The present work aims to evaluate the increase in the number of spot welds in the 16 × 16 type fuel assembly structure that connects guide thimbles and spacer grids, in order to provide a proper joint for this co...The present work aims to evaluate the increase in the number of spot welds in the 16 × 16 type fuel assembly structure that connects guide thimbles and spacer grids, in order to provide a proper joint for this connection. This new and improved process can provide more stiffness to the whole structure, since the number of spots raised from four to eight. A 3-D geometric model of a guide thimble section was generated in a CAD (computer aided design) program (SolidWorks). After that, the geometric model was imported to a CAE (computer aided engineering) program (ANSYS Mechanical APDL, Release 14.0), where the finite element model was built, considering the guide thimble geometry assembled with the spacer grid through the welded connections. Boundaries conditions were implemented in the model in order to simulate the correct physical behavior due to the operation of the fuel assembly inside the reactor. The analysis covered specific loads and displacements acting on the entire structure. The method used to solve this finite element analysis was a linear static simulation in order to perform the connection between a spacer grid cell and a guide thimble section. Hence, four models was evaluated, differing on the spot weld number in the spacer grid and guide thimble connection. The rotational stiffness results of each model were compared. The results acquired from four and eight spot weld were validated with physical test results. The behavior of the structure under the acting force/displacement and the related results of the analysis, mainly the stiffness, were satisfied. The results of this analysis were used to prove that the increasing spot welds number is an improvement in the dimensional stability when submitted to loads and displacements required on the fuel assembly design. This analysis aid to get more information of extreme importance such as, the pursuance to develop better manufacturing process and to improve the fuel assembly performance due to the increasing of the bum-up.展开更多
A compact multi-throttle aerostatic guideway is the preferred structure for high precision and acceleration motion in the variable-slit system(VS)of photolithography.The presence of microstructure,such as recesses and...A compact multi-throttle aerostatic guideway is the preferred structure for high precision and acceleration motion in the variable-slit system(VS)of photolithography.The presence of microstructure,such as recesses and grooves,on the guideway working surface has been found to improve the loading performance.Nevertheless,the effects on the guideway performance of changing the microstructure on the micron level are not yet clear.The mesh adaptation method,which was proposed by the authors,is employed in this paper to quantitatively study the influences of four microstructure parameters.The effect of tuning these parameters on the loading performance is revealed.The level of impact determines the proposed design process of the parameters.The characteristic feature of the proposed design process is that the working points of carrying capacity,stiffness,and rotational stiffness are unified under twoway adjusting by means of recess parameters.According to the proposed design process and tuning method,the restriction of supply pressure is lifted to a certain extent and the mutual tradeoff among the loading performances is relieved.The experimental results show that the rotational stiffness of the designed guideway,based on the tuned parameters,reached 2.14×10^(4) Nmrad1 and increased by 69.8%.In a scanning test of the applied VS on argon fluoride laser(ArF)photolithography,the average scanning acceleration reached 67.5 m·s^(-2),meeting the design specification.展开更多
To investigate the effect of higher modes on the displacement and inner forces in HWBB(hinged wall with buckling-restrained braces in base)-frame structure,distributed parameter models for both the HWBB-hinged frame s...To investigate the effect of higher modes on the displacement and inner forces in HWBB(hinged wall with buckling-restrained braces in base)-frame structure,distributed parameter models for both the HWBB-hinged frame structure and the HWBB-MRF(moment resisting frame)structure are built.The hinged wall is simplified as a flexural beam.BRBs(bucking-restrained braces)are simplified to a rotational spring.MRF is simplified to a shear beam.Vibration equations of distributed parameter models are derived.Natural periods,natural modes of vibration,inner forces and displacements of the distributed parameter models are derived based on the vibration equations using numerical methods.The effect of the relative stiffness ratio and the rotational stiffness ratio on the higher mode effects is investigated.For elastic structures,the global displacement and shear in MRF are predominantly controlled by the first mode,while the shear and bending moment in the wall are significantly affected by higher mode effects.The effect of the yielding of BRB on the inner forces distribution in the HWBB-hinged frame is investigated.The results indicate that the first mode will no longer contribute to the inner forces and the contribution from higher modes to inner forces increases after the BRBs yield.Displacement is not sensitive to higher mode effects and it is controlled by the first mode after the BRBs yield.Parameter analysis demonstrates that the displacement amplitudes are reduced with the increase in the flexural stiffness of the wall before the flexural stiffness reaches a certain value.The first three periods decrease with the increase in the rotational stiffness.With the increase in the rotational stiffness ratio,the contribution from the first mode decreases while contributions from both the second mode and third mode increase.展开更多
The stiffness matrix of semi-rigidly connected composite beams considering interface slip was established and the calculation method for elastic seismic response of composite frame was derived.The corresponding calcul...The stiffness matrix of semi-rigidly connected composite beams considering interface slip was established and the calculation method for elastic seismic response of composite frame was derived.The corresponding calculation programs were developed.Introducing the dimensionless quantities that were related to the connector shearing stiffness and the joint rotation stiffness,the influences of interface slip and semi-rigid joint on composite frame were transferred to quantitative parameter analysis,taking account of cross sectional properties,materials and linear stiffness of composite beam synthetically.Based on the calculation programs,free vibration frequencies and seismic responses of semi-rigid joint steel-concrete composite frame considering interface slip were calculated.The influences of interface slip and semi rigid joint on dynamic characteristics and seismic response were analyzed and the seismic design advices were presented.The results show that the interface slip decreases the free vibration frequencies and increase the seismic responses of composite frame.The semi-rigid joint reduces the free vibration frequencies and increases seismic responses of composite frame compared with rigid joint.With the increase of joint rotational stiffness,the elastic seismic responses of composite frame increase firstly and then decrease.The effects are related to the ratio of joint rotation stiffness to linear stiffness of composite beam.展开更多
Reinforced concrete(RC) buildings in Nepal are constructed with RC frames and masonry infill panels. These structures exhibit a highly non-linear inelastic behavior resulting from the interaction between the panels ...Reinforced concrete(RC) buildings in Nepal are constructed with RC frames and masonry infill panels. These structures exhibit a highly non-linear inelastic behavior resulting from the interaction between the panels and frames. This paper presents an extensive case study of existing RC buildings in Nepal. Non-linear analyses were performed on structural models of the buildings considered as a bare frame and with masonry infill, in order to evaluate the influence of infill walls on the failure mechanisms. Five three-storey buildings with different structural configurations and detailing were selected. The effect of masonry infill panels on structural response was delineated by comparing the bare-framed response with the infill response. Seismic performance is evaluated with regard to global strength, stiffness, energy dissipation, inter-storey drift, and total deflection of the structure. A parametric analysis of structures with masonry infill is also performed. For this, the influence of different material properties is studied, namely diagonal compressive stress, modulus of elasticity and tensile stress of masonry infill panels. Study results show that masonry infill increases the global strength and stiffness of the structures; it decreases the inter-storey drift and hence the total displacement of the structure. The results quantify the influence of the infill panels on structural response and, in particular, the effect of the diagonal compressive strength of the masonry wall.展开更多
In this paper,a novel 2-DOF rotational pointing mechanism(RPM)is designed inspired by the guidelines of the graphical approach.The mechanism integrates with a fast steering mirror(FSM)for compensating pointing errors ...In this paper,a novel 2-DOF rotational pointing mechanism(RPM)is designed inspired by the guidelines of the graphical approach.The mechanism integrates with a fast steering mirror(FSM)for compensating pointing errors of a laser beam.The design intends to achieve an angular travel of±10 mrad and steers a 25 mm mirror aperture.A planar flexure with beam flexures accompanied in parallel with an axial flexure build-up mechanism configuration.Compliant mechanismbased RPM ensures high precision and compactness.Compliance characteristics are established based on the stiffness matrix method for four different planar flexure layouts.One layout with best in-plane rotational compliance is then assessed for performance sensitivity to mechanism dimension parameters and parasitic error,thus informing the design space.Rotational stiffness in both the inplane rotational axes and stress is determined based on finite element analysis(FEA).The wire electrical discharge machining(EDM)is employed for developing the proof of concept for the RPM and is then assembled in FSM.Experiments are conducted to determine the rotational stiffness and angular travel about both in-plane rotational axes.Comparison among theoretical,numerical and experiments reveal excellent linearity of rotational stiffness along the rotational travel range.The maximum theoretical error is less than 5.5%compared with FEA while,the experimental error has a mean of 5%and 3%for both rotational axes thus satisfying the intended design requirement.展开更多
The seismic characteristics of four typical mortise-tenon joints of Chinese southern traditional timber frame buildings were researched, including Yanwei mortise-tenon joint (including dropping Yanwei mortise-tenon j...The seismic characteristics of four typical mortise-tenon joints of Chinese southern traditional timber frame buildings were researched, including Yanwei mortise-tenon joint (including dropping Yanwei mortise-tenon joint), Shizigutou mortise-tenon joint, Ban mortise-tenon joint and Mantou mortise-tenon joint. Experiments on thirteen specimens were carried out. Failure modes, hysteresis curves, skeleton curves and rotational stiffness were studied. The results provided a theoretical basis for seismic research, protection and maintenance of Chinese southern traditional timber flame buildings.展开更多
文摘The present work aims to evaluate the increase in the number of spot welds in the 16 × 16 type fuel assembly structure that connects guide thimbles and spacer grids, in order to provide a proper joint for this connection. This new and improved process can provide more stiffness to the whole structure, since the number of spots raised from four to eight. A 3-D geometric model of a guide thimble section was generated in a CAD (computer aided design) program (SolidWorks). After that, the geometric model was imported to a CAE (computer aided engineering) program (ANSYS Mechanical APDL, Release 14.0), where the finite element model was built, considering the guide thimble geometry assembled with the spacer grid through the welded connections. Boundaries conditions were implemented in the model in order to simulate the correct physical behavior due to the operation of the fuel assembly inside the reactor. The analysis covered specific loads and displacements acting on the entire structure. The method used to solve this finite element analysis was a linear static simulation in order to perform the connection between a spacer grid cell and a guide thimble section. Hence, four models was evaluated, differing on the spot weld number in the spacer grid and guide thimble connection. The rotational stiffness results of each model were compared. The results acquired from four and eight spot weld were validated with physical test results. The behavior of the structure under the acting force/displacement and the related results of the analysis, mainly the stiffness, were satisfied. The results of this analysis were used to prove that the increasing spot welds number is an improvement in the dimensional stability when submitted to loads and displacements required on the fuel assembly design. This analysis aid to get more information of extreme importance such as, the pursuance to develop better manufacturing process and to improve the fuel assembly performance due to the increasing of the bum-up.
基金This work was funded by the National Natural Science Foundation of China(51675136)the National Science and Technology Major Project(2017ZX02101006-005)the Heilongjiang Natural Science Foundation(E2017032).
文摘A compact multi-throttle aerostatic guideway is the preferred structure for high precision and acceleration motion in the variable-slit system(VS)of photolithography.The presence of microstructure,such as recesses and grooves,on the guideway working surface has been found to improve the loading performance.Nevertheless,the effects on the guideway performance of changing the microstructure on the micron level are not yet clear.The mesh adaptation method,which was proposed by the authors,is employed in this paper to quantitatively study the influences of four microstructure parameters.The effect of tuning these parameters on the loading performance is revealed.The level of impact determines the proposed design process of the parameters.The characteristic feature of the proposed design process is that the working points of carrying capacity,stiffness,and rotational stiffness are unified under twoway adjusting by means of recess parameters.According to the proposed design process and tuning method,the restriction of supply pressure is lifted to a certain extent and the mutual tradeoff among the loading performances is relieved.The experimental results show that the rotational stiffness of the designed guideway,based on the tuned parameters,reached 2.14×10^(4) Nmrad1 and increased by 69.8%.In a scanning test of the applied VS on argon fluoride laser(ArF)photolithography,the average scanning acceleration reached 67.5 m·s^(-2),meeting the design specification.
基金The National Key Research and Development Program of China(No.2018YFC0705802)the National Natural Science Foundation of China(No.51978165)+1 种基金the Fundamental Research Funds for the Central Universities(No.3205007720)Postgraduate Research and Practice Innovation Program of Jiangsu Province(No.3205007720).
文摘To investigate the effect of higher modes on the displacement and inner forces in HWBB(hinged wall with buckling-restrained braces in base)-frame structure,distributed parameter models for both the HWBB-hinged frame structure and the HWBB-MRF(moment resisting frame)structure are built.The hinged wall is simplified as a flexural beam.BRBs(bucking-restrained braces)are simplified to a rotational spring.MRF is simplified to a shear beam.Vibration equations of distributed parameter models are derived.Natural periods,natural modes of vibration,inner forces and displacements of the distributed parameter models are derived based on the vibration equations using numerical methods.The effect of the relative stiffness ratio and the rotational stiffness ratio on the higher mode effects is investigated.For elastic structures,the global displacement and shear in MRF are predominantly controlled by the first mode,while the shear and bending moment in the wall are significantly affected by higher mode effects.The effect of the yielding of BRB on the inner forces distribution in the HWBB-hinged frame is investigated.The results indicate that the first mode will no longer contribute to the inner forces and the contribution from higher modes to inner forces increases after the BRBs yield.Displacement is not sensitive to higher mode effects and it is controlled by the first mode after the BRBs yield.Parameter analysis demonstrates that the displacement amplitudes are reduced with the increase in the flexural stiffness of the wall before the flexural stiffness reaches a certain value.The first three periods decrease with the increase in the rotational stiffness.With the increase in the rotational stiffness ratio,the contribution from the first mode decreases while contributions from both the second mode and third mode increase.
基金Project(50778177) supported by the National Natural Science Foundation of ChinaProject(07JJ1009) supported by the Outstanding Younger Fund of Hunan Province,China
文摘The stiffness matrix of semi-rigidly connected composite beams considering interface slip was established and the calculation method for elastic seismic response of composite frame was derived.The corresponding calculation programs were developed.Introducing the dimensionless quantities that were related to the connector shearing stiffness and the joint rotation stiffness,the influences of interface slip and semi-rigid joint on composite frame were transferred to quantitative parameter analysis,taking account of cross sectional properties,materials and linear stiffness of composite beam synthetically.Based on the calculation programs,free vibration frequencies and seismic responses of semi-rigid joint steel-concrete composite frame considering interface slip were calculated.The influences of interface slip and semi rigid joint on dynamic characteristics and seismic response were analyzed and the seismic design advices were presented.The results show that the interface slip decreases the free vibration frequencies and increase the seismic responses of composite frame.The semi-rigid joint reduces the free vibration frequencies and increases seismic responses of composite frame compared with rigid joint.With the increase of joint rotational stiffness,the elastic seismic responses of composite frame increase firstly and then decrease.The effects are related to the ratio of joint rotation stiffness to linear stiffness of composite beam.
基金supported by the Eurasian University Network for International Cooperation in Earthquake(EU-NICE)
文摘Reinforced concrete(RC) buildings in Nepal are constructed with RC frames and masonry infill panels. These structures exhibit a highly non-linear inelastic behavior resulting from the interaction between the panels and frames. This paper presents an extensive case study of existing RC buildings in Nepal. Non-linear analyses were performed on structural models of the buildings considered as a bare frame and with masonry infill, in order to evaluate the influence of infill walls on the failure mechanisms. Five three-storey buildings with different structural configurations and detailing were selected. The effect of masonry infill panels on structural response was delineated by comparing the bare-framed response with the infill response. Seismic performance is evaluated with regard to global strength, stiffness, energy dissipation, inter-storey drift, and total deflection of the structure. A parametric analysis of structures with masonry infill is also performed. For this, the influence of different material properties is studied, namely diagonal compressive stress, modulus of elasticity and tensile stress of masonry infill panels. Study results show that masonry infill increases the global strength and stiffness of the structures; it decreases the inter-storey drift and hence the total displacement of the structure. The results quantify the influence of the infill panels on structural response and, in particular, the effect of the diagonal compressive strength of the masonry wall.
基金co-supported by the National Natural Science Foundation of China(No.91748205 and 51675032)the Fundamental Research Funds for the Central Universities(No.YWF-18-BJ-Y-34 and YWF-18-BJ-J-23)of China。
文摘In this paper,a novel 2-DOF rotational pointing mechanism(RPM)is designed inspired by the guidelines of the graphical approach.The mechanism integrates with a fast steering mirror(FSM)for compensating pointing errors of a laser beam.The design intends to achieve an angular travel of±10 mrad and steers a 25 mm mirror aperture.A planar flexure with beam flexures accompanied in parallel with an axial flexure build-up mechanism configuration.Compliant mechanismbased RPM ensures high precision and compactness.Compliance characteristics are established based on the stiffness matrix method for four different planar flexure layouts.One layout with best in-plane rotational compliance is then assessed for performance sensitivity to mechanism dimension parameters and parasitic error,thus informing the design space.Rotational stiffness in both the inplane rotational axes and stress is determined based on finite element analysis(FEA).The wire electrical discharge machining(EDM)is employed for developing the proof of concept for the RPM and is then assembled in FSM.Experiments are conducted to determine the rotational stiffness and angular travel about both in-plane rotational axes.Comparison among theoretical,numerical and experiments reveal excellent linearity of rotational stiffness along the rotational travel range.The maximum theoretical error is less than 5.5%compared with FEA while,the experimental error has a mean of 5%and 3%for both rotational axes thus satisfying the intended design requirement.
基金supported by the National Natural Science Foundation of China(Grant No.51008059)China Postdoctoral Science Special Foundation(Grant No.201003543)
文摘The seismic characteristics of four typical mortise-tenon joints of Chinese southern traditional timber frame buildings were researched, including Yanwei mortise-tenon joint (including dropping Yanwei mortise-tenon joint), Shizigutou mortise-tenon joint, Ban mortise-tenon joint and Mantou mortise-tenon joint. Experiments on thirteen specimens were carried out. Failure modes, hysteresis curves, skeleton curves and rotational stiffness were studied. The results provided a theoretical basis for seismic research, protection and maintenance of Chinese southern traditional timber flame buildings.