Climate change and extreme weather pose significant challenges to the traditional viticulture regions.Emerging high-altitude grape-producing regions with diverse orientations have shown great potential in coping with ...Climate change and extreme weather pose significant challenges to the traditional viticulture regions.Emerging high-altitude grape-producing regions with diverse orientations have shown great potential in coping with this challenge.Stable,high-quality wine grape production may be achieved by synchronizing the meso-and microclimate.To clarify the role of high altitude and row orientation in meso-and microclimate and the response of berries to it,we evaluated seven years(2012-2018)of climate data,two years of basic grape(Cabernet Sauvignon,Vitis vinifera L.)quality,and one-year microclimate from veraison to harvest.By comparing two locations(Sidon 2047 m,Sinon 2208 m)in Yunnan Province,China,we found that the average temperature has been stable at approximately 15℃ for seven years,with no extreme weather or,noticeable global warming.The light intensity(LI)in the north-south(NS)was more balanced than the east-west(EW)direction,and the east-west to the south(EW-S)canopy side was almost higher than the other sides.High LI was associated with high photosynthetically active radiation(PAR),ultraviolet(UV),and infrared(IR)light and vice versa.The north-south to the east(NS-E)and east-west to the north(EWN)sides were characterized by lower LI and higher UV and IR light,and higher total anthocyanin content.Most anthocyanin synthesis-related genes,for example,VvF3'H and VvF3'5'H,were highly expressed in NS-E from veraison to maturity.Perhaps UV and IR light induced their expression.This study provides new insights on the role of differently orientated rows in controlling grape quality due to varied light quality.The findings are globally significant,particularly in the context of climate change,and offer fresh insights into berry physiological responses and decision-making for the management of existing vineyards.展开更多
Motivated by a critical issue of airline planning process,this paper addresses a new two-stage scenario-based robust optimization in operational airline planning to cope with uncertainty and possible flight disruption...Motivated by a critical issue of airline planning process,this paper addresses a new two-stage scenario-based robust optimization in operational airline planning to cope with uncertainty and possible flight disruptions.Following the route network scheme and generated flight timetables,aircraft maintenance routing and crew scheduling are critical factors in airline planning and operations cost management.This study considers the simultaneous assignment of aircraft fleet and crew to the scheduled flight while satisfying a set of operational constraints,rules,and regulations.Considering multiple locations for airline maintenance and crew bases,we solve the problem of integrated Aircraft Maintenance Routing and Crew Rostering(AMRCR)to achieve the minimum airline cost.One real challenge to the efficiency of the planning results is the possible disruptions in the initial scheduled flights.Due to the fact that disruption scenarios are expressed discretely with a specified probability,and we provide adjustable decisions under disruption to deal with this disruption risk,we provide a Two-Stage Scenario-Based Robust Optimization(TSRO)model.In this model,here-and-now or first-stage variables are the initial resource assignment.Furthermore,to adapt itself to different disruption scenarios,the model considers some adjustable variables,such as the decision to cancel the flight in case of disruption,as wait-and-see or second-stage variables.Considering the complexity of integrated models,and the scenario-based decomposable structure of the TRSO model to solve it with better computational performance,we apply the column and row generation(CRG)method that iteratively considers the disruption scenarios.The numerical results confirm the applicability of the proposed TSRO model in providing the AMRCR problem with an integrated and robust solution with an acceptable level of computational tractability.To evaluate the proposed TSRO model,which solves the AMRCR problem in an integrated and robust manner,five Key Performance Indicators(KPIs)like Number of delayed/canceled flights,Average delay time,and Average profit are taken into account.As key results driven by conducting a case study,we show the proposed TSRO model has substantially improved the solutions at all indicators compared with those of the sequential/non-integrated and nominal/non-robust models.The simulated instances used to assess the performance of the proposed model and CRG method reveal that both CPLEX and the CRG method exhibit comparable and nearly optimal performance for small-scale problems.However,for large-scale instances the proposed TSRO model falls short in terms of computational efficiency.Conversely,the proposed CRG method is capable of significantly reducing computational time and the optimality gap to an acceptable level.展开更多
Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considere...Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considered a replacement for the current Indian production system.It is also suitable for mechanical harvesting,which reducing labour costs,increasing input use efficiency,timely harvesting timely,maintaining cotton quality,and offering the potential to increase productivity and profitability.This technology has become widespread in globally cotton growing regions.Water management is critical for the success of high density cotton planting.Due to the problem of freshwater availability,more crops should be produced per drop of water.In the high-density planting system,optimum water application is essential to control excessive vegetative growth and improve the translocation of photoassimilates to reproductive organs.Deficit irrigation is a tool to save water without compromising yield.At the same time,it consumes less water than the normal evapotranspiration of crops.This review comprehensively documents the importance of growing cotton under a high-density planting system with deficit irrigation.Based on the current research and combined with cotton production reality,this review discusses the application and future development of deficit irrigation,which may provide theoretical guidance for the sustainable advancement of cotton planting systems.展开更多
When designing a solar power plant, it is much more important to avoid the shadow on the PV Panels. As the shadow falls on the PV Panels;it significantly reduces the generation of required power as planned and designe...When designing a solar power plant, it is much more important to avoid the shadow on the PV Panels. As the shadow falls on the PV Panels;it significantly reduces the generation of required power as planned and designed. This research paper and case study will help a lot to avoid shadow, especially when selecting inter-row spacing between the strings of solar power plants.展开更多
The time domain harmonic balance method is an attractive reduced order method of analyzing unsteady flow for turbomachines. However, the method can admit non-physical solutions. Non-physical solutions were encountered...The time domain harmonic balance method is an attractive reduced order method of analyzing unsteady flow for turbomachines. However, the method can admit non-physical solutions. Non-physical solutions were encountered from a three-blade-row compressor configuration in a time domain harmonic balance analysis. This paper aims to investigate the root cause of the non-physical solutions. The investigation involves several strategies, which include increasing the number of harmonics, increasing the number of time instants, including scattered modes,including the rotor-rotor interaction, and the use of a new method-the approximate time domain nonlinear harmonic method. Numerical analyses pertinent to each strategy are presented to reveal the root cause of the non-physical solution. It is found that the nonlinear interaction of unsteady flow components with different fundamental frequencies is the cause of the non-physical solution. The non-physical solution can be eliminated by incorporating extra scattered modes or using the approximate time domain nonlinear harmonic method.展开更多
目的观察电针联合手牵足蹬手法复位对初次肩关节脱位患者肩关节功能的影响。方法将78例初次肩关节脱位的患者,随机分为对照组和观察组,每组39例。对照组采用手牵足蹬法复位进行治疗,观察组在对照组的基础上联合电针治疗。观察两组治疗前...目的观察电针联合手牵足蹬手法复位对初次肩关节脱位患者肩关节功能的影响。方法将78例初次肩关节脱位的患者,随机分为对照组和观察组,每组39例。对照组采用手牵足蹬法复位进行治疗,观察组在对照组的基础上联合电针治疗。观察两组治疗前后Neer肩关节功能评分、Rowe氏评分系统中稳定性及活动度评分、肩关节角度及治疗前、出院时和出院后1个月疼痛视觉模拟量表(visual analog scale,VAS)评分变化,并比较两组不良反应发生率。结果治疗后,两组Neer肩关节功能评分各项评分及总分均升高(P<0.05),且观察组疼痛和运动范围评分及总分高于对照组(P<0.05);两组Rowe氏评分中的稳定性和活动度评分均升高(P<0.05),且观察组高于对照组(P<0.05);两组前屈上举、外展外旋角度均增大(P<0.05),且观察组大于对照组(P<0.05),两组体侧外旋角度比较差异无统计学意义(P>0.05)。两组出院时、出院后1个月VAS评分均低于治疗前,且观察组出院时、出院后1个月VAS评分均低于对照组,差异有统计学意义(P<0.05)。两组不良反应发生率比较,差异无统计学意义(P>0.05)。结论针刺联合手牵足蹬手法复位可改善初次肩关节脱位患者的肩关节功能及疼痛情况,无明显不良反应,是一种安全、有效的治疗方法。展开更多
Foam drainage is theflow of liquid through the interstitial spaces between bubbles driven by capillarity and grav-ity and resisted by viscous damping.The so-called foam drainage gas recovery technology is a technique ...Foam drainage is theflow of liquid through the interstitial spaces between bubbles driven by capillarity and grav-ity and resisted by viscous damping.The so-called foam drainage gas recovery technology is a technique tradi-tionally used to mitigate the serious bottom-hole liquid loading in the middle and late stages of gas well production.In this context,determining the optimal concentration of the bubble drainage agent is generally cru-cial for the proper application of this method.In this study,a combination of indoor experiments and theoretical analysis have been used to determine the pressure drop related to the foam-carrying capacity in a representative gasfield.Dynamic and static experiments were designed with a bubble drainage agent concentration varying in the range 0.3%–0.6%.Using thefield formation water data,the optimal soaking agent concentration was obtained and pressure drop test experiments on the foam carrying capacity were conducted accordingly.These tests have revealed that the optimal foam displacement agent concentration is 0.5%,and the foam quality at the optimum concentration is between 0.78–0.98.A theoretical method for calculating the pressure drop at the optimum soak-away concentration based on experimental data has also been introduced.The error of the proposed method is within 15%compared to the experimental measured value,demonstrating that it is highly accurate and simple.展开更多
BACKGROUND Postpartum ovarian vein thrombophlebitis(POVT)is a rare but serious postpartum complication that affects mostly postpartum women.A high index of suspicion is required when faced with sudden postpartum abdom...BACKGROUND Postpartum ovarian vein thrombophlebitis(POVT)is a rare but serious postpartum complication that affects mostly postpartum women.A high index of suspicion is required when faced with sudden postpartum abdominal pain.CASE SUMMARY A 25-year-old healthy woman who accepted a vaginal delivery procedure suffered fever(temperature 39.6℃)one day after delivery,accompanied with left lower abdominal pain.Physical examination indicated mild tenderness in the left lower abdomen,accompanied with rebound pain.The patient was confirmed to have left ovarian venous thrombosis with inflammation after receiving a multidetector row computed tomography scan.CONCLUSION POVT is a rare and dangerous postpartum complication.A high index of suspicion is required for the occurrence of ovarian venous thrombosis when faced with postpartum abdominal pain and fever.Early application of Doppler ultrasound,computed tomography,magnetic resonance imaging and other auxiliary examinations is conducive to timely and accurate diagnosis of POVT,thus reducing maternal mortality.展开更多
In monoculture, crop failure due to biotic or abiotic causes can result in partial or total output failure. The yield, socio-economic, and environmental effects of intercropping on the farmer and the environment as a ...In monoculture, crop failure due to biotic or abiotic causes can result in partial or total output failure. The yield, socio-economic, and environmental effects of intercropping on the farmer and the environment as a whole have not received much attention. There is a dearth of knowledge on the productivity of maize-groundnut intercrops in Ghana regarding the relative timing of planting and spatial arrangement of component crops. Therefore, the objective of the study was to determine the effects of spatial row arrangement and the time of planting intercrops on the productivity of groundnut under maize-groundnut intercropping. The 5 × 3 factorial field experiment was undertaken at the Miminaso community in the Ejura-Sekyedumase municipality of the Ashanti Region of Ghana during the 2020 cropping seasons. Treatments were evaluated in a Randomized Complete Block Design (RCBD) with three replicates. The levels of row arrangement of intercrops were: one row of maize and one row of groundnut (1M1G), one row of maize and two rows of groundnut (1M2G), two rows of maize and one row of groundnut (2M1G), two rows of maize and two rows of groundnut (2M2G), sole maize and sole groundnut (M/G). The levels of time of introducing groundnut included simultaneous planting of intercrops (0 WAP), planting groundnut one week after planting maize (1 WAP) and planting groundnut two weeks after planting maize (2 WAP). There were significant (P 0.05) treatment interactions for pod and seed yields of groundnut throughout the study. The highest groundnut pod yields of 1815.00 kg/ha and 2359.00 kg/ha were recorded by the 0WAP × 1M2G treatment in the major and minor seasons of 2020, respectively, while the highest groundnut seed yields of 741.00 kg/ha and 726.00 kg/ha were recorded in the major and minor rainy seasons of 2020 by 1WAP × G and 0WAP × G treatments, respectively. The highest seed yields of groundnut (404 kg/ha and 637 kg/ha for major and minor rainy seasons, respectively) were produced by 1WAP × 2M2G.展开更多
A multi-qubit pure quantum state is called separable when it can be factored as the tensor product of 1-qubit pure quantum states.Factorizing a general multi-qubit pure quantum state into the tensor product of its fac...A multi-qubit pure quantum state is called separable when it can be factored as the tensor product of 1-qubit pure quantum states.Factorizing a general multi-qubit pure quantum state into the tensor product of its factors(pure states containing a smaller number of qubits)can be a challenging task,especially for highly entangled states.A new criterion based on the proportionality of the rows of certain associated matrices for the existence of certain factorization and a factorization algorithm that follows from this criterion for systematically extracting all the factors is developed in this paper.3-qubit pure states play a crucial role in quantum computing and quantum information processing.For various applications,the well-known 3-qubit GHZ state which contains two nonzero terms,and the 3-qubit W state which contains three nonzero terms,have been studied extensively.Using the new factorization algorithm developed here we perform a complete analysis vis-à-vis entanglement of 3-qubit states that contain exactly two nonzero terms and exactly three nonzero terms.展开更多
Municipal civil engineering is the key content of municipal construction,and the construction scale is usually large.The quality of the project plays an important role in the development of urban economy.Due to the ra...Municipal civil engineering is the key content of municipal construction,and the construction scale is usually large.The quality of the project plays an important role in the development of urban economy.Due to the rapid increase of high-rise buildings,skyscrapers and underground buildings,the construction technology of deep foundation pit support has gradually become an indispensable construction technology.Therefore,the selection of foundation pit support construction technology is crucial in ensuring that whether the foundation is firm and stable,and whether the subsequent construction activities can be carried out smoothly.In view of this,the article discusses the application of deep foundation pit support construction technology in municipal civil engineering,aiming to provide reference for subsequent projects.展开更多
[Objective] This study was conducted to investigate the effects of different plant spacing on tobacco grade structure, growth stages, agronomic traits, yield and chemical composition under fixed row spacing. [Method] ...[Objective] This study was conducted to investigate the effects of different plant spacing on tobacco grade structure, growth stages, agronomic traits, yield and chemical composition under fixed row spacing. [Method] Under fixed row spacing (120 cm), 4 treatments were designed (40, 50, 60 and 45 cm). The growth stages, agronomic traits, economic traits and chemical composition of flue-cured tobacco leaves were compared and analyzed. [Result] with the increase of plant spacing, there were no significant differences in the emergence time of growth stages be- tween different treatment groups before resettling stage, and the resettling stage ap- peared 1-2 d in advance. At different tobacco growth stages, the changing trends of tobacco agronomic traits with the change of plant spacing were different. [Conclusion] With the increase of plant spacing, the planting density of tobacco de- creased, and the nicotine content increased; and the yield of tobacco decreased continuously, while the quality was improved, but when the plant spacing was im- proved to certain degree, the quality of tobacco also decreased, and at the plant spacing of 50 cm, the output value of tobacco was the highest.展开更多
In present,there are increasing interests in the research on mechanical and control system of underwater vehicles.These ongoing research efforts are motivated by more pervasive applications of such vehicles including ...In present,there are increasing interests in the research on mechanical and control system of underwater vehicles.These ongoing research efforts are motivated by more pervasive applications of such vehicles including seabed oil and gas explorations, scientific deep ocean surveys,military purposes,ecological and water environmental studies,and also entertainments. However,the performance of underwater vehicles with screw type propellers is not prospective in terms of its efficiency and maneuverability.The main weaknesses of this kind of propellers are the production of vortices and sudden generation of thrust forces which make the control of the position and motion difficult. On the other hand,fishes and other aquatic animals are efficient swimmers,posses high maneuverability,are able to follow trajectories,can efficiently stabilize themselves in currents and surges,create less wakes than currently used underwater vehicle, and also have a noiseless propulsion.The fish's locomotion mechanism is mainly controlled by its caudal fin and paired pectoral fins.They are classified into Body and/or Caudal Fin(BCF)and Median and/or paired Pectoral Fins(MPF).The study of highly efficient swimming mechanisms of fish can inspire a better underwater vehicles thruster design and its mechanism. There are few studies on underwater vehicles or fish robots using paired pectoral fins as thruster.The work presented in this paper represents a contribution in this area covering study,design and implementation of locomotion mechanisms of paired pectoral fins in a fish robot.The performance and viability of the biomimetic method for underwater vehicles are highlighted through in-water experiment of a robotic fish.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.31772258)the National Key Research and Development Program(Grant No.2019YFD1000102-11)。
文摘Climate change and extreme weather pose significant challenges to the traditional viticulture regions.Emerging high-altitude grape-producing regions with diverse orientations have shown great potential in coping with this challenge.Stable,high-quality wine grape production may be achieved by synchronizing the meso-and microclimate.To clarify the role of high altitude and row orientation in meso-and microclimate and the response of berries to it,we evaluated seven years(2012-2018)of climate data,two years of basic grape(Cabernet Sauvignon,Vitis vinifera L.)quality,and one-year microclimate from veraison to harvest.By comparing two locations(Sidon 2047 m,Sinon 2208 m)in Yunnan Province,China,we found that the average temperature has been stable at approximately 15℃ for seven years,with no extreme weather or,noticeable global warming.The light intensity(LI)in the north-south(NS)was more balanced than the east-west(EW)direction,and the east-west to the south(EW-S)canopy side was almost higher than the other sides.High LI was associated with high photosynthetically active radiation(PAR),ultraviolet(UV),and infrared(IR)light and vice versa.The north-south to the east(NS-E)and east-west to the north(EWN)sides were characterized by lower LI and higher UV and IR light,and higher total anthocyanin content.Most anthocyanin synthesis-related genes,for example,VvF3'H and VvF3'5'H,were highly expressed in NS-E from veraison to maturity.Perhaps UV and IR light induced their expression.This study provides new insights on the role of differently orientated rows in controlling grape quality due to varied light quality.The findings are globally significant,particularly in the context of climate change,and offer fresh insights into berry physiological responses and decision-making for the management of existing vineyards.
文摘Motivated by a critical issue of airline planning process,this paper addresses a new two-stage scenario-based robust optimization in operational airline planning to cope with uncertainty and possible flight disruptions.Following the route network scheme and generated flight timetables,aircraft maintenance routing and crew scheduling are critical factors in airline planning and operations cost management.This study considers the simultaneous assignment of aircraft fleet and crew to the scheduled flight while satisfying a set of operational constraints,rules,and regulations.Considering multiple locations for airline maintenance and crew bases,we solve the problem of integrated Aircraft Maintenance Routing and Crew Rostering(AMRCR)to achieve the minimum airline cost.One real challenge to the efficiency of the planning results is the possible disruptions in the initial scheduled flights.Due to the fact that disruption scenarios are expressed discretely with a specified probability,and we provide adjustable decisions under disruption to deal with this disruption risk,we provide a Two-Stage Scenario-Based Robust Optimization(TSRO)model.In this model,here-and-now or first-stage variables are the initial resource assignment.Furthermore,to adapt itself to different disruption scenarios,the model considers some adjustable variables,such as the decision to cancel the flight in case of disruption,as wait-and-see or second-stage variables.Considering the complexity of integrated models,and the scenario-based decomposable structure of the TRSO model to solve it with better computational performance,we apply the column and row generation(CRG)method that iteratively considers the disruption scenarios.The numerical results confirm the applicability of the proposed TSRO model in providing the AMRCR problem with an integrated and robust solution with an acceptable level of computational tractability.To evaluate the proposed TSRO model,which solves the AMRCR problem in an integrated and robust manner,five Key Performance Indicators(KPIs)like Number of delayed/canceled flights,Average delay time,and Average profit are taken into account.As key results driven by conducting a case study,we show the proposed TSRO model has substantially improved the solutions at all indicators compared with those of the sequential/non-integrated and nominal/non-robust models.The simulated instances used to assess the performance of the proposed model and CRG method reveal that both CPLEX and the CRG method exhibit comparable and nearly optimal performance for small-scale problems.However,for large-scale instances the proposed TSRO model falls short in terms of computational efficiency.Conversely,the proposed CRG method is capable of significantly reducing computational time and the optimality gap to an acceptable level.
文摘Lessons learned from past experiences push for an alternate way of crop production.In India,adopting high density planting system(HDPS)to boost cotton yield is becoming a growing trend.HDPS has recently been considered a replacement for the current Indian production system.It is also suitable for mechanical harvesting,which reducing labour costs,increasing input use efficiency,timely harvesting timely,maintaining cotton quality,and offering the potential to increase productivity and profitability.This technology has become widespread in globally cotton growing regions.Water management is critical for the success of high density cotton planting.Due to the problem of freshwater availability,more crops should be produced per drop of water.In the high-density planting system,optimum water application is essential to control excessive vegetative growth and improve the translocation of photoassimilates to reproductive organs.Deficit irrigation is a tool to save water without compromising yield.At the same time,it consumes less water than the normal evapotranspiration of crops.This review comprehensively documents the importance of growing cotton under a high-density planting system with deficit irrigation.Based on the current research and combined with cotton production reality,this review discusses the application and future development of deficit irrigation,which may provide theoretical guidance for the sustainable advancement of cotton planting systems.
文摘When designing a solar power plant, it is much more important to avoid the shadow on the PV Panels. As the shadow falls on the PV Panels;it significantly reduces the generation of required power as planned and designed. This research paper and case study will help a lot to avoid shadow, especially when selecting inter-row spacing between the strings of solar power plants.
基金National Natural Science Foundation of China(51976172)National Science and Technology Major Project (2017-II-0009-0023)+1 种基金China’s 111 project(B17037)Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX2023056)。
文摘The time domain harmonic balance method is an attractive reduced order method of analyzing unsteady flow for turbomachines. However, the method can admit non-physical solutions. Non-physical solutions were encountered from a three-blade-row compressor configuration in a time domain harmonic balance analysis. This paper aims to investigate the root cause of the non-physical solutions. The investigation involves several strategies, which include increasing the number of harmonics, increasing the number of time instants, including scattered modes,including the rotor-rotor interaction, and the use of a new method-the approximate time domain nonlinear harmonic method. Numerical analyses pertinent to each strategy are presented to reveal the root cause of the non-physical solution. It is found that the nonlinear interaction of unsteady flow components with different fundamental frequencies is the cause of the non-physical solution. The non-physical solution can be eliminated by incorporating extra scattered modes or using the approximate time domain nonlinear harmonic method.
文摘目的观察电针联合手牵足蹬手法复位对初次肩关节脱位患者肩关节功能的影响。方法将78例初次肩关节脱位的患者,随机分为对照组和观察组,每组39例。对照组采用手牵足蹬法复位进行治疗,观察组在对照组的基础上联合电针治疗。观察两组治疗前后Neer肩关节功能评分、Rowe氏评分系统中稳定性及活动度评分、肩关节角度及治疗前、出院时和出院后1个月疼痛视觉模拟量表(visual analog scale,VAS)评分变化,并比较两组不良反应发生率。结果治疗后,两组Neer肩关节功能评分各项评分及总分均升高(P<0.05),且观察组疼痛和运动范围评分及总分高于对照组(P<0.05);两组Rowe氏评分中的稳定性和活动度评分均升高(P<0.05),且观察组高于对照组(P<0.05);两组前屈上举、外展外旋角度均增大(P<0.05),且观察组大于对照组(P<0.05),两组体侧外旋角度比较差异无统计学意义(P>0.05)。两组出院时、出院后1个月VAS评分均低于治疗前,且观察组出院时、出院后1个月VAS评分均低于对照组,差异有统计学意义(P<0.05)。两组不良反应发生率比较,差异无统计学意义(P>0.05)。结论针刺联合手牵足蹬手法复位可改善初次肩关节脱位患者的肩关节功能及疼痛情况,无明显不良反应,是一种安全、有效的治疗方法。
基金support provided by the National Natural Science Foundation of China(No.62173049)the Open Fund of the Key Laboratory of Exploration Technologies for Oil and Gas Resources(Yangtze University),Ministry of Education(Grant K2021-17).
文摘Foam drainage is theflow of liquid through the interstitial spaces between bubbles driven by capillarity and grav-ity and resisted by viscous damping.The so-called foam drainage gas recovery technology is a technique tradi-tionally used to mitigate the serious bottom-hole liquid loading in the middle and late stages of gas well production.In this context,determining the optimal concentration of the bubble drainage agent is generally cru-cial for the proper application of this method.In this study,a combination of indoor experiments and theoretical analysis have been used to determine the pressure drop related to the foam-carrying capacity in a representative gasfield.Dynamic and static experiments were designed with a bubble drainage agent concentration varying in the range 0.3%–0.6%.Using thefield formation water data,the optimal soaking agent concentration was obtained and pressure drop test experiments on the foam carrying capacity were conducted accordingly.These tests have revealed that the optimal foam displacement agent concentration is 0.5%,and the foam quality at the optimum concentration is between 0.78–0.98.A theoretical method for calculating the pressure drop at the optimum soak-away concentration based on experimental data has also been introduced.The error of the proposed method is within 15%compared to the experimental measured value,demonstrating that it is highly accurate and simple.
文摘BACKGROUND Postpartum ovarian vein thrombophlebitis(POVT)is a rare but serious postpartum complication that affects mostly postpartum women.A high index of suspicion is required when faced with sudden postpartum abdominal pain.CASE SUMMARY A 25-year-old healthy woman who accepted a vaginal delivery procedure suffered fever(temperature 39.6℃)one day after delivery,accompanied with left lower abdominal pain.Physical examination indicated mild tenderness in the left lower abdomen,accompanied with rebound pain.The patient was confirmed to have left ovarian venous thrombosis with inflammation after receiving a multidetector row computed tomography scan.CONCLUSION POVT is a rare and dangerous postpartum complication.A high index of suspicion is required for the occurrence of ovarian venous thrombosis when faced with postpartum abdominal pain and fever.Early application of Doppler ultrasound,computed tomography,magnetic resonance imaging and other auxiliary examinations is conducive to timely and accurate diagnosis of POVT,thus reducing maternal mortality.
文摘In monoculture, crop failure due to biotic or abiotic causes can result in partial or total output failure. The yield, socio-economic, and environmental effects of intercropping on the farmer and the environment as a whole have not received much attention. There is a dearth of knowledge on the productivity of maize-groundnut intercrops in Ghana regarding the relative timing of planting and spatial arrangement of component crops. Therefore, the objective of the study was to determine the effects of spatial row arrangement and the time of planting intercrops on the productivity of groundnut under maize-groundnut intercropping. The 5 × 3 factorial field experiment was undertaken at the Miminaso community in the Ejura-Sekyedumase municipality of the Ashanti Region of Ghana during the 2020 cropping seasons. Treatments were evaluated in a Randomized Complete Block Design (RCBD) with three replicates. The levels of row arrangement of intercrops were: one row of maize and one row of groundnut (1M1G), one row of maize and two rows of groundnut (1M2G), two rows of maize and one row of groundnut (2M1G), two rows of maize and two rows of groundnut (2M2G), sole maize and sole groundnut (M/G). The levels of time of introducing groundnut included simultaneous planting of intercrops (0 WAP), planting groundnut one week after planting maize (1 WAP) and planting groundnut two weeks after planting maize (2 WAP). There were significant (P 0.05) treatment interactions for pod and seed yields of groundnut throughout the study. The highest groundnut pod yields of 1815.00 kg/ha and 2359.00 kg/ha were recorded by the 0WAP × 1M2G treatment in the major and minor seasons of 2020, respectively, while the highest groundnut seed yields of 741.00 kg/ha and 726.00 kg/ha were recorded in the major and minor rainy seasons of 2020 by 1WAP × G and 0WAP × G treatments, respectively. The highest seed yields of groundnut (404 kg/ha and 637 kg/ha for major and minor rainy seasons, respectively) were produced by 1WAP × 2M2G.
文摘A multi-qubit pure quantum state is called separable when it can be factored as the tensor product of 1-qubit pure quantum states.Factorizing a general multi-qubit pure quantum state into the tensor product of its factors(pure states containing a smaller number of qubits)can be a challenging task,especially for highly entangled states.A new criterion based on the proportionality of the rows of certain associated matrices for the existence of certain factorization and a factorization algorithm that follows from this criterion for systematically extracting all the factors is developed in this paper.3-qubit pure states play a crucial role in quantum computing and quantum information processing.For various applications,the well-known 3-qubit GHZ state which contains two nonzero terms,and the 3-qubit W state which contains three nonzero terms,have been studied extensively.Using the new factorization algorithm developed here we perform a complete analysis vis-à-vis entanglement of 3-qubit states that contain exactly two nonzero terms and exactly three nonzero terms.
文摘Municipal civil engineering is the key content of municipal construction,and the construction scale is usually large.The quality of the project plays an important role in the development of urban economy.Due to the rapid increase of high-rise buildings,skyscrapers and underground buildings,the construction technology of deep foundation pit support has gradually become an indispensable construction technology.Therefore,the selection of foundation pit support construction technology is crucial in ensuring that whether the foundation is firm and stable,and whether the subsequent construction activities can be carried out smoothly.In view of this,the article discusses the application of deep foundation pit support construction technology in municipal civil engineering,aiming to provide reference for subsequent projects.
基金Supported by Project of Luzhou Branch Company of Sicuan Tobacco Company:Application of Integrated Technique for Improving Tobacco Grade Structure~~
文摘[Objective] This study was conducted to investigate the effects of different plant spacing on tobacco grade structure, growth stages, agronomic traits, yield and chemical composition under fixed row spacing. [Method] Under fixed row spacing (120 cm), 4 treatments were designed (40, 50, 60 and 45 cm). The growth stages, agronomic traits, economic traits and chemical composition of flue-cured tobacco leaves were compared and analyzed. [Result] with the increase of plant spacing, there were no significant differences in the emergence time of growth stages be- tween different treatment groups before resettling stage, and the resettling stage ap- peared 1-2 d in advance. At different tobacco growth stages, the changing trends of tobacco agronomic traits with the change of plant spacing were different. [Conclusion] With the increase of plant spacing, the planting density of tobacco de- creased, and the nicotine content increased; and the yield of tobacco decreased continuously, while the quality was improved, but when the plant spacing was im- proved to certain degree, the quality of tobacco also decreased, and at the plant spacing of 50 cm, the output value of tobacco was the highest.
文摘In present,there are increasing interests in the research on mechanical and control system of underwater vehicles.These ongoing research efforts are motivated by more pervasive applications of such vehicles including seabed oil and gas explorations, scientific deep ocean surveys,military purposes,ecological and water environmental studies,and also entertainments. However,the performance of underwater vehicles with screw type propellers is not prospective in terms of its efficiency and maneuverability.The main weaknesses of this kind of propellers are the production of vortices and sudden generation of thrust forces which make the control of the position and motion difficult. On the other hand,fishes and other aquatic animals are efficient swimmers,posses high maneuverability,are able to follow trajectories,can efficiently stabilize themselves in currents and surges,create less wakes than currently used underwater vehicle, and also have a noiseless propulsion.The fish's locomotion mechanism is mainly controlled by its caudal fin and paired pectoral fins.They are classified into Body and/or Caudal Fin(BCF)and Median and/or paired Pectoral Fins(MPF).The study of highly efficient swimming mechanisms of fish can inspire a better underwater vehicles thruster design and its mechanism. There are few studies on underwater vehicles or fish robots using paired pectoral fins as thruster.The work presented in this paper represents a contribution in this area covering study,design and implementation of locomotion mechanisms of paired pectoral fins in a fish robot.The performance and viability of the biomimetic method for underwater vehicles are highlighted through in-water experiment of a robotic fish.