ased on Quasi-Vortex-Lattiee method, a program is presented to com-pute the aerodynamic forces for nonplanar wing with wing-tip sails. By using thisprogram, the aerodynamic force is calculated and the sails are design...ased on Quasi-Vortex-Lattiee method, a program is presented to com-pute the aerodynamic forces for nonplanar wing with wing-tip sails. By using thisprogram, the aerodynamic force is calculated and the sails are designed for an aircraftwith rectangular wing of 8.6 aspect ratio. The calculation results show that thosewing-tip sails, whose total area is 3. 1 percent of the aircraft’s basic wing area, will haveremarkable effect on reducing induced drag, and the lift-dependent drag factor can bereduced by about 18.5 to 21 .5 percent. Wind tunnel tests are conducted in NH-2 windtunnel of Nanjing Aeronautical and Astronautical University, and the results demon-strate the correctness of the above calculation results. The influences of sail parameterson performance and handling qualities of aircraft are also analyzed.展开更多
The advantage of solar sails in deep space exploration is that no fuel consumption is required. The heliocentric distance is one factor influencing the solar radiation pressure force exerted on solar sails. In additio...The advantage of solar sails in deep space exploration is that no fuel consumption is required. The heliocentric distance is one factor influencing the solar radiation pressure force exerted on solar sails. In addition, the solar radiation pressure force is also related to the solar sail orientation with respect to the sunlight direction. For an ideal flat solar sail, the cone angle between the sail normal and the sunlight direction determines the magnitude and direction of solar radiation pressure force. In general, the cone angle can change from 0° to 90°. However, in practical applications, a large cone angle may reduce the efficiency of solar radiation pressure force and there is a strict requirement on the attitude control. Usually, the cone angle range is restricted less more than an acute angle (for example, not more than 40°) in engineering practice. In this paper, the time-optimal transfer trajectory is designed over a restricted range of the cone angle, and an indirect method is used to solve the two point boundary value problem associated to the optimal control problem. Relevant numerical examples are provided to compare with the case of an unrestricted case, and the effects of different maximum restricted cone angles are discussed. The results indicate that (1) for the condition of a restricted cone-angle range the transfer time is longer than that for the unrestricted case and (2) the optimal transfer time increases as the maximum restricted cone angle decreases.展开更多
The high performance solar sail can enable fast missions to the outer solar system and produce exotic non-Keplerian orbits.As there is no fuel consumption,mission trajectories for solar sail spacecraft are typically o...The high performance solar sail can enable fast missions to the outer solar system and produce exotic non-Keplerian orbits.As there is no fuel consumption,mission trajectories for solar sail spacecraft are typically optimized with respect to flight time.Several investigations focused on interstellar probe missions have been made,including optimal methods and new objective functions. Two modes of interstellar mission trajectories,namely 'direct flyby' and 'angular momentum reversal trajectory',are compared and discussed.As a foundation,a 3D non-dimensional dynamic model for an ideal plane solar sail is introduced as well as an optimal control framework.A newly found periodic double angular momentum reversal trajectory is presented,and some properties and potential applications of this kind of inverse orbits are illustrated.The method how to achieve the minimum periodic inverse orbit is also briefly elucidated.展开更多
Ships which have large structures above water surface,such as pure car carriers(PCCs) and container vessels,have large speed reduction by wind pressure.In the present study,the running speed of a large PCC with two or...Ships which have large structures above water surface,such as pure car carriers(PCCs) and container vessels,have large speed reduction by wind pressure.In the present study,the running speed of a large PCC with two or more sails for using wind power is simulated.The simulated results demonstrate that the ship can keep a constant service speed even in winds of 20m/s except head and bow winds.This sail system can shorten annual average navigation time by about 4 hours per voyage.展开更多
Displaced non-Keplerian orbits above planetary bodies can be achieved by orientating the solar sail normal to the sun line. The dynamical systems techniques are employed to analyze the nonlinear dynamics of a displace...Displaced non-Keplerian orbits above planetary bodies can be achieved by orientating the solar sail normal to the sun line. The dynamical systems techniques are employed to analyze the nonlinear dynamics of a displaced orbit and different topologies of equilibria are yielded from the basic configurations of Hill's region, which have a saddlenode bifurcation point at the degenerated case. The solar sail near hyperbolic or degenerated equilibrium is quite unstable. Therefore, a controller preserving Hamiltonian structure is presented to stabilize the solar sail near hyperbolic or degenerated equilibrium, and to generate the stable Lissajous orbits that stay stable inside the stabilizing region of the controller. The main contribution of this paper is that the controller preserving Hamiltonian structure not only changes the instability of the equilibrium, but also makes the modified elliptic equilibrium become unique for the controlled system. The allocation law of the controller on the sail's attitude and lightness number is obtained, which verifies that the controller is realizable.展开更多
This paper proposes new quasi-periodic orbits around Earth–Moon collinear libration points using solar sails.By including the time-varying sail orientation in the linearized equations of motion for the circular restr...This paper proposes new quasi-periodic orbits around Earth–Moon collinear libration points using solar sails.By including the time-varying sail orientation in the linearized equations of motion for the circular restricted three-body problem(CR3BP),four types of quasi-periodic orbits(two types around L1 and two types around L2)were formulated.Among them,one type of orbit around L2 realizes a considerably small geometry variation while ensuring visibility from the Earth if(and only if)the sail acceleration due to solar radiation pressure is approximately of a certain magnitude,which is much smaller than that assumed in several previous studies.This means that only small solar sails can remain in the vicinity of L2 for a long time without propellant consumption.The orbits designed in the linearized CR3BP can be translated into nonlinear CR3BP and high-fidelity ephemeris models without losing geometrical characteristics.In this study,new quasi-periodic orbits are formulated,and their characteristics are discussed.Furthermore,their extendibility to higher-fidelity dynamic models was verified using numerical examples.展开更多
The spinning deployment process of solar sails is analyzed in this study. A simplified model is established by considering the out-of-plane and in-plane motions of solar sails. The influences of structure parameters, ...The spinning deployment process of solar sails is analyzed in this study. A simplified model is established by considering the out-of-plane and in-plane motions of solar sails. The influences of structure parameters, initial conditions, and feedback control parameters are also analyzed.A method to build the geometric model of a solar sail is presented by analyzing the folding process of solar sails. The finite element model of solar sails is then established, which contains continuous cables and sail membranes. The dynamics of the second-stage deployment of solar sails are simulated by using ABAQUS software. The influences of the rotational speed and out-of-plane movement of the hub are analyzed by different tip masses, initial velocities, and control parameters.Compared with the results from theoretical models, simulation results show good agreements.展开更多
The direction of the sun is the easiest and most reliable observation vector for a solar sail running in deep space exploration. This paper presents a new method using only raw measurements of the sun direction vector...The direction of the sun is the easiest and most reliable observation vector for a solar sail running in deep space exploration. This paper presents a new method using only raw measurements of the sun direction vector to estimate angular velocity for a spinning solar sail. In cases with a constant spin angular velocity, the estimation equation is formed based on the kinematic model for the apparent motion of the sun direction vector; the least-squares solution is then easily calculated. A performance criterion is defined and used to analyze estimation accuracy. In cases with a variable spin angular velocity, the estimation equation is developed based on the kinematic model for the apparent motion of the sun direction vector and the attitude dynamics equation. Simulation results show that the proposed method can quickly yield high-precision angular velocity estimates that are insensitive to certain measurement noises and modeling errors.展开更多
In this paper a new phase space of hodograph method is adopted to investigate and better understand the two-dimensional angular momentum reversal(H-reversal) trajectories for high performance solar sails within a fixe...In this paper a new phase space of hodograph method is adopted to investigate and better understand the two-dimensional angular momentum reversal(H-reversal) trajectories for high performance solar sails within a fixed cone angle.As the hodograph method and the H-reversal trajectory are not very common,both of them are briefly introduced.The relationship between them are constructed and addressed with a sample trajectory.How the phase space varies according to the sail quality and the fixed sail cone angle is also studied.Through variation of the phase space,the minimum sail lightness number can be obtained by solving a set of algebraic equations instead of a parameter optimization problem.For a given sail lightness number,there are three types of the two-dimensional possible heliocentric motion,including the spiral inward trajectories towards the Sun,the H-reversal trajectories and the directly outward escape trajectories.The boundaries that separate these different groups are easily determined by using the phase space.Finally,the method and procedures to achieve the feasible region of the H-reversal trajectory with required perihelion distance are presented in detail.展开更多
Shape memory composites(SMCs)combine mechanical performances of composite materials with functional behavior of shape memory polymers.They can be used to produce the external frame of self-deployable solar sails with ...Shape memory composites(SMCs)combine mechanical performances of composite materials with functional behavior of shape memory polymers.They can be used to produce the external frame of self-deployable solar sails with very low weight in comparison with traditional composite booms.Furthermore,heat activation is necessary for deploying instead of complex mechanical devices.In this study,the mechanical behavior of a solar sail with SMC frame is simulated by means of finite element modeling.Design considerations are made on sail deployment configuration,size/weight ratio of solar sails,and SMC properties.An experimental activity has been also performed to provide suitable candidates for the composite laminates of the SMC structure.Mechanical and instrumented recovery tests have been carried out on 2-plies carbon-fiber laminates with a shape memory interlayer.展开更多
In this study,new analytical solutions to the equations of motion of a propelled spacecraft are investigated using a shape-based approach.There is an assumption that the spacecraft travels a two-dimensional spiral tra...In this study,new analytical solutions to the equations of motion of a propelled spacecraft are investigated using a shape-based approach.There is an assumption that the spacecraft travels a two-dimensional spiral trajectory in which the orbital radius is proportional to an assigned power of the spacecraft angular coordinate.The exact solution to the equations of motion is obtained as a function of time in the case of a purely radial thrust,and the propulsive acceleration magnitude necessary for the spacecraft to track the prescribed spiral trajectory is found in a closed form.The analytical results are then specialized to the case of a generalized sail,that is,a propulsion system capable of providing an outward radial propulsive acceleration,the magnitude of which depends on a given power of the Sun-spacecraft distance.In particular,the conditions for an outward radial thrust and the required sail performance are quantified and thoroughly discussed.It is worth noting that these propulsion systems provide a purely radial thrust when their orientation is Sun-facing.This is an important advantage from an engineering point of view because,depending on the particular propulsion system,a Sun-facing attitude can be stable or obtainable in a passive way.A case study is finally presented,where the generalized sail is assumed to start the spiral trajectory from the Earth’s heliocentric orbit.The main outcome is that the required sail performance is in principle achievable on the basis of many results available in the literature.展开更多
The present paper proposes a control method to excite spinning solar sail membranes for three-dimensional use.Using optical property switching,the input is given as the change in magnitude of the solar radiation press...The present paper proposes a control method to excite spinning solar sail membranes for three-dimensional use.Using optical property switching,the input is given as the change in magnitude of the solar radiation pressure.The resonance point of this system varies with the vibration state due to its nonlinearity and the change in equilibrium state.To deal with this,a state feedback control law that automatically tracks the resonance point is developed in the present study.The proposed method enables decentralized control of the actuators on the sail,each of which determines the control input independently using only the information of vibration state.The proposed method is validated using numerical simulations.The results show that the nonlinear system behaves differently from the linear system,and the vibration grows using the decentralized control regardless of resonance point variation.展开更多
A diffractive sail is a solar sail whose exposed surface is covered by an advanced diffractive metamaterial film with engineered optical properties. This study examines the optimal performance of a diffractive solar s...A diffractive sail is a solar sail whose exposed surface is covered by an advanced diffractive metamaterial film with engineered optical properties. This study examines the optimal performance of a diffractive solar sail with a Sun-facing attitude in a typical orbit-to-orbit heliocentric transfer. A Sun-facing attitude, which can be passively maintained through the suitable design of the sail shape, is obtained when the sail nominal plane is perpendicular to the Sun–spacecraft line. Unlike an ideal reflective sail, a Sun-facing diffractive sail generates a large transverse thrust component that can be effectively exploited to change the orbital angular momentum. Using a recent thrust model, this study determines the optimal control law of a Sun-facing ideal diffractive sail and simulates the minimum transfer times for a set of interplanetary mission scenarios. It also quantifies the performance difference between Sun-facing diffractive sail and reflective sail. A case study presents the results of a potential mission to the asteroid 16 Psyche.展开更多
文摘ased on Quasi-Vortex-Lattiee method, a program is presented to com-pute the aerodynamic forces for nonplanar wing with wing-tip sails. By using thisprogram, the aerodynamic force is calculated and the sails are designed for an aircraftwith rectangular wing of 8.6 aspect ratio. The calculation results show that thosewing-tip sails, whose total area is 3. 1 percent of the aircraft’s basic wing area, will haveremarkable effect on reducing induced drag, and the lift-dependent drag factor can bereduced by about 18.5 to 21 .5 percent. Wind tunnel tests are conducted in NH-2 windtunnel of Nanjing Aeronautical and Astronautical University, and the results demon-strate the correctness of the above calculation results. The influences of sail parameterson performance and handling qualities of aircraft are also analyzed.
基金supported by the National Natural Science Foundation of China(11272004 and 11302112)China’s Civil Space Funding
文摘The advantage of solar sails in deep space exploration is that no fuel consumption is required. The heliocentric distance is one factor influencing the solar radiation pressure force exerted on solar sails. In addition, the solar radiation pressure force is also related to the solar sail orientation with respect to the sunlight direction. For an ideal flat solar sail, the cone angle between the sail normal and the sunlight direction determines the magnitude and direction of solar radiation pressure force. In general, the cone angle can change from 0° to 90°. However, in practical applications, a large cone angle may reduce the efficiency of solar radiation pressure force and there is a strict requirement on the attitude control. Usually, the cone angle range is restricted less more than an acute angle (for example, not more than 40°) in engineering practice. In this paper, the time-optimal transfer trajectory is designed over a restricted range of the cone angle, and an indirect method is used to solve the two point boundary value problem associated to the optimal control problem. Relevant numerical examples are provided to compare with the case of an unrestricted case, and the effects of different maximum restricted cone angles are discussed. The results indicate that (1) for the condition of a restricted cone-angle range the transfer time is longer than that for the unrestricted case and (2) the optimal transfer time increases as the maximum restricted cone angle decreases.
基金supported by the National Natural Science Foundation of China(10832004 and 10902056)
文摘The high performance solar sail can enable fast missions to the outer solar system and produce exotic non-Keplerian orbits.As there is no fuel consumption,mission trajectories for solar sail spacecraft are typically optimized with respect to flight time.Several investigations focused on interstellar probe missions have been made,including optimal methods and new objective functions. Two modes of interstellar mission trajectories,namely 'direct flyby' and 'angular momentum reversal trajectory',are compared and discussed.As a foundation,a 3D non-dimensional dynamic model for an ideal plane solar sail is introduced as well as an optimal control framework.A newly found periodic double angular momentum reversal trajectory is presented,and some properties and potential applications of this kind of inverse orbits are illustrated.The method how to achieve the minimum periodic inverse orbit is also briefly elucidated.
文摘Ships which have large structures above water surface,such as pure car carriers(PCCs) and container vessels,have large speed reduction by wind pressure.In the present study,the running speed of a large PCC with two or more sails for using wind power is simulated.The simulated results demonstrate that the ship can keep a constant service speed even in winds of 20m/s except head and bow winds.This sail system can shorten annual average navigation time by about 4 hours per voyage.
基金supported by the National Natural Science Foundation of China (11172020)the "Vision" Foundation for Talent Assistant Professor from Ministry of Industry and Information Technologythe "Blue-Sky" Foundation for Talent Assistant Professor from Beihang University
文摘Displaced non-Keplerian orbits above planetary bodies can be achieved by orientating the solar sail normal to the sun line. The dynamical systems techniques are employed to analyze the nonlinear dynamics of a displaced orbit and different topologies of equilibria are yielded from the basic configurations of Hill's region, which have a saddlenode bifurcation point at the degenerated case. The solar sail near hyperbolic or degenerated equilibrium is quite unstable. Therefore, a controller preserving Hamiltonian structure is presented to stabilize the solar sail near hyperbolic or degenerated equilibrium, and to generate the stable Lissajous orbits that stay stable inside the stabilizing region of the controller. The main contribution of this paper is that the controller preserving Hamiltonian structure not only changes the instability of the equilibrium, but also makes the modified elliptic equilibrium become unique for the controlled system. The allocation law of the controller on the sail's attitude and lightness number is obtained, which verifies that the controller is realizable.
文摘This paper proposes new quasi-periodic orbits around Earth–Moon collinear libration points using solar sails.By including the time-varying sail orientation in the linearized equations of motion for the circular restricted three-body problem(CR3BP),four types of quasi-periodic orbits(two types around L1 and two types around L2)were formulated.Among them,one type of orbit around L2 realizes a considerably small geometry variation while ensuring visibility from the Earth if(and only if)the sail acceleration due to solar radiation pressure is approximately of a certain magnitude,which is much smaller than that assumed in several previous studies.This means that only small solar sails can remain in the vicinity of L2 for a long time without propellant consumption.The orbits designed in the linearized CR3BP can be translated into nonlinear CR3BP and high-fidelity ephemeris models without losing geometrical characteristics.In this study,new quasi-periodic orbits are formulated,and their characteristics are discussed.Furthermore,their extendibility to higher-fidelity dynamic models was verified using numerical examples.
基金supported in part by the National Natural Science Foundation of China(Nos. 11290151 and 51075032)
文摘The spinning deployment process of solar sails is analyzed in this study. A simplified model is established by considering the out-of-plane and in-plane motions of solar sails. The influences of structure parameters, initial conditions, and feedback control parameters are also analyzed.A method to build the geometric model of a solar sail is presented by analyzing the folding process of solar sails. The finite element model of solar sails is then established, which contains continuous cables and sail membranes. The dynamics of the second-stage deployment of solar sails are simulated by using ABAQUS software. The influences of the rotational speed and out-of-plane movement of the hub are analyzed by different tip masses, initial velocities, and control parameters.Compared with the results from theoretical models, simulation results show good agreements.
基金supported by the National Natural Science Foundation of China (No. 11302113)
文摘The direction of the sun is the easiest and most reliable observation vector for a solar sail running in deep space exploration. This paper presents a new method using only raw measurements of the sun direction vector to estimate angular velocity for a spinning solar sail. In cases with a constant spin angular velocity, the estimation equation is formed based on the kinematic model for the apparent motion of the sun direction vector; the least-squares solution is then easily calculated. A performance criterion is defined and used to analyze estimation accuracy. In cases with a variable spin angular velocity, the estimation equation is developed based on the kinematic model for the apparent motion of the sun direction vector and the attitude dynamics equation. Simulation results show that the proposed method can quickly yield high-precision angular velocity estimates that are insensitive to certain measurement noises and modeling errors.
基金supported by the National Natural Science Foundation of China (Grant Nos.10902056 and 10832004)
文摘In this paper a new phase space of hodograph method is adopted to investigate and better understand the two-dimensional angular momentum reversal(H-reversal) trajectories for high performance solar sails within a fixed cone angle.As the hodograph method and the H-reversal trajectory are not very common,both of them are briefly introduced.The relationship between them are constructed and addressed with a sample trajectory.How the phase space varies according to the sail quality and the fixed sail cone angle is also studied.Through variation of the phase space,the minimum sail lightness number can be obtained by solving a set of algebraic equations instead of a parameter optimization problem.For a given sail lightness number,there are three types of the two-dimensional possible heliocentric motion,including the spiral inward trajectories towards the Sun,the H-reversal trajectories and the directly outward escape trajectories.The boundaries that separate these different groups are easily determined by using the phase space.Finally,the method and procedures to achieve the feasible region of the H-reversal trajectory with required perihelion distance are presented in detail.
文摘Shape memory composites(SMCs)combine mechanical performances of composite materials with functional behavior of shape memory polymers.They can be used to produce the external frame of self-deployable solar sails with very low weight in comparison with traditional composite booms.Furthermore,heat activation is necessary for deploying instead of complex mechanical devices.In this study,the mechanical behavior of a solar sail with SMC frame is simulated by means of finite element modeling.Design considerations are made on sail deployment configuration,size/weight ratio of solar sails,and SMC properties.An experimental activity has been also performed to provide suitable candidates for the composite laminates of the SMC structure.Mechanical and instrumented recovery tests have been carried out on 2-plies carbon-fiber laminates with a shape memory interlayer.
文摘In this study,new analytical solutions to the equations of motion of a propelled spacecraft are investigated using a shape-based approach.There is an assumption that the spacecraft travels a two-dimensional spiral trajectory in which the orbital radius is proportional to an assigned power of the spacecraft angular coordinate.The exact solution to the equations of motion is obtained as a function of time in the case of a purely radial thrust,and the propulsive acceleration magnitude necessary for the spacecraft to track the prescribed spiral trajectory is found in a closed form.The analytical results are then specialized to the case of a generalized sail,that is,a propulsion system capable of providing an outward radial propulsive acceleration,the magnitude of which depends on a given power of the Sun-spacecraft distance.In particular,the conditions for an outward radial thrust and the required sail performance are quantified and thoroughly discussed.It is worth noting that these propulsion systems provide a purely radial thrust when their orientation is Sun-facing.This is an important advantage from an engineering point of view because,depending on the particular propulsion system,a Sun-facing attitude can be stable or obtainable in a passive way.A case study is finally presented,where the generalized sail is assumed to start the spiral trajectory from the Earth’s heliocentric orbit.The main outcome is that the required sail performance is in principle achievable on the basis of many results available in the literature.
基金The present study was supported by JSPS KAKENHI Grant Number JP18J11615.
文摘The present paper proposes a control method to excite spinning solar sail membranes for three-dimensional use.Using optical property switching,the input is given as the change in magnitude of the solar radiation pressure.The resonance point of this system varies with the vibration state due to its nonlinearity and the change in equilibrium state.To deal with this,a state feedback control law that automatically tracks the resonance point is developed in the present study.The proposed method enables decentralized control of the actuators on the sail,each of which determines the control input independently using only the information of vibration state.The proposed method is validated using numerical simulations.The results show that the nonlinear system behaves differently from the linear system,and the vibration grows using the decentralized control regardless of resonance point variation.
基金Open Access funding provided by Università di Pisa within the CRUI-CARE Agreement.
文摘A diffractive sail is a solar sail whose exposed surface is covered by an advanced diffractive metamaterial film with engineered optical properties. This study examines the optimal performance of a diffractive solar sail with a Sun-facing attitude in a typical orbit-to-orbit heliocentric transfer. A Sun-facing attitude, which can be passively maintained through the suitable design of the sail shape, is obtained when the sail nominal plane is perpendicular to the Sun–spacecraft line. Unlike an ideal reflective sail, a Sun-facing diffractive sail generates a large transverse thrust component that can be effectively exploited to change the orbital angular momentum. Using a recent thrust model, this study determines the optimal control law of a Sun-facing ideal diffractive sail and simulates the minimum transfer times for a set of interplanetary mission scenarios. It also quantifies the performance difference between Sun-facing diffractive sail and reflective sail. A case study presents the results of a potential mission to the asteroid 16 Psyche.