Air route network(ARN)planning is an efficient way to alleviate civil aviation flight delays caused by increasing development and pressure for safe operation.Here,the ARN shortest path was taken as the objective funct...Air route network(ARN)planning is an efficient way to alleviate civil aviation flight delays caused by increasing development and pressure for safe operation.Here,the ARN shortest path was taken as the objective function,and an air route network node(ARNN)optimization model was developed to circumvent the restrictions imposed by″three areas″,also known as prohibited areas,restricted areas,and dangerous areas(PRDs),by creating agrid environment.And finally the objective function was solved by means of an adaptive ant colony algorithm(AACA).The A593,A470,B221,and G204 air routes in the busy ZSHA flight information region,where the airspace includes areas with different levels of PRDs,were taken as an example.Based on current flight patterns,a layout optimization of the ARNN was computed using this model and algorithm and successfully avoided PRDs.The optimized result reduced the total length of routes by 2.14% and the total cost by 9.875%.展开更多
The air route network, which supports all the flight activities of the civil aviation, is the most fundamental infrastructure of air traffic management system. In this paper, we study the Chinese air route network (C...The air route network, which supports all the flight activities of the civil aviation, is the most fundamental infrastructure of air traffic management system. In this paper, we study the Chinese air route network (CARN) within the framework of complex networks. We find that CARN is a geographical network possessing exponential degree distribution, low clustering coefficient, large shortest path length and exponential spatial distance distribution that is obviously different from that of the Chinese airport network (CAN). Besides, via investigating the flight data from 2002 to 2010, we demonstrate that the topology structure of CARN is homogeneous, howbeit the distribution of flight flow on CARN is rather heterogeneous. In addition, the traffic on CARN keeps growing in an exponential form and the increasing speed of west China is remarkably larger than that of east China. Our work will be helpful to better understand Chinese air traffic systems.展开更多
Air route network is the carrier of air traffic flow,and traffic assignment is a method to verify the rationality of air route network structure.Therefore,air route network generation based on traffic assignment has b...Air route network is the carrier of air traffic flow,and traffic assignment is a method to verify the rationality of air route network structure.Therefore,air route network generation based on traffic assignment has been becoming the research focus of airspace programming technology.Based on link prediction technology and optimization theory,a bi-level programming model is established in the paper.The model includes an upper level of air route network generation model and a lower level of traffic assignment model.The air route network structure generation incorporates network topology generation algorithm based on link prediction technology and optimal path search algorithm based on preference,and the traffic assignment adopts NSGA-Ⅲalgorithm.Based on the Python platform NetworkX complex network analysis library,a network of 57 airports,383 nodes,and 635 segments within China Airspace Beijing and Shanghai Flight Information Regions and 187975 sorties of traffic are used to simulate the bilevel model.Compared with the existing air route network,the proposed air route network can decrease the cost by 50.624%,lower the flight conflict coefficient by 33.564%,and reduce dynamic non-linear coefficient by 7.830%.展开更多
Community division is an important method to study the characteristics of complex networks.The widely used fast-Newman(FN)algorithm only considers the topology division of the network at the static layer,and dynamic t...Community division is an important method to study the characteristics of complex networks.The widely used fast-Newman(FN)algorithm only considers the topology division of the network at the static layer,and dynamic traffic flow demand is ignored.The result of the division is only structurally optimal.To improve the accuracy of community division,based on the static topology of air route network,the concept of network traffic contribution degree is put forward.The concept of operational research is introduced to optimize the network adjacency matrix to form an improved community division algorithm.The air route network in East China is selected as the object of algorithm comparison experiment,including 352 waypoints and 928 segments.The results show that the improved algorithm has a more ideal effect on the division of the community structure.The proportion of the number of nodes included in the large community has increased by 21.3%,and the modularity value has increased from 0.756 to 0.806,in which the modularity value is in the range of[-0.5,1).The research results can provide theoretical and technical support for the optimization of flight schedules and the rational use of air route resources.展开更多
Due to rapid development in the past decade, air transportation system has attracted considerable research attention from diverse communities. While most of the previous studies focused on airline networks, here we sy...Due to rapid development in the past decade, air transportation system has attracted considerable research attention from diverse communities. While most of the previous studies focused on airline networks, here we systematically explore the robustness of the Chinese air route network, and identify the vital edges which form the backbone of Chinese air transportation system.Specifically, we employ a memetic algorithm to minimize the network robustness after removing certain edges, and hence the solution of this model is the set of vital edges. Counterintuitively,our results show that the most vital edges are not necessarily the edges of the highest topological importance, for which we provide an extensive explanation from the microscope view. Our findings also offer new insights to understanding and optimizing other real-world network systems.展开更多
Air route network optimization,one of the essential parts of the airspace planning,is an effective way to optimize airspace resources,increase airspace capacity,and alleviate air traffic congestion.However,little has ...Air route network optimization,one of the essential parts of the airspace planning,is an effective way to optimize airspace resources,increase airspace capacity,and alleviate air traffic congestion.However,little has been done on the optimization of air route network in the fragmented airspace caused by prohibited,restricted,and dangerous areas(PRDs).In this paper,an air route network optimization model is developed with the total operational cost as the objective function while airspace restriction,air route network capacity,and non-straight-line factors(NSLF) are taken as major constraints.A square grid cellular space,Moore neighbors,a fixed boundary,together with a set of rules for solving the route network optimization model are designed based on cellular automata.The empirical traffic of airports with the largest traffic volume in each of the 9 flight information regions in China's Mainland is collected as the origin-destination(OD) airport pair demands.Based on traffic patterns,the model generates 35 air routes which successfully avoids 144 PRDs.Compared with the current air route network structure,the number of nodes decreases by 41.67%,while the total length of flight segments and air routes drop by 32.03% and 5.82% respectively.The NSLF decreases by 5.82% with changes in the total length of the air route network.More importantly,the total operational cost of the whole network decreases by 6.22%.The computational results show the potential benefits of the model and the advantage of the algorithm.Optimization of air route network can significantly reduce operational cost while ensuring operation safety.展开更多
With the rapid increase of Unmanned Aircraft Vehicle(UAV) numbers,the contradiction between extensive flight demands and limited low-altitude airspace resources has become increasingly prominent.To ensure the safety a...With the rapid increase of Unmanned Aircraft Vehicle(UAV) numbers,the contradiction between extensive flight demands and limited low-altitude airspace resources has become increasingly prominent.To ensure the safety and efficiency of low-altitude UAV operations,the low-altitude UAV public air route creatively proposed by the Chinese Academy of Sciences(CAS) and supported by the Civil Aviation Administration of China(CAAC) has been gradually recognized.However,present planning research on UAV low-altitude air route is not enough to explore how to use the ground transportation infrastructure,how to closely combine the surface pattern characteristics,and how to form the mechanism of "network".Based on the solution proposed in the early stage and related researches,this paper further deepens the exploration of the low-altitude public air route network and the implementation of key technologies and steps with an actual case study in Tianjin,China.Firstly,a path-planning environment consisting of favorable spaces,obstacle spaces,and mobile communication spaces for UAV flights was pre-constructed.Subsequently,air routes were planned by using the conflict detection and path re-planning algorithm.Our study also assessed the network by computing the population exposure risk index(PERI) and found that the index value was greatly reduced after the construction of the network,indicating that the network can effectively reduce the operational risk.In this study,a low-altitude UAV air route network in an actual region was constructed using multidisciplinary approaches such as remote sensing,geographic information,aviation,and transportation;it indirectly verified the rationality of the outcomes.This can provide practical solutions to low-altitude traffic problems in urban areas.展开更多
With the rapid development of air transportation, network service ability has attracted a lot of attention in academe. Aiming to improve the throughput of the air route network (ARN), we propose an effective local d...With the rapid development of air transportation, network service ability has attracted a lot of attention in academe. Aiming to improve the throughput of the air route network (ARN), we propose an effective local dynamic routing strategy in this paper. Several factors, such as the rout- ing distance, the geographical distance and the real-time local traffic, are taken into consideration. When the ARN is in the normal free-flow state, the proposed strategy can recover the shortest path routing (SPR) strategy. When the ARN undergoes congestion, the proposed strategy changes the paths of flights based on the real-time local traffic information. The throughput of the Chinese air route network (CARN) is evaluated. Results confirm that the proposed strategy can significantly improve the throughput of CARN. Meanwhile, the increase in the average flying distance and time is tiny. Results also indicate the importance of the distance related factors in a routing strategy designed for the ARN.展开更多
As the use of mobile devices continues to rise,trust administration will significantly improve security in routing the guaranteed quality of service(QoS)supply in Mobile Ad Hoc Networks(MANET)due to the mobility of th...As the use of mobile devices continues to rise,trust administration will significantly improve security in routing the guaranteed quality of service(QoS)supply in Mobile Ad Hoc Networks(MANET)due to the mobility of the nodes.There is no continuance of network communication between nodes in a delay-tolerant network(DTN).DTN is designed to complete recurring connections between nodes.This approach proposes a dynamic source routing protocol(DSR)based on a feed-forward neural network(FFNN)and energybased random repetition trust calculation in DTN.If another node is looking for a node that swerved off of its path in this situation,routing will fail since it won’t recognize it.However,in the suggested strategy,nodes do not stray from their pathways for routing.It is only likely that the message will reach the destination node if the nodes encounter their destination or an appropriate transitional node on their default mobility route,based on their pattern of mobility.The EBRRTC-DTN algorithm(Energy based random repeat trust computation)is based on the time that has passed since nodes last encountered the destination node.Compared to other existing techniques,simulation results show that this process makes the best decision and expertly determines the best and most appropriate route to send messages to the destination node,which improves routing performance,increases the number of delivered messages,and decreases delivery delay.Therefore,the suggested method is better at providing better QoS(Quality of Service)and increasing network lifetime,tolerating network system latency.展开更多
The Internet of Things(IoT)consists of interconnected smart devices communicating and collecting data.The Routing Protocol for Low-Power and Lossy Networks(RPL)is the standard protocol for Internet Protocol Version 6(...The Internet of Things(IoT)consists of interconnected smart devices communicating and collecting data.The Routing Protocol for Low-Power and Lossy Networks(RPL)is the standard protocol for Internet Protocol Version 6(IPv6)in the IoT.However,RPL is vulnerable to various attacks,including the sinkhole attack,which disrupts the network by manipulating routing information.This paper proposes the Unweighted Voting Method(UVM)for sinkhole node identification,utilizing three key behavioral indicators:DODAG Information Object(DIO)Transaction Frequency,Rank Harmony,and Power Consumption.These indicators have been carefully selected based on their contribution to sinkhole attack detection and other relevant features used in previous research.The UVM method employs an unweighted voting mechanism,where each voter or rule holds equal weight in detecting the presence of a sinkhole attack based on the proposed indicators.The effectiveness of the UVM method is evaluated using the COOJA simulator and compared with existing approaches.Notably,the proposed approach fulfills power consumption requirements for constrained nodes without increasing consumption due to the deployment design.In terms of detection accuracy,simulation results demonstrate a high detection rate ranging from 90%to 100%,with a low false-positive rate of 0%to 0.2%.Consequently,the proposed approach surpasses Ensemble Learning Intrusion Detection Systems by leveraging three indicators and three supporting rules.展开更多
This paper introduces an ant colony routing and wavelength assignment algorithm based on cross-layer design(CL-ACRWA),which can overcome the adverse effects of Doppler wavelength shift on data transmission in optical ...This paper introduces an ant colony routing and wavelength assignment algorithm based on cross-layer design(CL-ACRWA),which can overcome the adverse effects of Doppler wavelength shift on data transmission in optical satellite networks. Firstly, a cross-layer optimization model is built, which considers the Doppler wavelength shift, the transmission delay as well as wavelength-continuity constraint. Then an ant colony algorithm is utilized to solve the cross-layer optimization model, resulting in finding an optimal light path satisfying the above constraints for every connection request. The performance of CL-ACRWA is measured by the communication success probability, the convergence property and the transmission delay. Simulation results show that CL-ACRWA performs well in communication success probability and has good global search ability as well as fast convergence speed. Meanwhile, the transmission delay can meet the basic requirement of real-time transmission of business.展开更多
Wireless sensor networks are useful complements to existing monitoring systems in underground mines. They play an important role of enhancing and improving coverage and flexibility of safety monitoring systems.Regions...Wireless sensor networks are useful complements to existing monitoring systems in underground mines. They play an important role of enhancing and improving coverage and flexibility of safety monitoring systems.Regions prone to danger and environments after disasters in underground mines require saving and balancing energy consumption of nodes to prolong the lifespan of networks.Based on the structure of a tunnel,we present a Long Chain-type Wireless Sensor Network(LC-WSN)to monitor the safety of underground mine tunnels.We define the optimal transmission distance and the range of the key region and present an Energy Optimal Routing(EOR)algorithm for LC-WSN to balance the energy consumption of nodes and maximize the lifespan of networks.EOR constructs routing paths based on an optimal transmission distance and uses an energy balancing strategy in the key region.Simulation results show that the EOR algorithm extends the lifespan of a network,balances the energy consumption of nodes in the key region and effectively limits the length of routing paths,compared with similar algorithms.展开更多
Sensor networks tend to support different traffic patterns since more and more emerging applications have diverse needs. We present MGRP, a Multi-Gradient Routing Protocol for wireless sensor networks, which is fully ...Sensor networks tend to support different traffic patterns since more and more emerging applications have diverse needs. We present MGRP, a Multi-Gradient Routing Protocol for wireless sensor networks, which is fully distributed and efficiently supports endto-end, one-to-many and many-to-one traffic patterns by effectively construct and maintain a gradient vector for each node. We further combine neighbor link estimation with routing information to reduce packet exchange on network dynamics and node failures. We have implemented MGRP on Tiny OS and evaluated its performance on real-world testbeds. The result shows MGRP achieves lower end-to-end packet delay in different traffic patterns compared to the state of the art routing protocols while still remains high packet delivery ratio.展开更多
In software-defined networking,the separation of control plane from forwarding plane introduces new challenges to network reliability.This paper proposes a fault-tolerant routing mechanism to improve survivability by ...In software-defined networking,the separation of control plane from forwarding plane introduces new challenges to network reliability.This paper proposes a fault-tolerant routing mechanism to improve survivability by converting the survivability problem into two sub-problems:constructing an elastic-aware routing tree and controller selection.Based on the shortest path tree,this scheme continuously attempts to prune the routing tree to enhance network survivability.After a certain number of iterations,elastic-aware routing continues to improve network resiliency by increasing the number of edges in this tree.Simulation results demonstrate this fault-tolerant mechanism performs better than the traditional method in terms of the number of protected nodes and network fragility indicator.展开更多
Routing is the cornerstone of network architecture, and a new routing mechanism is a requisite for constructing new network architecture. The current routing mechanism of the Internet layer is basically the single nex...Routing is the cornerstone of network architecture, and a new routing mechanism is a requisite for constructing new network architecture. The current routing mechanism of the Internet layer is basically the single next-hop routing mechanism, which is the root of transmission congestion in the network. To solve this congestion problem, a fundamental measure is to change the route selection mode of current routing mechanism to allow parallel transmission over multiple routes. Currently, Border Gateway Protocol (BGP) is the only inter-domain routing protocol used in the Internet, but the routing system using BGP suffers scalability problem. To solve the scalability issue of the current inter-domain routing system, a new hierarchical routing system, i.e. Scalable Inter-Domain Routing Architecture (s-idra), is suggested. In addition to scalability, the current routing system is facing other challenges including security, Quality of Service (QoS), multicasting, mobility and dynamic network topology. Therefore, the research on routing protocols, especially the protocol for the new network architecture, is still a tough task and has a long way to go.展开更多
Routing algorithms based on geographical location is an important research subject in the Wireless Sensor Network(WSN).They use location information to guide routing discovery and maintenance as well as packet forward...Routing algorithms based on geographical location is an important research subject in the Wireless Sensor Network(WSN).They use location information to guide routing discovery and maintenance as well as packet forwarding,thus enabling the best routing to be selected,reducing energy consumption and optimizing the whole network.Through three aspects involving the flooding restriction scheme,the virtual area partition scheme and the best routing choice scheme,the importance of location information is seen in the routing algorithm.展开更多
In a Wireless Mesh Network(WMN),the convenience of a routing strategy strongly depends on the mobility of the intermediate nodes that compose the paths.Taking this behaviour into account,this paper presents a routing ...In a Wireless Mesh Network(WMN),the convenience of a routing strategy strongly depends on the mobility of the intermediate nodes that compose the paths.Taking this behaviour into account,this paper presents a routing scheme that works differently accordingly to the node mobility.In this sense,a proactive routing scheme is restricted to the backbone to promote the use of stable routes.Conversely,the reactive protocol is used for searching routes to or from a mobile destination.Both approaches are simultaneously implemented in the mesh nodes so that the routing protocols share routing information that optimises the network performance.Aimed at guaranteeing the IP compatibility,the combination of the two protocols in the core routers is carried out in the Medium Access Control(MAC)layer.In contrast to the operation in the IP layer where two routing protocols cannot work concurrently,the transfer of the routing tasks to the MAC layer enables the use of multiple independent forwarding tables.Simulation results show the advantage of the proposal in terms of packet losses and data delay.展开更多
A layered algorithm by bidirectional searching is proposed in this paper to solve the problem that it is difficult and time consuming to reach an optimal solution of the route search with multiple parameter restrictio...A layered algorithm by bidirectional searching is proposed in this paper to solve the problem that it is difficult and time consuming to reach an optimal solution of the route search with multiple parameter restrictions for good quality of service. Firstly, a set of reachable paths to each intermediate node from the source node and the sink node based on adjacent matrix transformation are calculated respectively. Then a temporal optimal path is selected by adopting the proposed heuristic method according to a non-linear cost function. When the total number of the accumulated nodes by bidirectional searching reaches n-2, the paths from two directions to an intermediate node should be combined and several paths via different nodes from the source node to the sink node can be obtained, then an optimal path in the whole set of paths can be taken as the output route. Some simulation examples are included to show the effectiveness and efficiency of the proposed method. In addition, the proposed algorithm can be implemented with parallel computation and thus, the new algorithm has better performance in time complexity than other algorithms. Mathematical analysis indicates that the maximum complexity in time, based on parallel computation, is the same as the polynomial complexity of O(kn2-3kn+k), and some simulation results are shown to support this analysis.展开更多
In order to overcome the adverse effects of Doppler wavelength shift on data transmission in the optical satellite networks,a dynamic routing and wavelength assignment algorithm based on crosslayer design( CL-DRWA) is...In order to overcome the adverse effects of Doppler wavelength shift on data transmission in the optical satellite networks,a dynamic routing and wavelength assignment algorithm based on crosslayer design( CL-DRWA) is introduced which can improve robustness of the network. Above all,a cross-layer optimization model is designed,which considers transmission delay and wavelength-continuity constraint,as well as Doppler wavelength shift. Then CL-DRWA is applied to solve this model,resulting in finding an optimal light path satisfying the above constraints for every connection request. In CL-DRWA,Bellman-Ford method is used to find an optimal route and a distributed relative capacity loss method is implemented to get an optimal wavelength assignment result on the optimal route. Moreover,compared with the dynamic routing and wavelength assignment algorithm based on minimum delay strategy( MD-DRWA),CL-DRWA can make an improvement of 5. 3% on the communication success probability. Meanwhile,CL-DRWA can meet the requirement of transmission delay for real-time services.展开更多
Microwave transmission in a space network is greatly restricted due to precious radio spectrum resources. To meet the demand for large-bandwidth, global seamless coverage and on-demanding access, the Space All-Optical...Microwave transmission in a space network is greatly restricted due to precious radio spectrum resources. To meet the demand for large-bandwidth, global seamless coverage and on-demanding access, the Space All-Optical Network(SAON) becomes a promising paradigm. In this paper, the related space optical communications and network programs around the world are first briefly introduced. Then the intelligent Space All-Optical Network(i-SAON), which can be deemed as an advanced SAON, is illustrated, with the emphasis on its features of high survivability, sensing and reconfiguration intelligence, and large capacity for all optical load and switching. Moreover, some key technologies for i-SAON are described, including the rapid adjustment and control of the laser beam direction, the deep learning-based multi-path anti-fault routing, the intelligent multi-fault diagnosis and switching selection mechanism, and the artificial intelligence-based spectrum sensing and situational forecasting.展开更多
基金supported by the the Youth Science and Technology Innovation Fund (Science)(Nos.NS2014070, NS2014070)
文摘Air route network(ARN)planning is an efficient way to alleviate civil aviation flight delays caused by increasing development and pressure for safe operation.Here,the ARN shortest path was taken as the objective function,and an air route network node(ARNN)optimization model was developed to circumvent the restrictions imposed by″three areas″,also known as prohibited areas,restricted areas,and dangerous areas(PRDs),by creating agrid environment.And finally the objective function was solved by means of an adaptive ant colony algorithm(AACA).The A593,A470,B221,and G204 air routes in the busy ZSHA flight information region,where the airspace includes areas with different levels of PRDs,were taken as an example.Based on current flight patterns,a layout optimization of the ARNN was computed using this model and algorithm and successfully avoided PRDs.The optimized result reduced the total length of routes by 2.14% and the total cost by 9.875%.
基金supported by the National Basic Research Program of China (Grant No.2011CB707004)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No.60921001)+1 种基金the National Key Technologies R & D Program of China (Grant No.2011BAH24B02)the Fundamental Research Funds for the Central Universities
文摘The air route network, which supports all the flight activities of the civil aviation, is the most fundamental infrastructure of air traffic management system. In this paper, we study the Chinese air route network (CARN) within the framework of complex networks. We find that CARN is a geographical network possessing exponential degree distribution, low clustering coefficient, large shortest path length and exponential spatial distance distribution that is obviously different from that of the Chinese airport network (CAN). Besides, via investigating the flight data from 2002 to 2010, we demonstrate that the topology structure of CARN is homogeneous, howbeit the distribution of flight flow on CARN is rather heterogeneous. In addition, the traffic on CARN keeps growing in an exponential form and the increasing speed of west China is remarkably larger than that of east China. Our work will be helpful to better understand Chinese air traffic systems.
文摘Air route network is the carrier of air traffic flow,and traffic assignment is a method to verify the rationality of air route network structure.Therefore,air route network generation based on traffic assignment has been becoming the research focus of airspace programming technology.Based on link prediction technology and optimization theory,a bi-level programming model is established in the paper.The model includes an upper level of air route network generation model and a lower level of traffic assignment model.The air route network structure generation incorporates network topology generation algorithm based on link prediction technology and optimal path search algorithm based on preference,and the traffic assignment adopts NSGA-Ⅲalgorithm.Based on the Python platform NetworkX complex network analysis library,a network of 57 airports,383 nodes,and 635 segments within China Airspace Beijing and Shanghai Flight Information Regions and 187975 sorties of traffic are used to simulate the bilevel model.Compared with the existing air route network,the proposed air route network can decrease the cost by 50.624%,lower the flight conflict coefficient by 33.564%,and reduce dynamic non-linear coefficient by 7.830%.
基金the Fundamental Research Funds for the Central Universities,and the Foundation of Graduate Innovation Center in NUAA(No.kfjj20190735)。
文摘Community division is an important method to study the characteristics of complex networks.The widely used fast-Newman(FN)algorithm only considers the topology division of the network at the static layer,and dynamic traffic flow demand is ignored.The result of the division is only structurally optimal.To improve the accuracy of community division,based on the static topology of air route network,the concept of network traffic contribution degree is put forward.The concept of operational research is introduced to optimize the network adjacency matrix to form an improved community division algorithm.The air route network in East China is selected as the object of algorithm comparison experiment,including 352 waypoints and 928 segments.The results show that the improved algorithm has a more ideal effect on the division of the community structure.The proportion of the number of nodes included in the large community has increased by 21.3%,and the modularity value has increased from 0.756 to 0.806,in which the modularity value is in the range of[-0.5,1).The research results can provide theoretical and technical support for the optimization of flight schedules and the rational use of air route resources.
基金supported by the National Natural Science Foundation of China (Nos. 91538204, 61425014, 61521091)National Key Research and Development Program of China (No. 2016YFB1200100)National Key Technology R&D Program of China (No. 2015BAG15B01)
文摘Due to rapid development in the past decade, air transportation system has attracted considerable research attention from diverse communities. While most of the previous studies focused on airline networks, here we systematically explore the robustness of the Chinese air route network, and identify the vital edges which form the backbone of Chinese air transportation system.Specifically, we employ a memetic algorithm to minimize the network robustness after removing certain edges, and hence the solution of this model is the set of vital edges. Counterintuitively,our results show that the most vital edges are not necessarily the edges of the highest topological importance, for which we provide an extensive explanation from the microscope view. Our findings also offer new insights to understanding and optimizing other real-world network systems.
基金co-supported by the National Natural Science Foundation of China(No.61304190)the Natural Science Foundation of Jiangsu Province(No.BK20130818)the Fundamental Research Funds for the Central Universities of China(No.NJ20150030)
文摘Air route network optimization,one of the essential parts of the airspace planning,is an effective way to optimize airspace resources,increase airspace capacity,and alleviate air traffic congestion.However,little has been done on the optimization of air route network in the fragmented airspace caused by prohibited,restricted,and dangerous areas(PRDs).In this paper,an air route network optimization model is developed with the total operational cost as the objective function while airspace restriction,air route network capacity,and non-straight-line factors(NSLF) are taken as major constraints.A square grid cellular space,Moore neighbors,a fixed boundary,together with a set of rules for solving the route network optimization model are designed based on cellular automata.The empirical traffic of airports with the largest traffic volume in each of the 9 flight information regions in China's Mainland is collected as the origin-destination(OD) airport pair demands.Based on traffic patterns,the model generates 35 air routes which successfully avoids 144 PRDs.Compared with the current air route network structure,the number of nodes decreases by 41.67%,while the total length of flight segments and air routes drop by 32.03% and 5.82% respectively.The NSLF decreases by 5.82% with changes in the total length of the air route network.More importantly,the total operational cost of the whole network decreases by 6.22%.The computational results show the potential benefits of the model and the advantage of the algorithm.Optimization of air route network can significantly reduce operational cost while ensuring operation safety.
基金National Key Research and Development Program of China,No.2017YFB0503005Key Research Program of the Chinese Academy of Sciences,No.ZDRW-KT-2020-2+1 种基金National Natural Science Foundation of China,No.41971359,No.41771388Tianjin Intelligent Manufacturing Project Technology of Intelligent Networking by Autonomous Control UAVs for Observation and Application,No.Tianjin-IMP-2。
文摘With the rapid increase of Unmanned Aircraft Vehicle(UAV) numbers,the contradiction between extensive flight demands and limited low-altitude airspace resources has become increasingly prominent.To ensure the safety and efficiency of low-altitude UAV operations,the low-altitude UAV public air route creatively proposed by the Chinese Academy of Sciences(CAS) and supported by the Civil Aviation Administration of China(CAAC) has been gradually recognized.However,present planning research on UAV low-altitude air route is not enough to explore how to use the ground transportation infrastructure,how to closely combine the surface pattern characteristics,and how to form the mechanism of "network".Based on the solution proposed in the early stage and related researches,this paper further deepens the exploration of the low-altitude public air route network and the implementation of key technologies and steps with an actual case study in Tianjin,China.Firstly,a path-planning environment consisting of favorable spaces,obstacle spaces,and mobile communication spaces for UAV flights was pre-constructed.Subsequently,air routes were planned by using the conflict detection and path re-planning algorithm.Our study also assessed the network by computing the population exposure risk index(PERI) and found that the index value was greatly reduced after the construction of the network,indicating that the network can effectively reduce the operational risk.In this study,a low-altitude UAV air route network in an actual region was constructed using multidisciplinary approaches such as remote sensing,geographic information,aviation,and transportation;it indirectly verified the rationality of the outcomes.This can provide practical solutions to low-altitude traffic problems in urban areas.
基金supported by the National Basic Research Program of China(No.2011CB707000)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.61221061)
文摘With the rapid development of air transportation, network service ability has attracted a lot of attention in academe. Aiming to improve the throughput of the air route network (ARN), we propose an effective local dynamic routing strategy in this paper. Several factors, such as the rout- ing distance, the geographical distance and the real-time local traffic, are taken into consideration. When the ARN is in the normal free-flow state, the proposed strategy can recover the shortest path routing (SPR) strategy. When the ARN undergoes congestion, the proposed strategy changes the paths of flights based on the real-time local traffic information. The throughput of the Chinese air route network (CARN) is evaluated. Results confirm that the proposed strategy can significantly improve the throughput of CARN. Meanwhile, the increase in the average flying distance and time is tiny. Results also indicate the importance of the distance related factors in a routing strategy designed for the ARN.
文摘As the use of mobile devices continues to rise,trust administration will significantly improve security in routing the guaranteed quality of service(QoS)supply in Mobile Ad Hoc Networks(MANET)due to the mobility of the nodes.There is no continuance of network communication between nodes in a delay-tolerant network(DTN).DTN is designed to complete recurring connections between nodes.This approach proposes a dynamic source routing protocol(DSR)based on a feed-forward neural network(FFNN)and energybased random repetition trust calculation in DTN.If another node is looking for a node that swerved off of its path in this situation,routing will fail since it won’t recognize it.However,in the suggested strategy,nodes do not stray from their pathways for routing.It is only likely that the message will reach the destination node if the nodes encounter their destination or an appropriate transitional node on their default mobility route,based on their pattern of mobility.The EBRRTC-DTN algorithm(Energy based random repeat trust computation)is based on the time that has passed since nodes last encountered the destination node.Compared to other existing techniques,simulation results show that this process makes the best decision and expertly determines the best and most appropriate route to send messages to the destination node,which improves routing performance,increases the number of delivered messages,and decreases delivery delay.Therefore,the suggested method is better at providing better QoS(Quality of Service)and increasing network lifetime,tolerating network system latency.
基金funded by the Deanship of Scientific Research at Najran University for this research through a Grant(NU/RG/SERC/12/50)under the Research Groups at Najran University,Saudi Arabia.
文摘The Internet of Things(IoT)consists of interconnected smart devices communicating and collecting data.The Routing Protocol for Low-Power and Lossy Networks(RPL)is the standard protocol for Internet Protocol Version 6(IPv6)in the IoT.However,RPL is vulnerable to various attacks,including the sinkhole attack,which disrupts the network by manipulating routing information.This paper proposes the Unweighted Voting Method(UVM)for sinkhole node identification,utilizing three key behavioral indicators:DODAG Information Object(DIO)Transaction Frequency,Rank Harmony,and Power Consumption.These indicators have been carefully selected based on their contribution to sinkhole attack detection and other relevant features used in previous research.The UVM method employs an unweighted voting mechanism,where each voter or rule holds equal weight in detecting the presence of a sinkhole attack based on the proposed indicators.The effectiveness of the UVM method is evaluated using the COOJA simulator and compared with existing approaches.Notably,the proposed approach fulfills power consumption requirements for constrained nodes without increasing consumption due to the deployment design.In terms of detection accuracy,simulation results demonstrate a high detection rate ranging from 90%to 100%,with a low false-positive rate of 0%to 0.2%.Consequently,the proposed approach surpasses Ensemble Learning Intrusion Detection Systems by leveraging three indicators and three supporting rules.
基金supported by the National Natural Science Foundation of China(No.61675033,61575026,61675233)National High Technical Research and Development Program of China(No.2015AA015504)
文摘This paper introduces an ant colony routing and wavelength assignment algorithm based on cross-layer design(CL-ACRWA),which can overcome the adverse effects of Doppler wavelength shift on data transmission in optical satellite networks. Firstly, a cross-layer optimization model is built, which considers the Doppler wavelength shift, the transmission delay as well as wavelength-continuity constraint. Then an ant colony algorithm is utilized to solve the cross-layer optimization model, resulting in finding an optimal light path satisfying the above constraints for every connection request. The performance of CL-ACRWA is measured by the communication success probability, the convergence property and the transmission delay. Simulation results show that CL-ACRWA performs well in communication success probability and has good global search ability as well as fast convergence speed. Meanwhile, the transmission delay can meet the basic requirement of real-time transmission of business.
基金Financial support for this work,provided by the National Natural Science Foundation of China(No.50904070)the Science and Technology Foundation of China University of Mining & Technology (Nos.2007A046 and 2008A042)the Joint Production and Research Innovation Project of Jiangsu Province (No.BY2009114)
文摘Wireless sensor networks are useful complements to existing monitoring systems in underground mines. They play an important role of enhancing and improving coverage and flexibility of safety monitoring systems.Regions prone to danger and environments after disasters in underground mines require saving and balancing energy consumption of nodes to prolong the lifespan of networks.Based on the structure of a tunnel,we present a Long Chain-type Wireless Sensor Network(LC-WSN)to monitor the safety of underground mine tunnels.We define the optimal transmission distance and the range of the key region and present an Energy Optimal Routing(EOR)algorithm for LC-WSN to balance the energy consumption of nodes and maximize the lifespan of networks.EOR constructs routing paths based on an optimal transmission distance and uses an energy balancing strategy in the key region.Simulation results show that the EOR algorithm extends the lifespan of a network,balances the energy consumption of nodes in the key region and effectively limits the length of routing paths,compared with similar algorithms.
基金supported by National Key Technologies Research and Development Program of China under Grant No.2014BAH14F01National Science and Technology Major Project of China under Grant No.2012ZX03005007+1 种基金National NSF of China Grant No.61402372Fundamental Research Funds for the Central Universities Grant No.3102014JSJ0003
文摘Sensor networks tend to support different traffic patterns since more and more emerging applications have diverse needs. We present MGRP, a Multi-Gradient Routing Protocol for wireless sensor networks, which is fully distributed and efficiently supports endto-end, one-to-many and many-to-one traffic patterns by effectively construct and maintain a gradient vector for each node. We further combine neighbor link estimation with routing information to reduce packet exchange on network dynamics and node failures. We have implemented MGRP on Tiny OS and evaluated its performance on real-world testbeds. The result shows MGRP achieves lower end-to-end packet delay in different traffic patterns compared to the state of the art routing protocols while still remains high packet delivery ratio.
基金supported by the Key Laboratory of Universal Wireless Communications(Beijing University of Posts and Telecommunications)Ministry of Education,P.R.China(KFKT-2013104)+6 种基金the National Natural Science Foundation of China(61501105,61471109,61302071)the China Postdoctoral Science Foundation(2013M541243)the Doctoral Scientific Research Foundation of Liaoning Province(20141014)the Fundamental Research Funds for the Central Universities(N150404018,N130304001,N150401002,N150404015)the National 973 Advance Research Program(2014CB360509)the Postdoctoral Science Foundation of Northeast University(20140319)Ministry of Education-China Mobile Research Foundation(MCM20130131)
文摘In software-defined networking,the separation of control plane from forwarding plane introduces new challenges to network reliability.This paper proposes a fault-tolerant routing mechanism to improve survivability by converting the survivability problem into two sub-problems:constructing an elastic-aware routing tree and controller selection.Based on the shortest path tree,this scheme continuously attempts to prune the routing tree to enhance network survivability.After a certain number of iterations,elastic-aware routing continues to improve network resiliency by increasing the number of edges in this tree.Simulation results demonstrate this fault-tolerant mechanism performs better than the traditional method in terms of the number of protected nodes and network fragility indicator.
基金the National BasicResearch Program of China ("973" Program)under Grant 2007CB307102the National HighTechnology Research and Development Programof China ("863" Program) under Grant2007AA01Z212.
文摘Routing is the cornerstone of network architecture, and a new routing mechanism is a requisite for constructing new network architecture. The current routing mechanism of the Internet layer is basically the single next-hop routing mechanism, which is the root of transmission congestion in the network. To solve this congestion problem, a fundamental measure is to change the route selection mode of current routing mechanism to allow parallel transmission over multiple routes. Currently, Border Gateway Protocol (BGP) is the only inter-domain routing protocol used in the Internet, but the routing system using BGP suffers scalability problem. To solve the scalability issue of the current inter-domain routing system, a new hierarchical routing system, i.e. Scalable Inter-Domain Routing Architecture (s-idra), is suggested. In addition to scalability, the current routing system is facing other challenges including security, Quality of Service (QoS), multicasting, mobility and dynamic network topology. Therefore, the research on routing protocols, especially the protocol for the new network architecture, is still a tough task and has a long way to go.
文摘Routing algorithms based on geographical location is an important research subject in the Wireless Sensor Network(WSN).They use location information to guide routing discovery and maintenance as well as packet forwarding,thus enabling the best routing to be selected,reducing energy consumption and optimizing the whole network.Through three aspects involving the flooding restriction scheme,the virtual area partition scheme and the best routing choice scheme,the importance of location information is seen in the routing algorithm.
文摘In a Wireless Mesh Network(WMN),the convenience of a routing strategy strongly depends on the mobility of the intermediate nodes that compose the paths.Taking this behaviour into account,this paper presents a routing scheme that works differently accordingly to the node mobility.In this sense,a proactive routing scheme is restricted to the backbone to promote the use of stable routes.Conversely,the reactive protocol is used for searching routes to or from a mobile destination.Both approaches are simultaneously implemented in the mesh nodes so that the routing protocols share routing information that optimises the network performance.Aimed at guaranteeing the IP compatibility,the combination of the two protocols in the core routers is carried out in the Medium Access Control(MAC)layer.In contrast to the operation in the IP layer where two routing protocols cannot work concurrently,the transfer of the routing tasks to the MAC layer enables the use of multiple independent forwarding tables.Simulation results show the advantage of the proposal in terms of packet losses and data delay.
文摘A layered algorithm by bidirectional searching is proposed in this paper to solve the problem that it is difficult and time consuming to reach an optimal solution of the route search with multiple parameter restrictions for good quality of service. Firstly, a set of reachable paths to each intermediate node from the source node and the sink node based on adjacent matrix transformation are calculated respectively. Then a temporal optimal path is selected by adopting the proposed heuristic method according to a non-linear cost function. When the total number of the accumulated nodes by bidirectional searching reaches n-2, the paths from two directions to an intermediate node should be combined and several paths via different nodes from the source node to the sink node can be obtained, then an optimal path in the whole set of paths can be taken as the output route. Some simulation examples are included to show the effectiveness and efficiency of the proposed method. In addition, the proposed algorithm can be implemented with parallel computation and thus, the new algorithm has better performance in time complexity than other algorithms. Mathematical analysis indicates that the maximum complexity in time, based on parallel computation, is the same as the polynomial complexity of O(kn2-3kn+k), and some simulation results are shown to support this analysis.
基金Supported by the National Natural Science Foundation of China(No.61675033,61575026,61675232,61571440)the National High Technology Research and Development Program of China(No.2015AA015504)
文摘In order to overcome the adverse effects of Doppler wavelength shift on data transmission in the optical satellite networks,a dynamic routing and wavelength assignment algorithm based on crosslayer design( CL-DRWA) is introduced which can improve robustness of the network. Above all,a cross-layer optimization model is designed,which considers transmission delay and wavelength-continuity constraint,as well as Doppler wavelength shift. Then CL-DRWA is applied to solve this model,resulting in finding an optimal light path satisfying the above constraints for every connection request. In CL-DRWA,Bellman-Ford method is used to find an optimal route and a distributed relative capacity loss method is implemented to get an optimal wavelength assignment result on the optimal route. Moreover,compared with the dynamic routing and wavelength assignment algorithm based on minimum delay strategy( MD-DRWA),CL-DRWA can make an improvement of 5. 3% on the communication success probability. Meanwhile,CL-DRWA can meet the requirement of transmission delay for real-time services.
基金supported by CAST Fund for Distinguished Young TalentsCASC Scientific and Technological Innovative Research and Design Projects
文摘Microwave transmission in a space network is greatly restricted due to precious radio spectrum resources. To meet the demand for large-bandwidth, global seamless coverage and on-demanding access, the Space All-Optical Network(SAON) becomes a promising paradigm. In this paper, the related space optical communications and network programs around the world are first briefly introduced. Then the intelligent Space All-Optical Network(i-SAON), which can be deemed as an advanced SAON, is illustrated, with the emphasis on its features of high survivability, sensing and reconfiguration intelligence, and large capacity for all optical load and switching. Moreover, some key technologies for i-SAON are described, including the rapid adjustment and control of the laser beam direction, the deep learning-based multi-path anti-fault routing, the intelligent multi-fault diagnosis and switching selection mechanism, and the artificial intelligence-based spectrum sensing and situational forecasting.