The route optimization problem for road networks was applied to pedestrian flow.Evacuation path networks with nodes and arcs considering the traffic capacities of facilities were built in metro hubs,and a path impedan...The route optimization problem for road networks was applied to pedestrian flow.Evacuation path networks with nodes and arcs considering the traffic capacities of facilities were built in metro hubs,and a path impedance function for metro hubs which used the relationships among circulation speed,density and flow rate for pedestrians was defined.Then,a route optimization model which minimizes the movement time of the last evacuee was constructed to optimize evacuation performance.Solutions to the proposed mathematical model were obtained through an iterative optimization process.The route optimization model was applied to Xidan Station of Beijing Metro Line 4 based on the actual situations,and the calculation results of the model were tested using buildingExodus microscopic evacuation simulation software.The simulation result shows that the proposed model shortens the evacuation time by 16.05%,3.15% and 2.78% compared with all or none method,equally split method and Logit model,respectively.Furthermore,when the population gets larger,evacuation efficiency in the proposed model has a greater advantage.展开更多
Wireless sensor Mobile ad hoc networks have excellent potential in moving and monitoring disaster area networks on real-time basis.The recent challenges faced in Mobile Ad Hoc Networks(MANETs)include scalability,local...Wireless sensor Mobile ad hoc networks have excellent potential in moving and monitoring disaster area networks on real-time basis.The recent challenges faced in Mobile Ad Hoc Networks(MANETs)include scalability,localization,heterogeneous network,self-organization,and self-sufficient operation.In this background,the current study focuses on specially-designed communication link establishment for high connection stability of wireless mobile sensor networks,especially in disaster area network.Existing protocols focus on location-dependent communications and use networks based on typically-used Internet Protocol(IP)architecture.However,IP-based communications have a few limitations such as inefficient bandwidth utilization,high processing,less transfer speeds,and excessive memory intake.To overcome these challenges,the number of neighbors(Node Density)is minimized and high Mobility Nodes(Node Speed)are avoided.The proposed Geographic Drone Based Route Optimization(GDRO)method reduces the entire overhead to a considerable level in an efficient manner and significantly improves the overall performance by identifying the disaster region.This drone communicates with anchor node periodically and shares the information to it so as to introduce a drone-based disaster network in an area.Geographic routing is a promising approach to enhance the routing efficiency in MANET.This algorithm helps in reaching the anchor(target)node with the help of Geographical Graph-Based Mapping(GGM).Global Positioning System(GPS)is enabled on mobile network of the anchor node which regularly broadcasts its location information that helps in finding the location.In first step,the node searches for local and remote anticipated Expected Transmission Count(ETX),thereby calculating the estimated distance.Received Signal Strength Indicator(RSSI)results are stored in the local memory of the node.Then,the node calculates the least remote anticipated ETX,Link Loss Rate,and information to the new location.Freeway Heuristic algorithm improves the data speed,efficiency and determines the path and optimization problem.In comparison with other models,the proposed method yielded an efficient communication,increased the throughput,and reduced the end-to-end delay,energy consumption and packet loss performance in disaster area networks.展开更多
Rural vitalization is a major strategy for reform and development of agriculture and rural areas in China,the key task of which is improving rural living environment.Imperfect rural solid waste(RSW)collection and tran...Rural vitalization is a major strategy for reform and development of agriculture and rural areas in China,the key task of which is improving rural living environment.Imperfect rural solid waste(RSW)collection and transportation system exacerbates the pollution of RSW to rural living environment,while it has not been established and improved in the cold region of Northern China due to climate and economy.Through the analysis of the current situation of RSW source separation,collection,transportation and disposal in China,an RSW collection and transportation system suitable for the northern cold region was developed.Considering the low winter temperature in the northern cold region,different requirements for RSW collection,transportation and terminal disposal,scattered source points and single terminal disposal nodes in rural areas,the study focused on determining the number and location of transfer stations,established a model for transfer stations selection and RSW collection and transportation routes optimization for RSW collection and transportation system,and proposed the elite retention particle swarm optimization–genetic algorithm(ERPSO–GA).The rural area of Baiquan County was taken as a representative case,the collection and transportation scheme of which was given,and the feasibility of the scheme was clarified by simulation experiment.展开更多
Based on the perspective of electricity supplier on the issues of Rural Surplus Labor resettlement, we analyzed China's rural electricity supplier development and resettlement of rural surplus labor issues and factor...Based on the perspective of electricity supplier on the issues of Rural Surplus Labor resettlement, we analyzed China's rural electricity supplier development and resettlement of rural surplus labor issues and factors, proposed the impact of sluggish development of rural electricity suppliers on their resettlement of the rural surplus labor force, and made the following suggestions: to develop township enterprises, to strengthen the construction of small towns, to settlement surplus labor force on the post, to transfer the surplus labor, to increase farmers' income; to eliminate the urban-rural dual structure, to implement loose household registration management system, to increase education level, to improve the quality of farmers, to provide information and improve guidance to change disorderly transfer to the orderly transfer.展开更多
In the NEtwork MObility (NEMO) environment, mobile networks can form a nested structure. In nested mobile networks that use the NEMO Basic Support (NBS) protocol, pinball routing problems occur because packets are...In the NEtwork MObility (NEMO) environment, mobile networks can form a nested structure. In nested mobile networks that use the NEMO Basic Support (NBS) protocol, pinball routing problems occur because packets are routed to all the home agents of the mobile routers using nested tunneling. In addition, the nodes in the same mobile networks can communicate with each other regardless of Internet connectivity. However, the nodes in some mobile networks that are based on NBS cannot communicate when the network is disconnected from the Internet. In this paper, we propose a route optimization scheme to solve these problems. We introduce a new IPv6 routing header named "destination-information header" (DH), which uses DH instead of routing header type 2 to optimize the route in the nested mobile network. The proposed scheme shows at least 30% better performance than ROTIO and similar performance improvement as DBU in inter-route optimization. With respect to intra-route optimization, the proposed scheme always uses the optimal routing path. In addition, the handover mechanism in ROAD+ outperforms existing schemes and is less sensitive to network size than other existing schemes.展开更多
This paper presents an optimization model for solving the planning problem of collection and transportation of solid waste in medium-sized cities. As final results, are expected to promote cost savings to the public c...This paper presents an optimization model for solving the planning problem of collection and transportation of solid waste in medium-sized cities. As final results, are expected to promote cost savings to the public coffers, as well as environmental benefits. The developed mathematical model is formulated as a problem of linear programming with mixed-integer variables and transcribed into software GAMS (general algebraic modeling system). The practical application was tested using data collected in the central region of a Brazilian city with approximately 90,000 inhabitants. The deterministic model used allowed an optimal solution. It was found after inclusion of restrictions that eliminated the appearance of sub-routes. It was concluded that the optimal routes allow for a 38% reduction in total distance traveled, which can generate savings of $320.00 per day regarding maintenance and fuel trucks.展开更多
To enhance the efficiency and expediency of issuing e-licenses within the power sector, we must confront thechallenge of managing the surging demand for data traffic. Within this realm, the network imposes stringentQu...To enhance the efficiency and expediency of issuing e-licenses within the power sector, we must confront thechallenge of managing the surging demand for data traffic. Within this realm, the network imposes stringentQuality of Service (QoS) requirements, revealing the inadequacies of traditional routing allocation mechanismsin accommodating such extensive data flows. In response to the imperative of handling a substantial influx of datarequests promptly and alleviating the constraints of existing technologies and network congestion, we present anarchitecture forQoS routing optimizationwith in SoftwareDefinedNetwork (SDN), leveraging deep reinforcementlearning. This innovative approach entails the separation of SDN control and transmission functionalities, centralizingcontrol over data forwardingwhile integrating deep reinforcement learning for informed routing decisions. Byfactoring in considerations such as delay, bandwidth, jitter rate, and packet loss rate, we design a reward function toguide theDeepDeterministic PolicyGradient (DDPG) algorithmin learning the optimal routing strategy to furnishsuperior QoS provision. In our empirical investigations, we juxtapose the performance of Deep ReinforcementLearning (DRL) against that of Shortest Path (SP) algorithms in terms of data packet transmission delay. Theexperimental simulation results show that our proposed algorithm has significant efficacy in reducing networkdelay and improving the overall transmission efficiency, which is superior to the traditional methods.展开更多
Demand Responsive Transit (DRT) responds to the dynamic users’ requests without any fixed routes and timetablesand determines the stop and the start according to the demands. This study explores the optimization of d...Demand Responsive Transit (DRT) responds to the dynamic users’ requests without any fixed routes and timetablesand determines the stop and the start according to the demands. This study explores the optimization of dynamicvehicle scheduling and real-time route planning in urban public transportation systems, with a focus on busservices. It addresses the limitations of current shared mobility routing algorithms, which are primarily designedfor simpler, single origin/destination scenarios, and do not meet the complex demands of bus transit systems. Theresearch introduces an route planning algorithm designed to dynamically accommodate passenger travel needsand enable real-time route modifications. Unlike traditional methods, this algorithm leverages a queue-based,multi-objective heuristic A∗ approach, offering a solution to the inflexibility and limited coverage of suburbanbus routes. Also, this study conducts a comparative analysis of the proposed algorithm with solutions based onGenetic Algorithm (GA) and Ant Colony Optimization Algorithm (ACO), focusing on calculation time, routelength, passenger waiting time, boarding time, and detour rate. The findings demonstrate that the proposedalgorithmsignificantly enhances route planning speed, achieving an 80–100-fold increase in efficiency over existingmodels, thereby supporting the real-time demands of Demand-Responsive Transportation (DRT) systems. Thestudy concludes that this algorithm not only optimizes route planning in bus transit but also presents a scalablesolution for improving urban mobility.展开更多
Air route network(ARN)planning is an efficient way to alleviate civil aviation flight delays caused by increasing development and pressure for safe operation.Here,the ARN shortest path was taken as the objective funct...Air route network(ARN)planning is an efficient way to alleviate civil aviation flight delays caused by increasing development and pressure for safe operation.Here,the ARN shortest path was taken as the objective function,and an air route network node(ARNN)optimization model was developed to circumvent the restrictions imposed by″three areas″,also known as prohibited areas,restricted areas,and dangerous areas(PRDs),by creating agrid environment.And finally the objective function was solved by means of an adaptive ant colony algorithm(AACA).The A593,A470,B221,and G204 air routes in the busy ZSHA flight information region,where the airspace includes areas with different levels of PRDs,were taken as an example.Based on current flight patterns,a layout optimization of the ARNN was computed using this model and algorithm and successfully avoided PRDs.The optimized result reduced the total length of routes by 2.14% and the total cost by 9.875%.展开更多
A main shortcoming of mobile Ad-hoc network's reactive routing protocols is the large volume of far-reaching control traffic required to support the route discovery (RD) and route repair (RR) mechanism. Using a ra...A main shortcoming of mobile Ad-hoc network's reactive routing protocols is the large volume of far-reaching control traffic required to support the route discovery (RD) and route repair (RR) mechanism. Using a random mobility model, this paper derives the probability equation of the relative distance (RDIS) between any two mobile hosts in an ad-hoc network. Consequently, combining with average equivalent hop distance (AEHD), a host can estimate the routing hops between itself and any destination host each time the RD/RR procedure is triggered, and reduce the flooding area of RD/RR messages. Simulation results show that this optimized route repair (ORR) algorithm can significantly decrease the communication overhead of RR process by about 35%.展开更多
The transfer system,an important subsystem in urban citizen passenger transport system,is a guarantee of public transport priority and is crucial in the whole urban passenger transport traffic.What the majority of bus...The transfer system,an important subsystem in urban citizen passenger transport system,is a guarantee of public transport priority and is crucial in the whole urban passenger transport traffic.What the majority of bus passengers consider is the convenience and comfort of the bus ride,which reduces the transfer time of bus passengers."Transfer time" is considered to be the first factor by the majority of bus passengers who select the routes.In this paper,according to the needs of passengers,optimization algorithm,with the minimal distance being the first goal,namely,the improved Dijkstra algorithm based on the minimal distance,is put forward on the basis of the optimization algorithm with the minimal transfer time being the first goal.展开更多
In Software-Defined Networks(SDNs),determining how to efficiently achieve Quality of Service(QoS)-aware routing is challenging but critical for significantly improving the performance of a network,where the metrics of...In Software-Defined Networks(SDNs),determining how to efficiently achieve Quality of Service(QoS)-aware routing is challenging but critical for significantly improving the performance of a network,where the metrics of QoS can be defined as,for example,average latency,packet loss ratio,and throughput.The SDN controller can use network statistics and a Deep Reinforcement Learning(DRL)method to resolve this challenge.In this paper,we formulate dynamic routing in an SDN as a Markov decision process and propose a DRL algorithm called the Asynchronous Advantage Actor-Critic QoS-aware Routing Optimization Mechanism(AQROM)to determine routing strategies that balance the traffic loads in the network.AQROM can improve the QoS of the network and reduce the training time via dynamic routing strategy updates;that is,the reward function can be dynamically and promptly altered based on the optimization objective regardless of the network topology and traffic pattern.AQROM can be considered as one-step optimization and a black-box routing mechanism in high-dimensional input and output sets for both discrete and continuous states,and actions with respect to the operations in the SDN.Extensive simulations were conducted using OMNeT++and the results demonstrated that AQROM 1)achieved much faster and stable convergence than the Deep Deterministic Policy Gradient(DDPG)and Advantage Actor-Critic(A2C),2)incurred a lower packet loss ratio and latency than Open Shortest Path First(OSPF),DDPG,and A2C,and 3)resulted in higher and more stable throughput than OSPF,DDPG,and A2C.展开更多
Dijkstra algorithm is a theoretical basis to solve transportation network problems of the shortest path, which has a wide range of application in path optimization. Through analyzing traditional Dijkstra algorithm,on ...Dijkstra algorithm is a theoretical basis to solve transportation network problems of the shortest path, which has a wide range of application in path optimization. Through analyzing traditional Dijkstra algorithm,on account of the insufficiency of this algorithm in path optimization,this paper uses adjacency list and circular linked list with combination to store date,and through the improved quick sorting algorithm for weight sorting, accomplish a quick search to the adjacent node,and so an improved Dijkstra algorithm is got.Then apply it to the optimal path search,and make simulation analysis for this algorithm through the example,also verify the effectiveness of the proposed algorithm.展开更多
The GIS technique is used for airport surface management to study the optimization of airplane taxiway for arrival and departure flights. The shortest paths are designed for just-arrived and ready-for-departing flight...The GIS technique is used for airport surface management to study the optimization of airplane taxiway for arrival and departure flights. The shortest paths are designed for just-arrived and ready-for-departing flights of the airport. Additionally, whether the flights could confront each other head-to-head on the taxiway is judged. In regard to the airport′s security and efficiency, airplanes must continuously taxi along the shortest route and the head-to-head confrontation should not occur. Two schemes are designed: One is to change the taxiing velocity of arrival flights, the other is to delay the starting time of departure flights. This algorithm is approved by a practical example.展开更多
In power communication networks, it is a challenge to decrease the risk of different services efficiently to improve operation reliability. One of the important factor in reflecting communication risk is service route...In power communication networks, it is a challenge to decrease the risk of different services efficiently to improve operation reliability. One of the important factor in reflecting communication risk is service route distribution. However, existing routing algorithms do not take into account the degree of importance of services, thereby leading to load unbalancing and increasing the risks of services and networks. A routing optimization mechanism based on load balancing for power communication networks is proposed to address the abovementioned problems. First, the mechanism constructs an evaluation model to evaluate the service and network risk degree using combination of devices, service load, and service characteristics. Second, service weights are determined with modified relative entropy TOPSIS method, and a balanced service routing determination algorithm is proposed. Results of simulations on practical network topology show that the mechanism can optimize the network risk degree and load balancing degree efficiently.展开更多
The vehicle routing and scheduling (VRS) problem with multi-objective and multi-constraint is analyzed, considering the complexity of the modern logistics in city economy and daily life based on the system engineering...The vehicle routing and scheduling (VRS) problem with multi-objective and multi-constraint is analyzed, considering the complexity of the modern logistics in city economy and daily life based on the system engineering. The objective and constraint includes loading, the dispatch and arrival time, transportation conditions,total cost,etc. An information model and a mathematical model are built,and a method based on knowledge and biologic immunity is put forward for optimizing and evaluating the programs dimensions in vehicle routing and scheduling with multi-objective and multi-constraints. The proposed model and method are illustrated in a case study concerning a transport network, and the result shows that more optimization solutions can be easily obtained and the method is efficient and feasible. Comparing with the standard GA and the standard GA without time constraint,the computational time of the algorithm is less in this paper. And the probability of gaining optimal solution is bigger and the result is better under the condition of multi-constraint.展开更多
Over the last decade,mobile Adhoc networks have expanded dramati-cally in popularity,and their impact on the communication sector on a variety of levels is enormous.Its uses have expanded in lockstep with its growth.D...Over the last decade,mobile Adhoc networks have expanded dramati-cally in popularity,and their impact on the communication sector on a variety of levels is enormous.Its uses have expanded in lockstep with its growth.Due to its instability in usage and the fact that numerous nodes communicate data concur-rently,adequate channel and forwarder selection is essential.In this proposed design for a Cognitive Radio Cognitive Network(CRCN),we gain the confidence of each forwarding node by contacting one-hop and second level nodes,obtaining reports from them,and selecting the forwarder appropriately with the use of an optimization technique.At that point,we concentrate our efforts on their channel,selection,and lastly,the transmission of data packets via the designated forwarder.The simulation work is validated in this section using the MATLAB program.Additionally,steps show how the node acts as a confident forwarder and shares the channel in a compatible method to communicate,allowing for more packet bits to be transmitted by conveniently picking the channel between them.We cal-culate the confidence of the node at the start of the network by combining the reliability report for thefirst hop and the reliability report for the secondary hop.We then refer to the same node as the confident node in order to operate as a forwarder.As a result,we witness an increase in the leftover energy in the output.The percentage of data packets delivered has also increased.展开更多
The traditional manner to design public transportation system is to sequentially design the transit network and public bicycle network. A new public transportation system design problem that simultaneously considers b...The traditional manner to design public transportation system is to sequentially design the transit network and public bicycle network. A new public transportation system design problem that simultaneously considers both bus network design and public bicycle network design is proposed. The chemical reaction optimization(CRO) is designed to solve the problem. A shortcoming of CRO is that, when the two-molecule collisions take place, the molecules are randomly picked from the container.Hence, we improve CRO by employing different mating strategies. The computational results confirm the benefits of the mating strategies. Numerical experiments are conducted on the Sioux-Falls network. A comparison with the traditional sequential modeling framework indicates that the proposed approach has a better performance and is more robust. The practical applicability of the approach is proved by employing a real size network.展开更多
Cruising route recommendation based on trajectory mining can improve taxi-drivers'income and reduce energy consumption.However,existing methods mostly recommend pick-up points for taxis only.Moreover,their perform...Cruising route recommendation based on trajectory mining can improve taxi-drivers'income and reduce energy consumption.However,existing methods mostly recommend pick-up points for taxis only.Moreover,their performance is not good enough since there lacks a good evaluation model for the pick-up points.Therefore,we propose an entropy-based model for recommendation of taxis'cruising route.Firstly,we select more positional attributes from historical pick-up points in order to obtain accurate spatial-temporal features.Secondly,the information entropy of spatial-temporal features is integrated in the evaluation model.Then it is applied for getting the next pick-up points and further recommending a series of successive points.These points are constructed a cruising route for taxi-drivers.Experimental results show that our method is able to obviously improve the recommendation accuracy of pick-up points,and help taxi-drivers make profitable benefits more than before.展开更多
Time and space complexity is themost critical problemof the current routing optimization algorithms for Software Defined Networking(SDN).To overcome this complexity,researchers use meta-heuristic techniques inside the...Time and space complexity is themost critical problemof the current routing optimization algorithms for Software Defined Networking(SDN).To overcome this complexity,researchers use meta-heuristic techniques inside the routing optimization algorithms in the OpenFlow(OF)based large scale SDNs.This paper proposes a hybrid meta-heuristic algorithm to optimize the dynamic routing problem for the large scale SDNs.Due to the dynamic nature of SDNs,the proposed algorithm uses amutation operator to overcome the memory-based problem of the ant colony algorithm.Besides,it uses the box-covering method and the k-means clustering method to divide the SDN network to overcome the problemof time and space complexity.The results of the proposed algorithm compared with the results of other similar algorithms and it shows that the proposed algorithm can handle the dynamic network changing,reduce the network congestion,the delay and running times and the packet loss rates.展开更多
基金Project(51078086)supported by the National Natural Science Foundation of China
文摘The route optimization problem for road networks was applied to pedestrian flow.Evacuation path networks with nodes and arcs considering the traffic capacities of facilities were built in metro hubs,and a path impedance function for metro hubs which used the relationships among circulation speed,density and flow rate for pedestrians was defined.Then,a route optimization model which minimizes the movement time of the last evacuee was constructed to optimize evacuation performance.Solutions to the proposed mathematical model were obtained through an iterative optimization process.The route optimization model was applied to Xidan Station of Beijing Metro Line 4 based on the actual situations,and the calculation results of the model were tested using buildingExodus microscopic evacuation simulation software.The simulation result shows that the proposed model shortens the evacuation time by 16.05%,3.15% and 2.78% compared with all or none method,equally split method and Logit model,respectively.Furthermore,when the population gets larger,evacuation efficiency in the proposed model has a greater advantage.
文摘Wireless sensor Mobile ad hoc networks have excellent potential in moving and monitoring disaster area networks on real-time basis.The recent challenges faced in Mobile Ad Hoc Networks(MANETs)include scalability,localization,heterogeneous network,self-organization,and self-sufficient operation.In this background,the current study focuses on specially-designed communication link establishment for high connection stability of wireless mobile sensor networks,especially in disaster area network.Existing protocols focus on location-dependent communications and use networks based on typically-used Internet Protocol(IP)architecture.However,IP-based communications have a few limitations such as inefficient bandwidth utilization,high processing,less transfer speeds,and excessive memory intake.To overcome these challenges,the number of neighbors(Node Density)is minimized and high Mobility Nodes(Node Speed)are avoided.The proposed Geographic Drone Based Route Optimization(GDRO)method reduces the entire overhead to a considerable level in an efficient manner and significantly improves the overall performance by identifying the disaster region.This drone communicates with anchor node periodically and shares the information to it so as to introduce a drone-based disaster network in an area.Geographic routing is a promising approach to enhance the routing efficiency in MANET.This algorithm helps in reaching the anchor(target)node with the help of Geographical Graph-Based Mapping(GGM).Global Positioning System(GPS)is enabled on mobile network of the anchor node which regularly broadcasts its location information that helps in finding the location.In first step,the node searches for local and remote anticipated Expected Transmission Count(ETX),thereby calculating the estimated distance.Received Signal Strength Indicator(RSSI)results are stored in the local memory of the node.Then,the node calculates the least remote anticipated ETX,Link Loss Rate,and information to the new location.Freeway Heuristic algorithm improves the data speed,efficiency and determines the path and optimization problem.In comparison with other models,the proposed method yielded an efficient communication,increased the throughput,and reduced the end-to-end delay,energy consumption and packet loss performance in disaster area networks.
基金Supported by Heilongjiang Province Philosophy and Social Science Planning Research Project(22JYB232)。
文摘Rural vitalization is a major strategy for reform and development of agriculture and rural areas in China,the key task of which is improving rural living environment.Imperfect rural solid waste(RSW)collection and transportation system exacerbates the pollution of RSW to rural living environment,while it has not been established and improved in the cold region of Northern China due to climate and economy.Through the analysis of the current situation of RSW source separation,collection,transportation and disposal in China,an RSW collection and transportation system suitable for the northern cold region was developed.Considering the low winter temperature in the northern cold region,different requirements for RSW collection,transportation and terminal disposal,scattered source points and single terminal disposal nodes in rural areas,the study focused on determining the number and location of transfer stations,established a model for transfer stations selection and RSW collection and transportation routes optimization for RSW collection and transportation system,and proposed the elite retention particle swarm optimization–genetic algorithm(ERPSO–GA).The rural area of Baiquan County was taken as a representative case,the collection and transportation scheme of which was given,and the feasibility of the scheme was clarified by simulation experiment.
文摘Based on the perspective of electricity supplier on the issues of Rural Surplus Labor resettlement, we analyzed China's rural electricity supplier development and resettlement of rural surplus labor issues and factors, proposed the impact of sluggish development of rural electricity suppliers on their resettlement of the rural surplus labor force, and made the following suggestions: to develop township enterprises, to strengthen the construction of small towns, to settlement surplus labor force on the post, to transfer the surplus labor, to increase farmers' income; to eliminate the urban-rural dual structure, to implement loose household registration management system, to increase education level, to improve the quality of farmers, to provide information and improve guidance to change disorderly transfer to the orderly transfer.
基金supported by MKE,Korea,under ITRC NIPA-2009-(C1090-0902-0046)by MEST,Korea under WCU Program supervised by the KOSEF(No.R31-2008-000-10062-0).
文摘In the NEtwork MObility (NEMO) environment, mobile networks can form a nested structure. In nested mobile networks that use the NEMO Basic Support (NBS) protocol, pinball routing problems occur because packets are routed to all the home agents of the mobile routers using nested tunneling. In addition, the nodes in the same mobile networks can communicate with each other regardless of Internet connectivity. However, the nodes in some mobile networks that are based on NBS cannot communicate when the network is disconnected from the Internet. In this paper, we propose a route optimization scheme to solve these problems. We introduce a new IPv6 routing header named "destination-information header" (DH), which uses DH instead of routing header type 2 to optimize the route in the nested mobile network. The proposed scheme shows at least 30% better performance than ROTIO and similar performance improvement as DBU in inter-route optimization. With respect to intra-route optimization, the proposed scheme always uses the optimal routing path. In addition, the handover mechanism in ROAD+ outperforms existing schemes and is less sensitive to network size than other existing schemes.
文摘This paper presents an optimization model for solving the planning problem of collection and transportation of solid waste in medium-sized cities. As final results, are expected to promote cost savings to the public coffers, as well as environmental benefits. The developed mathematical model is formulated as a problem of linear programming with mixed-integer variables and transcribed into software GAMS (general algebraic modeling system). The practical application was tested using data collected in the central region of a Brazilian city with approximately 90,000 inhabitants. The deterministic model used allowed an optimal solution. It was found after inclusion of restrictions that eliminated the appearance of sub-routes. It was concluded that the optimal routes allow for a 38% reduction in total distance traveled, which can generate savings of $320.00 per day regarding maintenance and fuel trucks.
基金State Grid Corporation of China Science and Technology Project“Research andApplication of Key Technologies for Trusted Issuance and Security Control of Electronic Licenses for Power Business”(5700-202353318A-1-1-ZN).
文摘To enhance the efficiency and expediency of issuing e-licenses within the power sector, we must confront thechallenge of managing the surging demand for data traffic. Within this realm, the network imposes stringentQuality of Service (QoS) requirements, revealing the inadequacies of traditional routing allocation mechanismsin accommodating such extensive data flows. In response to the imperative of handling a substantial influx of datarequests promptly and alleviating the constraints of existing technologies and network congestion, we present anarchitecture forQoS routing optimizationwith in SoftwareDefinedNetwork (SDN), leveraging deep reinforcementlearning. This innovative approach entails the separation of SDN control and transmission functionalities, centralizingcontrol over data forwardingwhile integrating deep reinforcement learning for informed routing decisions. Byfactoring in considerations such as delay, bandwidth, jitter rate, and packet loss rate, we design a reward function toguide theDeepDeterministic PolicyGradient (DDPG) algorithmin learning the optimal routing strategy to furnishsuperior QoS provision. In our empirical investigations, we juxtapose the performance of Deep ReinforcementLearning (DRL) against that of Shortest Path (SP) algorithms in terms of data packet transmission delay. Theexperimental simulation results show that our proposed algorithm has significant efficacy in reducing networkdelay and improving the overall transmission efficiency, which is superior to the traditional methods.
文摘Demand Responsive Transit (DRT) responds to the dynamic users’ requests without any fixed routes and timetablesand determines the stop and the start according to the demands. This study explores the optimization of dynamicvehicle scheduling and real-time route planning in urban public transportation systems, with a focus on busservices. It addresses the limitations of current shared mobility routing algorithms, which are primarily designedfor simpler, single origin/destination scenarios, and do not meet the complex demands of bus transit systems. Theresearch introduces an route planning algorithm designed to dynamically accommodate passenger travel needsand enable real-time route modifications. Unlike traditional methods, this algorithm leverages a queue-based,multi-objective heuristic A∗ approach, offering a solution to the inflexibility and limited coverage of suburbanbus routes. Also, this study conducts a comparative analysis of the proposed algorithm with solutions based onGenetic Algorithm (GA) and Ant Colony Optimization Algorithm (ACO), focusing on calculation time, routelength, passenger waiting time, boarding time, and detour rate. The findings demonstrate that the proposedalgorithmsignificantly enhances route planning speed, achieving an 80–100-fold increase in efficiency over existingmodels, thereby supporting the real-time demands of Demand-Responsive Transportation (DRT) systems. Thestudy concludes that this algorithm not only optimizes route planning in bus transit but also presents a scalablesolution for improving urban mobility.
基金supported by the the Youth Science and Technology Innovation Fund (Science)(Nos.NS2014070, NS2014070)
文摘Air route network(ARN)planning is an efficient way to alleviate civil aviation flight delays caused by increasing development and pressure for safe operation.Here,the ARN shortest path was taken as the objective function,and an air route network node(ARNN)optimization model was developed to circumvent the restrictions imposed by″three areas″,also known as prohibited areas,restricted areas,and dangerous areas(PRDs),by creating agrid environment.And finally the objective function was solved by means of an adaptive ant colony algorithm(AACA).The A593,A470,B221,and G204 air routes in the busy ZSHA flight information region,where the airspace includes areas with different levels of PRDs,were taken as an example.Based on current flight patterns,a layout optimization of the ARNN was computed using this model and algorithm and successfully avoided PRDs.The optimized result reduced the total length of routes by 2.14% and the total cost by 9.875%.
文摘A main shortcoming of mobile Ad-hoc network's reactive routing protocols is the large volume of far-reaching control traffic required to support the route discovery (RD) and route repair (RR) mechanism. Using a random mobility model, this paper derives the probability equation of the relative distance (RDIS) between any two mobile hosts in an ad-hoc network. Consequently, combining with average equivalent hop distance (AEHD), a host can estimate the routing hops between itself and any destination host each time the RD/RR procedure is triggered, and reduce the flooding area of RD/RR messages. Simulation results show that this optimized route repair (ORR) algorithm can significantly decrease the communication overhead of RR process by about 35%.
基金supported by School Foundation of North University of ChinaPostdoctoral granted financial support from China Postdoctoral Science Foundation(20100481307)+1 种基金Natural Science Foundation of Shanxi(2009011018-3)National Natural Science Foundation of China(60876077)
文摘The transfer system,an important subsystem in urban citizen passenger transport system,is a guarantee of public transport priority and is crucial in the whole urban passenger transport traffic.What the majority of bus passengers consider is the convenience and comfort of the bus ride,which reduces the transfer time of bus passengers."Transfer time" is considered to be the first factor by the majority of bus passengers who select the routes.In this paper,according to the needs of passengers,optimization algorithm,with the minimal distance being the first goal,namely,the improved Dijkstra algorithm based on the minimal distance,is put forward on the basis of the optimization algorithm with the minimal transfer time being the first goal.
基金fully supported by GUET Excellent Graduate Thesis Program(Grant No.19YJPYBS03)Innovation Project of Guangxi Graduate Education(Grant No.YCBZ2022109)New Technology Research University Cooperation Project of the 34th Research Institute of China Electronics Technology Group Corporation,2021(Grant No.SF2126007)。
文摘In Software-Defined Networks(SDNs),determining how to efficiently achieve Quality of Service(QoS)-aware routing is challenging but critical for significantly improving the performance of a network,where the metrics of QoS can be defined as,for example,average latency,packet loss ratio,and throughput.The SDN controller can use network statistics and a Deep Reinforcement Learning(DRL)method to resolve this challenge.In this paper,we formulate dynamic routing in an SDN as a Markov decision process and propose a DRL algorithm called the Asynchronous Advantage Actor-Critic QoS-aware Routing Optimization Mechanism(AQROM)to determine routing strategies that balance the traffic loads in the network.AQROM can improve the QoS of the network and reduce the training time via dynamic routing strategy updates;that is,the reward function can be dynamically and promptly altered based on the optimization objective regardless of the network topology and traffic pattern.AQROM can be considered as one-step optimization and a black-box routing mechanism in high-dimensional input and output sets for both discrete and continuous states,and actions with respect to the operations in the SDN.Extensive simulations were conducted using OMNeT++and the results demonstrated that AQROM 1)achieved much faster and stable convergence than the Deep Deterministic Policy Gradient(DDPG)and Advantage Actor-Critic(A2C),2)incurred a lower packet loss ratio and latency than Open Shortest Path First(OSPF),DDPG,and A2C,and 3)resulted in higher and more stable throughput than OSPF,DDPG,and A2C.
基金supported by the "Taishan Scholarship" Construction Engineering and Shandong Province Graduate Innovative Project(SDYC08011).
文摘Dijkstra algorithm is a theoretical basis to solve transportation network problems of the shortest path, which has a wide range of application in path optimization. Through analyzing traditional Dijkstra algorithm,on account of the insufficiency of this algorithm in path optimization,this paper uses adjacency list and circular linked list with combination to store date,and through the improved quick sorting algorithm for weight sorting, accomplish a quick search to the adjacent node,and so an improved Dijkstra algorithm is got.Then apply it to the optimal path search,and make simulation analysis for this algorithm through the example,also verify the effectiveness of the proposed algorithm.
文摘The GIS technique is used for airport surface management to study the optimization of airplane taxiway for arrival and departure flights. The shortest paths are designed for just-arrived and ready-for-departing flights of the airport. Additionally, whether the flights could confront each other head-to-head on the taxiway is judged. In regard to the airport′s security and efficiency, airplanes must continuously taxi along the shortest route and the head-to-head confrontation should not occur. Two schemes are designed: One is to change the taxiing velocity of arrival flights, the other is to delay the starting time of departure flights. This algorithm is approved by a practical example.
基金supported by the State Grid project which names the simulation and service quality evaluation technology research of power communication network(No.XX71-14-046)
文摘In power communication networks, it is a challenge to decrease the risk of different services efficiently to improve operation reliability. One of the important factor in reflecting communication risk is service route distribution. However, existing routing algorithms do not take into account the degree of importance of services, thereby leading to load unbalancing and increasing the risks of services and networks. A routing optimization mechanism based on load balancing for power communication networks is proposed to address the abovementioned problems. First, the mechanism constructs an evaluation model to evaluate the service and network risk degree using combination of devices, service load, and service characteristics. Second, service weights are determined with modified relative entropy TOPSIS method, and a balanced service routing determination algorithm is proposed. Results of simulations on practical network topology show that the mechanism can optimize the network risk degree and load balancing degree efficiently.
基金National natural science foundation (No:70371040)
文摘The vehicle routing and scheduling (VRS) problem with multi-objective and multi-constraint is analyzed, considering the complexity of the modern logistics in city economy and daily life based on the system engineering. The objective and constraint includes loading, the dispatch and arrival time, transportation conditions,total cost,etc. An information model and a mathematical model are built,and a method based on knowledge and biologic immunity is put forward for optimizing and evaluating the programs dimensions in vehicle routing and scheduling with multi-objective and multi-constraints. The proposed model and method are illustrated in a case study concerning a transport network, and the result shows that more optimization solutions can be easily obtained and the method is efficient and feasible. Comparing with the standard GA and the standard GA without time constraint,the computational time of the algorithm is less in this paper. And the probability of gaining optimal solution is bigger and the result is better under the condition of multi-constraint.
文摘Over the last decade,mobile Adhoc networks have expanded dramati-cally in popularity,and their impact on the communication sector on a variety of levels is enormous.Its uses have expanded in lockstep with its growth.Due to its instability in usage and the fact that numerous nodes communicate data concur-rently,adequate channel and forwarder selection is essential.In this proposed design for a Cognitive Radio Cognitive Network(CRCN),we gain the confidence of each forwarding node by contacting one-hop and second level nodes,obtaining reports from them,and selecting the forwarder appropriately with the use of an optimization technique.At that point,we concentrate our efforts on their channel,selection,and lastly,the transmission of data packets via the designated forwarder.The simulation work is validated in this section using the MATLAB program.Additionally,steps show how the node acts as a confident forwarder and shares the channel in a compatible method to communicate,allowing for more packet bits to be transmitted by conveniently picking the channel between them.We cal-culate the confidence of the node at the start of the network by combining the reliability report for thefirst hop and the reliability report for the secondary hop.We then refer to the same node as the confident node in order to operate as a forwarder.As a result,we witness an increase in the leftover energy in the output.The percentage of data packets delivered has also increased.
基金Projects(71301115,71271150,71101102)supported by the National Natural Science Foundation of ChinaProject(20130032120009)supported by Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘The traditional manner to design public transportation system is to sequentially design the transit network and public bicycle network. A new public transportation system design problem that simultaneously considers both bus network design and public bicycle network design is proposed. The chemical reaction optimization(CRO) is designed to solve the problem. A shortcoming of CRO is that, when the two-molecule collisions take place, the molecules are randomly picked from the container.Hence, we improve CRO by employing different mating strategies. The computational results confirm the benefits of the mating strategies. Numerical experiments are conducted on the Sioux-Falls network. A comparison with the traditional sequential modeling framework indicates that the proposed approach has a better performance and is more robust. The practical applicability of the approach is proved by employing a real size network.
基金funded by the National Natural Science Foundation of China(61872139,41871320)Provincial and Municipal Joint Fund of Hunan Provincial Natural Science Foundation of China(2018JJ4052)+2 种基金Hunan Provincial Natural Science Foundation of China(2017JJ2081)the Key Project of Hunan Provincial Education Department(17A070,19A172)the Project of Hunan Provincial Education Department(17C0646).
文摘Cruising route recommendation based on trajectory mining can improve taxi-drivers'income and reduce energy consumption.However,existing methods mostly recommend pick-up points for taxis only.Moreover,their performance is not good enough since there lacks a good evaluation model for the pick-up points.Therefore,we propose an entropy-based model for recommendation of taxis'cruising route.Firstly,we select more positional attributes from historical pick-up points in order to obtain accurate spatial-temporal features.Secondly,the information entropy of spatial-temporal features is integrated in the evaluation model.Then it is applied for getting the next pick-up points and further recommending a series of successive points.These points are constructed a cruising route for taxi-drivers.Experimental results show that our method is able to obviously improve the recommendation accuracy of pick-up points,and help taxi-drivers make profitable benefits more than before.
文摘Time and space complexity is themost critical problemof the current routing optimization algorithms for Software Defined Networking(SDN).To overcome this complexity,researchers use meta-heuristic techniques inside the routing optimization algorithms in the OpenFlow(OF)based large scale SDNs.This paper proposes a hybrid meta-heuristic algorithm to optimize the dynamic routing problem for the large scale SDNs.Due to the dynamic nature of SDNs,the proposed algorithm uses amutation operator to overcome the memory-based problem of the ant colony algorithm.Besides,it uses the box-covering method and the k-means clustering method to divide the SDN network to overcome the problemof time and space complexity.The results of the proposed algorithm compared with the results of other similar algorithms and it shows that the proposed algorithm can handle the dynamic network changing,reduce the network congestion,the delay and running times and the packet loss rates.