified from theoretical to time-varying values. A layered model and an overthrust model are used to demonstrate the applicability of VRSM. We also evaluate the order distribution, wave propagation, and computation time. The results suggest that the VRSM order distribution is reasonable and VRSM produces high-precision results with a minimal computation cost.展开更多
Finite-difference(FD) methods are widely used in seismic forward modeling owing to their computational efficiency but are not readily applicable to irregular topographies. Thus, several FD methods based on the transfo...Finite-difference(FD) methods are widely used in seismic forward modeling owing to their computational efficiency but are not readily applicable to irregular topographies. Thus, several FD methods based on the transformation to curvilinear coordinates using body-fitted grids have been proposed, e.g., stand staggered grid(SSG) with interpolation, nonstaggered grid, rotated staggered grid(RSG), and fully staggered. The FD based on the RSG is somewhat superior to others because it satisfies the spatial distribution of the wave equation without additional memory and computational requirements; furthermore, it is simpler to implement. We use the RSG FD method to transform the firstorder stress–velocity equation in the curvilinear coordinates system and introduce the highprecision adaptive, unilateral mimetic finite-difference(UMFD) method to process the freeboundary conditions of an irregular surface. The numerical results suggest that the precision of the solution is higher than that of the vacuum formalism. When the minimum wavelength is low, UMFD avoids the surface wave dispersion. We compare FD methods based on RSG, SEM, and nonstaggered grid and infer that all simulation results are consistent but the computational efficiency of the RSG FD method is higher than the rest.展开更多
Numerical simulation in transverse isotropic media with tilted symmetry axis(TTI) using the standard staggered-grid finite-difference scheme(SSG)results in errors caused by averaging or interpolation. In order to ...Numerical simulation in transverse isotropic media with tilted symmetry axis(TTI) using the standard staggered-grid finite-difference scheme(SSG)results in errors caused by averaging or interpolation. In order to eliminate the errors, a method of rotated staggered-grid finite-difference scheme(RSG) is proposed. However, the RSG brings serious numerical dispersion. The compact staggered-grid finite-difference scheme(CSG) is an implicit difference scheme, which use fewer grid points to suppress dispersion more effectively than the SSG. This paper combines the CSG with the RSG to derive a rotated staggered-grid compact finite-difference scheme(RSGC). The numerical experiments indicate that the RSGC has weaker numerical dispersion and better accuracy than the RSG.展开更多
·AIM: To evaluate the efficacy of a new modality for improving visual acuity (VA) in pediatric patients with anisometropic amblyopia. · METHODS: Retrospective and interventional case series. Medical records ...·AIM: To evaluate the efficacy of a new modality for improving visual acuity (VA) in pediatric patients with anisometropic amblyopia. · METHODS: Retrospective and interventional case series. Medical records of 360 children with anisometropic amblyopia treated with a modality that included rotated prisms, lenses, and near activities from January 2008 to January 2012 were analyzed. Characteristics such as improvement of VA and contrast sensitivity in amblyopic eyes and resolution of amblyopia (VA ≤ 0.1logMAR or a difference of ≤ 2 lines in logMAR between the eyes) were assessed. ·RESULTS: Among the patients, the mean VA of the amblyopic eyes improved from 0.48logMAR (SD=0.16) to 0.12logMAR (SD =0.16) and the mean VA improvement was 0.36logMAR (SD =0.10, P【0.001). Resolution of amblyopia was achieved in 233 of 360 patients (64.72%). The mean time for resolution of amblyopia was 8.05 weeks (SD=4.83) or 14.14 sessions (SD=8.76). Among the study group, refraction error did not change significantly after treatment (P=0.437). We found that better baseline VA may be related to success and shorten the time to amblyopic resolution. ·CONCLUSION: VA and contrast sensitivity improved with rotated prisms, correcting lenses, and near activities in children with anisometropic amblyopia. The VA improvement by this modality was comparable to other methods. However, the time to resolution of amblyopia was shorter with this method than with other modalities. Rotated prisms combined with near acuity could provide an alternative treatment in children with anisometropic amblyopia who can’t tolerant traditional therapy method like patching.展开更多
Diffraction patterns of a rotated grating are investigated from both theoretical and experimental points of view. It is shown that as the grating rotates, the angle of deviation of each diffracted line relative to the...Diffraction patterns of a rotated grating are investigated from both theoretical and experimental points of view. It is shown that as the grating rotates, the angle of deviation of each diffracted line relative to the incident light goes through a minimum, and that the angle between any two successive diffracted lines goes through a minimum value which is the same for all adjacent diffracted lines. It is also shown that the angle between diffraction lines with n=1 and n=-1 is not sensitive to small variations of the grating from being normal to the incident light. Finally, a method is suggested for determining the line distance of a diffraction grating with high accuracy.展开更多
In addition to an extrusive volcanic component and associated sills,the Neoproterozoic Franklin Large Igneous Province(LIP)comprises a giant radiating dyke swarm spanning an arc of ca.110?,as well as a less-
In this study,a compact 2×2 interlaced sequentially rotated dual-polarized dielectric-resonator antenna array is proposed for 5.8 GHz applications.The array is composed of a novel unit elements that are made of r...In this study,a compact 2×2 interlaced sequentially rotated dual-polarized dielectric-resonator antenna array is proposed for 5.8 GHz applications.The array is composed of a novel unit elements that are made of rectangular dielectric resonator(RDR)coupled to an eye slot for generating the orthogonal modes,TEδx 21 and TE1yδ1 to acquire circular polarization(CP)radiation.For the purpose of miniaturization and achieving dual polarized resonance,the array is fed by two interlaced ports and each port excites two radiating elements.The first port feeds horizontal elements to obtain left hand circular polarization(LHCP).The second port feeds vertical elements to obtain right hand circular polarization(RHCP).A quarter-wave length transformer is employed to reduce the attenuation and consequently increase the array gain performance.The 35×35 mm2(0.676λ0×0.676λ0)gains were 8.4 and 8.2 dBi for port 1 and port 2,respectively,with port isolations of−33.51 dB.The design achieves a voltage standing-wave ratio(VSWR)<−10 dB and an axial ratio(AR)<−3 dB bandwidth of 2.48%(5.766 to 5.911 GHz)for LHCP at port 1 and a VSWR<−10 dB and AR<−3 dB bandwidth of 2.28%(5.788 to 5.922 GHz)for RHCP at port 2.The findings of the proposed design validate its use for ISM band applications.展开更多
In this paper,we study the advantages of cooperation in broadcasting systems from a geosynchronous earth orbit(GEO)satellite to mobile terminals(MTs),achieved through a terrestrial complementary ground station(CGS) wi...In this paper,we study the advantages of cooperation in broadcasting systems from a geosynchronous earth orbit(GEO)satellite to mobile terminals(MTs),achieved through a terrestrial complementary ground station(CGS) with fixed installment,which acts as a relay.Moreover and in the context of the digital video broadcasting-satellite-to-handheld(DVB-SH) standard,the performance improvements offered by the rotated constellations method are investigated,where prior transmission,a phase rotation of the transmitted symbols by a fixed angle is applied followed by a random component interleaver.Turbo codes with soft decision decoding and appropriate random channel interleavers are also considered.We present analytical expressions for the bit log-likelihood ratios(LLRs)that are needed for soft decision decoding at the MT turbo decoder,while the code combining technique is adapted to improve the end-to-end(E2E) performance.Then,we obtain through extensive computer simulations the average bit error probability(ABEP) of quadrature phase-shift keying(QPSK) signals received over pure land-mobile satellite(LMS)and pure CGS links for coding rates 1/3 and6/7.Moreover,the optimal rotation angles are obtained for both links.E2 E ABEP results are then presented assuming cooperation between GEO and CGS,while the power allocation issue is investigated under fixed total transmission power.Our performance evaluation results show that by using the constellation rotation technique,a performance gain can be achieved for high coding rates.展开更多
In this paper, we define a new nonconforming quadrilateral finite element based on the nonconforming rotated Q1 element by enforcing a constraint on each element, which has only three degrees of freedom. We investigat...In this paper, we define a new nonconforming quadrilateral finite element based on the nonconforming rotated Q1 element by enforcing a constraint on each element, which has only three degrees of freedom. We investigate the consistency, approximation, superclose property, discrete Green's function and superconvergence of this element. Moreover, we propose a new postprocessing technique and apply it to this element. It is proved that the postprocessed discrete solution is superconvergent under a mild assumption on the mesh.展开更多
In this paper, we extend two rectangular elements for Reissner-Mindlin plate [9] to the quadrilateral case. Optimal H and L error bounds independent of the plate hickness are derived under a mild assumption on the mes...In this paper, we extend two rectangular elements for Reissner-Mindlin plate [9] to the quadrilateral case. Optimal H and L error bounds independent of the plate hickness are derived under a mild assumption on the mesh partition.展开更多
This is the third part of the paper for the rotated Q1 nonconforming element on quadrilateral meshes for general second order elliptic problems. Some optimal numerical formulas are presented and analyzed. The novelty ...This is the third part of the paper for the rotated Q1 nonconforming element on quadrilateral meshes for general second order elliptic problems. Some optimal numerical formulas are presented and analyzed. The novelty is that it includes a formula with only two sampling points which excludes even a Q1 unisolvent set. It is the optimal numerical integration formula over a quadrilateral mesh with least sampling points up to now.展开更多
In this paper,a new diagnostic method,the rotated complex empirical orthogonal function (RCEOF)analysis is developed.The general principle and the mathematical foundation of RCEOF are discussed.
This is the second part of the paper for the mathematical study of nonconforming rotated Q1 element (NRQ1 hereafter) on arbitrary quadrilateral meshes. Some Poincare Inequalities are proved without assuming the quasi-...This is the second part of the paper for the mathematical study of nonconforming rotated Q1 element (NRQ1 hereafter) on arbitrary quadrilateral meshes. Some Poincare Inequalities are proved without assuming the quasi-uniformity of the mesh subdivision. A discrete trace inequality is also proved.展开更多
In this paper, we consider the nonconforming rotated Q1 element for the second order elliptic problem on the non-tensor product anisotropic meshes, i.e. the anisotropic affine quadrilateral meshes. Though the interpol...In this paper, we consider the nonconforming rotated Q1 element for the second order elliptic problem on the non-tensor product anisotropic meshes, i.e. the anisotropic affine quadrilateral meshes. Though the interpolation error is divergent on the anisotropic meshes,we overcome this difficulty by constructing another proper operator. Then we give the optimal approximation error and the consistency error estimates under the anisotropic affine quadrilateral meshes. The results of this paper provide some hints to derive the anisotropic error of some finite elements whose interpolations do not satisfy the anisotropic interpolation properties. Lastly, a numerical test is carried out, which coincides with our theoretical analysis.展开更多
Object detection in Remote Sensing(RS)has achieved tremendous advances in recent years,but it remains challenging for rotated object detection due to cluttered backgrounds,dense object arrangements and the wide range ...Object detection in Remote Sensing(RS)has achieved tremendous advances in recent years,but it remains challenging for rotated object detection due to cluttered backgrounds,dense object arrangements and the wide range of size variations among objects.To tackle this problem,Dense Context Feature Pyramid Network(DCFPN)and a powerα-Gaussian loss are designed for rotated object detection in this paper.The proposed DCFPN can extract multi-scale information densely and accurately by leveraging a dense multi-path dilation layer to cover all sizes of objects in remote sensing scenarios.For more accurate detection while avoiding bottlenecks such as boundary discontinuity in rotated bounding box regression,a-Gaussian loss,a unified power generalization of existing Gaussian modeling losses is proposed.Furthermore,the properties ofα-Gaussian loss are analyzed comprehensively for a wider range of applications.Experimental results on four datasets(UCAS-AOD,HRSC2016,DIOR-R,and DOTA)show the effectiveness of the proposed method using different detectors,and are superior to the existing methods in both feature extraction and bounding box regression。展开更多
The numerical solving and the program designing of the rotated complex empirical orthogonal function(RCEOF)are discussed.Some examples of RCEOF are also presented.
基金Project supported by Natural Science Foundation of Shandong Province,China (Grant Nos.ZR2021MF049,ZR2022LLZ012,and ZR2021LLZ001)。
文摘Quantum error correction is a crucial technology for realizing quantum computers.These computers achieve faulttolerant quantum computing by detecting and correcting errors using decoding algorithms.Quantum error correction using neural network-based machine learning methods is a promising approach that is adapted to physical systems without the need to build noise models.In this paper,we use a distributed decoding strategy,which effectively alleviates the problem of exponential growth of the training set required for neural networks as the code distance of quantum error-correcting codes increases.Our decoding algorithm is based on renormalization group decoding and recurrent neural network decoder.The recurrent neural network is trained through the ResNet architecture to improve its decoding accuracy.Then we test the decoding performance of our distributed strategy decoder,recurrent neural network decoder,and the classic minimum weight perfect matching(MWPM)decoder for rotated surface codes with different code distances under the circuit noise model,the thresholds of these three decoders are about 0.0052,0.0051,and 0.0049,respectively.Our results demonstrate that the distributed strategy decoder outperforms the other two decoders,achieving approximately a 5%improvement in decoding efficiency compared to the MWPM decoder and approximately a 2%improvement compared to the recurrent neural network decoder.
基金supported by the National Science and Technology Major Project of China(No.2011ZX05004-003)the National Basic Research Program of China(No.2013CB228602)the National High Tech Research Program of China(No.2013AA064202)
文摘Numerical simulations of a seismic wavefield are important to analyze seismic wave propagation. Elastic-wave equations are used in data simulation for modeling migration and imaging. In elastic wavefield numerical modeling, the rotated staggered-grid method (RSM) is a modification of the standard staggered-grid method (SSM). The variable-order method is based on the method of variable-length spatial operators and wavefield propagation, and it calculates the real dispersion error by adapting different finite-difference orders to different velocities. In this study, the variable-order rotated staggered-grid method (VRSM) is developed after applying the variable-order method to RSM to solve the numerical dispersion problem of RSM in low-velocity regions and reduce the computation cost. Moreover, based on theoretical dispersion and the real dispersion error of wave propagation calculated with the wave separation method, the application of the original method is extended from acoustic to shear waves, and the calculation is modified from theoretical to time-varying values. A layered model and an overthrust model are used to demonstrate the applicability of VRSM. We also evaluate the order distribution, wave propagation, and computation time. The results suggest that the VRSM order distribution is reasonable and VRSM produces high-precision results with a minimal computation cost.
基金supported by the National Nature Science Foundation of China(Nos.41504102 and 41604037)National Science and Technology Major Project(No.2016ZX05015-006)Yangtze University Youth Found(No.2015cqn32)
文摘Finite-difference(FD) methods are widely used in seismic forward modeling owing to their computational efficiency but are not readily applicable to irregular topographies. Thus, several FD methods based on the transformation to curvilinear coordinates using body-fitted grids have been proposed, e.g., stand staggered grid(SSG) with interpolation, nonstaggered grid, rotated staggered grid(RSG), and fully staggered. The FD based on the RSG is somewhat superior to others because it satisfies the spatial distribution of the wave equation without additional memory and computational requirements; furthermore, it is simpler to implement. We use the RSG FD method to transform the firstorder stress–velocity equation in the curvilinear coordinates system and introduce the highprecision adaptive, unilateral mimetic finite-difference(UMFD) method to process the freeboundary conditions of an irregular surface. The numerical results suggest that the precision of the solution is higher than that of the vacuum formalism. When the minimum wavelength is low, UMFD avoids the surface wave dispersion. We compare FD methods based on RSG, SEM, and nonstaggered grid and infer that all simulation results are consistent but the computational efficiency of the RSG FD method is higher than the rest.
文摘Numerical simulation in transverse isotropic media with tilted symmetry axis(TTI) using the standard staggered-grid finite-difference scheme(SSG)results in errors caused by averaging or interpolation. In order to eliminate the errors, a method of rotated staggered-grid finite-difference scheme(RSG) is proposed. However, the RSG brings serious numerical dispersion. The compact staggered-grid finite-difference scheme(CSG) is an implicit difference scheme, which use fewer grid points to suppress dispersion more effectively than the SSG. This paper combines the CSG with the RSG to derive a rotated staggered-grid compact finite-difference scheme(RSGC). The numerical experiments indicate that the RSGC has weaker numerical dispersion and better accuracy than the RSG.
文摘·AIM: To evaluate the efficacy of a new modality for improving visual acuity (VA) in pediatric patients with anisometropic amblyopia. · METHODS: Retrospective and interventional case series. Medical records of 360 children with anisometropic amblyopia treated with a modality that included rotated prisms, lenses, and near activities from January 2008 to January 2012 were analyzed. Characteristics such as improvement of VA and contrast sensitivity in amblyopic eyes and resolution of amblyopia (VA ≤ 0.1logMAR or a difference of ≤ 2 lines in logMAR between the eyes) were assessed. ·RESULTS: Among the patients, the mean VA of the amblyopic eyes improved from 0.48logMAR (SD=0.16) to 0.12logMAR (SD =0.16) and the mean VA improvement was 0.36logMAR (SD =0.10, P【0.001). Resolution of amblyopia was achieved in 233 of 360 patients (64.72%). The mean time for resolution of amblyopia was 8.05 weeks (SD=4.83) or 14.14 sessions (SD=8.76). Among the study group, refraction error did not change significantly after treatment (P=0.437). We found that better baseline VA may be related to success and shorten the time to amblyopic resolution. ·CONCLUSION: VA and contrast sensitivity improved with rotated prisms, correcting lenses, and near activities in children with anisometropic amblyopia. The VA improvement by this modality was comparable to other methods. However, the time to resolution of amblyopia was shorter with this method than with other modalities. Rotated prisms combined with near acuity could provide an alternative treatment in children with anisometropic amblyopia who can’t tolerant traditional therapy method like patching.
文摘Diffraction patterns of a rotated grating are investigated from both theoretical and experimental points of view. It is shown that as the grating rotates, the angle of deviation of each diffracted line relative to the incident light goes through a minimum, and that the angle between any two successive diffracted lines goes through a minimum value which is the same for all adjacent diffracted lines. It is also shown that the angle between diffraction lines with n=1 and n=-1 is not sensitive to small variations of the grating from being normal to the incident light. Finally, a method is suggested for determining the line distance of a diffraction grating with high accuracy.
文摘In addition to an extrusive volcanic component and associated sills,the Neoproterozoic Franklin Large Igneous Province(LIP)comprises a giant radiating dyke swarm spanning an arc of ca.110?,as well as a less-
基金The author would like to thank the Deanship of Scientific Research at Majmaah University for supporting this work under Project Number R-2022-71.
文摘In this study,a compact 2×2 interlaced sequentially rotated dual-polarized dielectric-resonator antenna array is proposed for 5.8 GHz applications.The array is composed of a novel unit elements that are made of rectangular dielectric resonator(RDR)coupled to an eye slot for generating the orthogonal modes,TEδx 21 and TE1yδ1 to acquire circular polarization(CP)radiation.For the purpose of miniaturization and achieving dual polarized resonance,the array is fed by two interlaced ports and each port excites two radiating elements.The first port feeds horizontal elements to obtain left hand circular polarization(LHCP).The second port feeds vertical elements to obtain right hand circular polarization(RHCP).A quarter-wave length transformer is employed to reduce the attenuation and consequently increase the array gain performance.The 35×35 mm2(0.676λ0×0.676λ0)gains were 8.4 and 8.2 dBi for port 1 and port 2,respectively,with port isolations of−33.51 dB.The design achieves a voltage standing-wave ratio(VSWR)<−10 dB and an axial ratio(AR)<−3 dB bandwidth of 2.48%(5.766 to 5.911 GHz)for LHCP at port 1 and a VSWR<−10 dB and AR<−3 dB bandwidth of 2.28%(5.788 to 5.922 GHz)for RHCP at port 2.The findings of the proposed design validate its use for ISM band applications.
基金Support to the SatNEx-Ⅲ Network of Experts (SatNEx-Ⅲ) CoO2,2011-2012
文摘In this paper,we study the advantages of cooperation in broadcasting systems from a geosynchronous earth orbit(GEO)satellite to mobile terminals(MTs),achieved through a terrestrial complementary ground station(CGS) with fixed installment,which acts as a relay.Moreover and in the context of the digital video broadcasting-satellite-to-handheld(DVB-SH) standard,the performance improvements offered by the rotated constellations method are investigated,where prior transmission,a phase rotation of the transmitted symbols by a fixed angle is applied followed by a random component interleaver.Turbo codes with soft decision decoding and appropriate random channel interleavers are also considered.We present analytical expressions for the bit log-likelihood ratios(LLRs)that are needed for soft decision decoding at the MT turbo decoder,while the code combining technique is adapted to improve the end-to-end(E2E) performance.Then,we obtain through extensive computer simulations the average bit error probability(ABEP) of quadrature phase-shift keying(QPSK) signals received over pure land-mobile satellite(LMS)and pure CGS links for coding rates 1/3 and6/7.Moreover,the optimal rotation angles are obtained for both links.E2 E ABEP results are then presented assuming cooperation between GEO and CGS,while the power allocation issue is investigated under fixed total transmission power.Our performance evaluation results show that by using the constellation rotation technique,a performance gain can be achieved for high coding rates.
文摘In this paper, we define a new nonconforming quadrilateral finite element based on the nonconforming rotated Q1 element by enforcing a constraint on each element, which has only three degrees of freedom. We investigate the consistency, approximation, superclose property, discrete Green's function and superconvergence of this element. Moreover, we propose a new postprocessing technique and apply it to this element. It is proved that the postprocessed discrete solution is superconvergent under a mild assumption on the mesh.
基金Subsidized by the Special Funds for Major State Basic Research Projects G1999032804.
文摘In this paper, we extend two rectangular elements for Reissner-Mindlin plate [9] to the quadrilateral case. Optimal H and L error bounds independent of the plate hickness are derived under a mild assumption on the mesh partition.
基金The work of P.-B Ming was partially supported by the National Natural Science Foundation of China 10201033
文摘This is the third part of the paper for the rotated Q1 nonconforming element on quadrilateral meshes for general second order elliptic problems. Some optimal numerical formulas are presented and analyzed. The novelty is that it includes a formula with only two sampling points which excludes even a Q1 unisolvent set. It is the optimal numerical integration formula over a quadrilateral mesh with least sampling points up to now.
基金National 9th Five-Year Project under Grant 95-11.
文摘In this paper,a new diagnostic method,the rotated complex empirical orthogonal function (RCEOF)analysis is developed.The general principle and the mathematical foundation of RCEOF are discussed.
基金The work of P.-B.Ming was partially supported by the National Natural Science Foundation of China 10201033
文摘This is the second part of the paper for the mathematical study of nonconforming rotated Q1 element (NRQ1 hereafter) on arbitrary quadrilateral meshes. Some Poincare Inequalities are proved without assuming the quasi-uniformity of the mesh subdivision. A discrete trace inequality is also proved.
文摘In this paper, we consider the nonconforming rotated Q1 element for the second order elliptic problem on the non-tensor product anisotropic meshes, i.e. the anisotropic affine quadrilateral meshes. Though the interpolation error is divergent on the anisotropic meshes,we overcome this difficulty by constructing another proper operator. Then we give the optimal approximation error and the consistency error estimates under the anisotropic affine quadrilateral meshes. The results of this paper provide some hints to derive the anisotropic error of some finite elements whose interpolations do not satisfy the anisotropic interpolation properties. Lastly, a numerical test is carried out, which coincides with our theoretical analysis.
文摘Object detection in Remote Sensing(RS)has achieved tremendous advances in recent years,but it remains challenging for rotated object detection due to cluttered backgrounds,dense object arrangements and the wide range of size variations among objects.To tackle this problem,Dense Context Feature Pyramid Network(DCFPN)and a powerα-Gaussian loss are designed for rotated object detection in this paper.The proposed DCFPN can extract multi-scale information densely and accurately by leveraging a dense multi-path dilation layer to cover all sizes of objects in remote sensing scenarios.For more accurate detection while avoiding bottlenecks such as boundary discontinuity in rotated bounding box regression,a-Gaussian loss,a unified power generalization of existing Gaussian modeling losses is proposed.Furthermore,the properties ofα-Gaussian loss are analyzed comprehensively for a wider range of applications.Experimental results on four datasets(UCAS-AOD,HRSC2016,DIOR-R,and DOTA)show the effectiveness of the proposed method using different detectors,and are superior to the existing methods in both feature extraction and bounding box regression。
基金Supported by the National 9th Five-Year Project under Grant 95-11.
文摘The numerical solving and the program designing of the rotated complex empirical orthogonal function(RCEOF)are discussed.Some examples of RCEOF are also presented.