With the rapid advancement of human economic levels and modern civilization,the automobile manufacturing industry is increasingly confronted with challenges related to energy scarcity and environmental pollution.Low c...With the rapid advancement of human economic levels and modern civilization,the automobile manufacturing industry is increasingly confronted with challenges related to energy scarcity and environmental pollution.Low carbon emissions and energy savings have become the main focus of automotive development.Under the influence of government incentives,the sales of household electric vehicles(EVs)have increased significantly,although they still represent a small share of the overall car market.To examine the factors influencing consumer purchases of household EVs,this report integrates both qualitative and quantitative analyses,controlling for single variables.Using linear regression,an empirical analysis was conducted on 18 BYD models with varying ranges and prices.The results indicate a strong positive correlation between driving range,selling price,and EV sales.Looking ahead,the development of new energy vehicles should prioritize longer ranges,high-quality features,and cost-effective performance.展开更多
Objective To analyze the improvement of the incentive mechanism of sales personnel in pharmaceutical company A,and to promote the smooth operation and further development of the company in a long term.Methods Compensa...Objective To analyze the improvement of the incentive mechanism of sales personnel in pharmaceutical company A,and to promote the smooth operation and further development of the company in a long term.Methods Compensation incentive,performance appraisal,welfare benefit,training incentive,promotion motivation and enterprise cultural inspiration were explored through questionnaires,telephone interviews and in-person interviews.Results and Conclusion This company’s incentive mechanism has problems in two aspects:Material incentives and spiritual incentives.As to the company’s characteristics and strategic development,the optimization countermeasures of incentive mechanism are proposed from the following three aspects:constructing a reasonable incentive system,establishing an efficient spiritual incentive mechanism,and implementing the dynamic incentive and differentiated incentive simultaneously.展开更多
In recent years,with the rapid development and popularization of Internet information technology,many new media platforms have risen rapidly,and major e-commerce companies have begun to explore the mode of livestreami...In recent years,with the rapid development and popularization of Internet information technology,many new media platforms have risen rapidly,and major e-commerce companies have begun to explore the mode of livestreaming.Especially during the COVID-19 pandemic,due to the lockdown,live-streaming has become an important means of economic development in many places.Owing to its remarkable characteristics of timeliness,entertainment,and interactivity,it has become the latest and trendiest sales mode of e-commerce channels,reflecting huge economic potential and commercial value.This article analyzes two models and their characteristics of live-streaming sales from a practical perspective.Based on this,it outlines consumer purchasing decisions and the factors that affect consumer purchasing decisions under the live-streaming sales model.Finally,it discusses targeted suggestions for using the live-streaming sales model to expand the consumer market,hoping to promote the healthy and steady development of the live-streaming sales industry.展开更多
This article explores the impact of the three-dimensional cultivation mode on the development of the Suzhou tea industry,focusing on the diversified estimation of the value of output per acre and sales mode.It introdu...This article explores the impact of the three-dimensional cultivation mode on the development of the Suzhou tea industry,focusing on the diversified estimation of the value of output per acre and sales mode.It introduces the history and traditional cultivation practices of tea in Suzhou,as well as the current challenges and problems faced by the industry.An in-depth analysis was conducted on the overview and improvement plans of the three-dimensional cultivation mode,covering relevant technical methods.Based on this analysis,the impact of the three-dimensional cultivation on the value of output per acre was studied and predicted.Its potential and advantages were explored and compared with the effectiveness of traditional cultivation models.Additionally,the impact of the three-dimensional cultivation mode on sales was analyzed,examining its market adaptability and competitiveness,as well as its advantages in expanding sales channels and market coverage.The study also focused on the promoting effect of diversified sales models on the Suzhou tea industry,including direct consumption market development,tea processing product development and promotion,and the integration of tea culture and the tourism industry.To ensure sustainable development,the article evaluates the environmental impact,economic feasibility,social benefits,and farmer benefits of the three-dimensional cultivation model.Finally,the prospects for the development of the Suzhou tea industry were discussed,and the positioning and response strategies of the threedimensional cultivation model were proposed.展开更多
UK manufacturers experienced a challenging start to 2024,with sales in the first quarter(Q1)down 10 per cent on the previous quarter,according to a report by Unleashed.However,year-on-year growth showed a modest incre...UK manufacturers experienced a challenging start to 2024,with sales in the first quarter(Q1)down 10 per cent on the previous quarter,according to a report by Unleashed.However,year-on-year growth showed a modest increase of 2 per cent,reflecting the Bank of England’s assessment of weak growth in the manufacturing sector.展开更多
Big data on product sales are an emerging resource for supporting modular product design to meet diversified customers’requirements of product specification combinations.To better facilitate decision-making of modula...Big data on product sales are an emerging resource for supporting modular product design to meet diversified customers’requirements of product specification combinations.To better facilitate decision-making of modular product design,correlations among specifications and components originated from customers’conscious and subconscious preferences can be investigated by using big data on product sales.This study proposes a framework and the associated methods for supporting modular product design decisions based on correlation analysis of product specifications and components using big sales data.The correlations of the product specifications are determined by analyzing the collected product sales data.By building the relations between the product components and specifications,a matrix for measuring the correlation among product components is formed for component clustering.Six rules for supporting the decision making of modular product design are proposed based on the frequency analysis of the specification values per component cluster.A case study of electric vehicles illustrates the application of the proposed method.展开更多
We explore the impacts of economic and financial dislocations caused by COVID-19 pandemic shocks on food sales in the United States from January 2020 to January 2021.We use the US weekly economic index(WEI)to measure ...We explore the impacts of economic and financial dislocations caused by COVID-19 pandemic shocks on food sales in the United States from January 2020 to January 2021.We use the US weekly economic index(WEI)to measure economic dislocations and the Chicago Board Options Exchange volatility index(VIX)to capture the broader stock market dislocations.We validate the NARDL model by testing a battery of models using the autoregressive distributed lags(ARDL)methodology(ARDL,NARDL,and QARDL specifications).Our study postulates that an increase in WEI has a significant negative long-term effect on food sales,whereas a decrease in WEI has no statistically significant(long-run)effect.Thus,policy responses that ignore asymmetric effects and hidden cointegration may fail to promote food security during pandemics.展开更多
With the integration of global economy development and the rapid growth of science knowledge and technology,the needs of people’s consumption are increasingly personalized and diversified.Such a market background mak...With the integration of global economy development and the rapid growth of science knowledge and technology,the needs of people’s consumption are increasingly personalized and diversified.Such a market background makes sales forecasting become an indispensable part of enterprise management and development.The definition of the sales forecasting is that based on the past few years’sales situation,the enterprises through systematic sales forecasting models estimate of the quantity and amount of all or some specific sales products and services in a specific time in the future.Accurate sales forecasting can promote enterprises to do better in future revenue,and can also encourage enterprises to set and keep an efficient sales management team.This paper will analyze traditional sales forecasting methods and sales forecasting methods based on big data models related to the perspective of machine learning,and then compare them.The research shows that the two sales forecasting methods have their own advantages and disadvantages.In the future,enterprises can adopt the two sales forecasting methods in parallel to maximize the utilization advantage of sales forecasting for enterprises.展开更多
Reliable sales forecasts are important to the garment industry. In recent years, the global climate is warming, the weather changes frequently, and clothing sales are affected by weather fluctuations. The purpose of t...Reliable sales forecasts are important to the garment industry. In recent years, the global climate is warming, the weather changes frequently, and clothing sales are affected by weather fluctuations. The purpose of this study is to investigate whether weather data can improve the accuracy of product sales and to establish a corresponding clothing sales forecasting model. This model uses the basic attributes of clothing product data, historical sales data, and weather data. It is based on a random forest, XGB, and GBDT adopting a stacking strategy. We found that weather information is not useful for basic clothing sales forecasts, but it did improve the accuracy of seasonal clothing sales forecasts. The MSE of the dresses, down jackets, and shirts are reduced by 86.03%, 80.14%, and 41.49% on average. In addition, we found that the stacking strategy model outperformed the voting strategy model, with an average MSE reduction of 49.28%. Clothing managers can use this model to forecast their sales when they make sales plans based on weather information.展开更多
The analysis of company data useful for economic decisions,if not interpreted in an overall view of the company situation,can lead to wrong conclusions.This is the case when a company has to choose between several sal...The analysis of company data useful for economic decisions,if not interpreted in an overall view of the company situation,can lead to wrong conclusions.This is the case when a company has to choose between several sales options for one or more products in the presence of a limiting factor.The continuation of the investigation often denies the initial analysis.Not everything is as it appears,therefore,at the beginning of the deepening of the data useful for economic decisions.As it is well known,the choices of profitability concerning the planning of the sale of company products take place,at least in the majority of cases,through the determination of the contribution margin,i.e.the profitability margin connected to the individual goods/services sold by the companies(selling price net of variable costs).The contribution margin can be determined with four objectives:(1)Determination of the yield of the single product,net of variable costs only.In this case,the margin defines unitary,from net product yield to unitary contribution margin.(2)Determination of the return on total sales of an individual product,net of variable costs.In this hypothesis,reference is made to the first level(or gross)contribution margin.(3)Determination of the ability of the individual product to contribute to the coverage of fixed costs common to the company.This margin is determined net of special product variable and fixed costs.This aggregate is defined as a Level II(or semi-gross)margin.(4)Determination of the useful value in the planning choices in case of presence of scarce productive factors.In this case,it must identify the so-called unitary margin for low factor.Here we will only deal with the problem of the use of the contribution margin in the presence of rare factors.To complete the analysis,below are some very brief considerations regarding,respectively,the unitary,level I,and level II contribution margin in order to better understand where the problem of the most convenient choice of income is located in the event of the presence of rare production factors,especially in an environment characterized by a plurality of sales options.展开更多
Objective To explore the influence of new drug R&D investment and sales expense on the performance of biomedical enterprises.Methods The financial statements of 76 listed biomedical enterprises for 5 consecutive y...Objective To explore the influence of new drug R&D investment and sales expense on the performance of biomedical enterprises.Methods The financial statements of 76 listed biomedical enterprises for 5 consecutive years were selected,and the data were modeled to study the effect of R&D investment and sales expense on the performance of biomedical enterprises by using financial indicators as tools and statistical methods of multiple linear regression.Results and Conclusion Under the premise that the weak related factors such as enterprise scale,life cycle and asset-liability ratio are set as unrelated variables,the R&D investment intensity of biomedical enterprises is negatively correlated with the current performance,which also shows that the R&D of biomedical enterprises has the characteristics of high risk.Besides,the influence of early R&D investment is delayed.However,the sales expense of leading biomedical enterprises with large scales have higher proportion.Meanwhile the greater sales expense of the same enterprise in different periods,the better the enterprise performance is.Biomedical enterprises should consider their own development stage to develop more patented drugs.Besides,they must formulate plans for allocating reasonable sales personnel and cost expense to ensure that enterprises can obtain better benefits.展开更多
In 2022,the international economic and trade environment is in turmoil,singed by the pandemic,while domestic sales are weak.In the face of complex and severe situation at home and abroad,China textile industry has sho...In 2022,the international economic and trade environment is in turmoil,singed by the pandemic,while domestic sales are weak.In the face of complex and severe situation at home and abroad,China textile industry has shown strong resilience.In 2022,36,000 enterprises in China's textile industry achieved more than 5,200 billion yuan in main business revenue and 200 billion yuan in profit,with operating margin of 3.9 percent.In 2022,China's textile and apparel exports reached a new record high of 340.95 bilion US dollars,up 2.5 percent year-on-year.展开更多
Retail sales of new energy vehicles(NEVs)in China jumped 85.6 percent year on year in April,data from the China Passenger Car Association(CPCA)showed on 9 May.A total of 527,000 NEVs were sold in China in April,down 3...Retail sales of new energy vehicles(NEVs)in China jumped 85.6 percent year on year in April,data from the China Passenger Car Association(CPCA)showed on 9 May.A total of 527,000 NEVs were sold in China in April,down 3.6 percent from March,according to the CPCA.NEV sales of major domestic brands accounted for 70.5 percent of the total NEV sales in the country,the data revealed.展开更多
In the process of my country’s energy transition,the clean energy of hydropower,wind power and photovoltaic power generation has ushered in great development,but due to the randomness and volatility of its output,it ...In the process of my country’s energy transition,the clean energy of hydropower,wind power and photovoltaic power generation has ushered in great development,but due to the randomness and volatility of its output,it has caused a certain waste of clean energy power generation resources.Regarding the purchase and sale of electricity by electricity retailers under the condition of limited clean energy consumption,this paper establishes a quantitative model of clean energy restricted electricity fromthe perspective of power system supply and demand balance.Then it analyzes the source-charge dual uncertain factors in the electricity retailer purchasing and selling scenarios in the mid-to long-term electricity market and the day-ahead market.Through the multi-scenario analysis method,the uncertain clean energy consumption and the user’s power demand are combined to form the electricity retailer’s electricity purchase and sales scene,and the typical scene is obtained by using the hierarchical clustering algorithm.This paper establishes a electricity retailer’s risk decisionmodel for purchasing and selling electricity in themid-and long-term market and reduce-abandonment market,and takes the maximum profit expectation of the electricity retailer frompurchasing and selling electricity as the objective function.At the same time,in themediumand longterm electricity market and the day-ahead market,the electricity retailer’s purchase cost,electricity sales income,deviation assessment cost and electricity purchase and sale risk are considered.The molecular results show that electricity retailers can obtain considerable profits in the reduce-abandonment market by optimizing their own electricity purchase and sales strategies,on the premise of balancing profits and risks.展开更多
The COVID-19 has brought us unprecedented difficulties and thousands of companies have closed down.The general public has responded to call of the government to stay at home.Offline retail stores have been severely af...The COVID-19 has brought us unprecedented difficulties and thousands of companies have closed down.The general public has responded to call of the government to stay at home.Offline retail stores have been severely affected.Therefore,in order to transform a traditional offline sales model to the B2C model and to improve the shopping experience,this study aims to utilize historical sales data for exploring,building sales prediction and recommendation models.A novel data science life-cycle and process model with Recency,Frequency,and Monetary(RFM)analysis method with the combination of various analytics algorithms are utilized in this study for sales prediction and product recommendation through user behavior analytics.RFM analysis method is utilized for segmenting customer levels in the company to identify the importance of each level.For the purchase prediction model,XGBoost and Random Forest machine learning algorithms are used to build prediction models and 5-fold Cross-Validation method is utilized to evaluate their.For the product recommendation model,the association rules theory and Apriori algorithm are used to complete basket analysis and recommend products according to the outcomes.Moreover,some suggestions are proposed for the marketing department according to the outcomes.Overall,the XGBoost model achieved better performance and better accuracy with F1-score around 0.789.The proposed recommendation model provides good recommendation results and sales combinations for improving sales and market responsiveness.Furthermore,it recommend specific products to new customers.This study offered a very practical and useful business transformation case that assists companies in similar situations to transform their business models.展开更多
Using data from the Economic Advisory Center of the State Information Center(SIC), we examined the spatial patterns of car sales in China at the prefectural level in 2012. We first analyzed the spatial distributions o...Using data from the Economic Advisory Center of the State Information Center(SIC), we examined the spatial patterns of car sales in China at the prefectural level in 2012. We first analyzed the spatial distributions of car sales of different kinds of automakers(foreign automakers, Sino-foreign joint automakers, and Chinese automakers), and then identified spatial clusters using the local Moran's indexes. Location quotient analysis was applied to examine the relative advantage of each type of automaker in the local markets. To explain the variations of car sales across cities, we collected several socioeconomic variables and conducted regression analyses. Further, factor analysis was used to extract independent variables to avoid the problem of multicollinearity. By incorporating a spatial lag or spatial error in the models, we calibrated our spatial regression models to address the spatial dependence problem. The analytical results show that car sales varied significantly across cities in China, and most of the cities with higher car sales were the developed cities. Different automakers exhibit diverse spatial patterns in terms of car sales volume, spatial clusters, and location quotients. The scale and incomes factor were extracted and verified as the two most significant and positive factors that shape the spatial distributions of car sales, and together with the spatial effect, explained most of the variations of car sales across cities.展开更多
Budgeting planning plays an important role in coordinating activities in organizations. An accurate sales volume forecasting is the key to the entire budgeting process. All of the other parts of the master budget are ...Budgeting planning plays an important role in coordinating activities in organizations. An accurate sales volume forecasting is the key to the entire budgeting process. All of the other parts of the master budget are dependent on the sales volume forecasting in some way. If the sales volume forecasting is sloppily done, then the rest of the budgeting process is largely a waste of time. Therefore, the sales volume forecasting process is a critical one for most businesses, and also a difficult area of management. Most of researches and companies use the statistical methods, regression analysis, or sophisticated computer simulations to analyze the sales volume forecasting. Recently, various prediction Artificial Intelligent (AI) techniques have been proposed in forecasting. Support Vector Regression (SVR) has been applied successfully to solve problems in numerous fields and proved to be a better prediction model. However, the select of appropriate SVR parameters is difficult. Therefore, to improve the accuracy of SVR, a hybrid intelligent support system based on evolutionary computation to solve the difficulties involved with the parameters selection is presented in this research. Genetic Algorithms (GAs) are used to optimize free parameters of SVR. The experimental results indicate that GA-SVR can achieve better forecasting accuracy and performance than traditional SVR and artificial neural network (ANN) prediction models in sales volume forecasting.展开更多
The forecast of sales volume trend of fresh vegetables has significant referential function for government dominant departments,producers and consumers.In order to evaluate the e-commerce sales information of fresh ve...The forecast of sales volume trend of fresh vegetables has significant referential function for government dominant departments,producers and consumers.In order to evaluate the e-commerce sales information of fresh vegetables scientifically and accurately,the sales volume information of such four common vegetables as baby cabbage,potatoes,bok choy and tomatoes,from Anhui Jinghui Vegetable E-commerce Co.,Ltd.was selected as the research object to establish the sales trend prediction system.Taking the improved SVR as an example,we introduced the overall architecture,detailed design and function realization of the system.The system can reflect the short-term sales volume trend of fresh vegetables,and also can provide guidance for the realization of e-commerce order-oriented management and scientific production.展开更多
Chinese traditional sales channels are seriously attacked by the new ones. Household appliances industry will realize the specialized divisions of. development, manufacture, sale and services completely. The model of ...Chinese traditional sales channels are seriously attacked by the new ones. Household appliances industry will realize the specialized divisions of. development, manufacture, sale and services completely. The model of sales channel in marketing is set as the core of this research; the merits and demerits of different sales channels are analyzed; the complicated selective relationship and the conflicts among the manufacturer, middlemen, and ultimate consumers, and the solutions to present multi-channels market and the developments of the sales channels are elaborated in an overall view; the opinion that the only way to develop this industry is raised to establish the competitive sales channels. The aim is to let local household appliances industry use the natural merits to build up a suitable channel rapidly and efficiently, and to speed up the self development and oeffection.展开更多
文摘With the rapid advancement of human economic levels and modern civilization,the automobile manufacturing industry is increasingly confronted with challenges related to energy scarcity and environmental pollution.Low carbon emissions and energy savings have become the main focus of automotive development.Under the influence of government incentives,the sales of household electric vehicles(EVs)have increased significantly,although they still represent a small share of the overall car market.To examine the factors influencing consumer purchases of household EVs,this report integrates both qualitative and quantitative analyses,controlling for single variables.Using linear regression,an empirical analysis was conducted on 18 BYD models with varying ranges and prices.The results indicate a strong positive correlation between driving range,selling price,and EV sales.Looking ahead,the development of new energy vehicles should prioritize longer ranges,high-quality features,and cost-effective performance.
文摘Objective To analyze the improvement of the incentive mechanism of sales personnel in pharmaceutical company A,and to promote the smooth operation and further development of the company in a long term.Methods Compensation incentive,performance appraisal,welfare benefit,training incentive,promotion motivation and enterprise cultural inspiration were explored through questionnaires,telephone interviews and in-person interviews.Results and Conclusion This company’s incentive mechanism has problems in two aspects:Material incentives and spiritual incentives.As to the company’s characteristics and strategic development,the optimization countermeasures of incentive mechanism are proposed from the following three aspects:constructing a reasonable incentive system,establishing an efficient spiritual incentive mechanism,and implementing the dynamic incentive and differentiated incentive simultaneously.
文摘In recent years,with the rapid development and popularization of Internet information technology,many new media platforms have risen rapidly,and major e-commerce companies have begun to explore the mode of livestreaming.Especially during the COVID-19 pandemic,due to the lockdown,live-streaming has become an important means of economic development in many places.Owing to its remarkable characteristics of timeliness,entertainment,and interactivity,it has become the latest and trendiest sales mode of e-commerce channels,reflecting huge economic potential and commercial value.This article analyzes two models and their characteristics of live-streaming sales from a practical perspective.Based on this,it outlines consumer purchasing decisions and the factors that affect consumer purchasing decisions under the live-streaming sales model.Finally,it discusses targeted suggestions for using the live-streaming sales model to expand the consumer market,hoping to promote the healthy and steady development of the live-streaming sales industry.
基金Suzhou Agricultural Vocational and Technical College Young Teachers Research Ability Enhancement Program“Research and Screening of Bacteria for Fermented Beverages of Vice Tea and Loquat Flower”(Project No.QN[2022]01)。
文摘This article explores the impact of the three-dimensional cultivation mode on the development of the Suzhou tea industry,focusing on the diversified estimation of the value of output per acre and sales mode.It introduces the history and traditional cultivation practices of tea in Suzhou,as well as the current challenges and problems faced by the industry.An in-depth analysis was conducted on the overview and improvement plans of the three-dimensional cultivation mode,covering relevant technical methods.Based on this analysis,the impact of the three-dimensional cultivation on the value of output per acre was studied and predicted.Its potential and advantages were explored and compared with the effectiveness of traditional cultivation models.Additionally,the impact of the three-dimensional cultivation mode on sales was analyzed,examining its market adaptability and competitiveness,as well as its advantages in expanding sales channels and market coverage.The study also focused on the promoting effect of diversified sales models on the Suzhou tea industry,including direct consumption market development,tea processing product development and promotion,and the integration of tea culture and the tourism industry.To ensure sustainable development,the article evaluates the environmental impact,economic feasibility,social benefits,and farmer benefits of the three-dimensional cultivation model.Finally,the prospects for the development of the Suzhou tea industry were discussed,and the positioning and response strategies of the threedimensional cultivation model were proposed.
文摘UK manufacturers experienced a challenging start to 2024,with sales in the first quarter(Q1)down 10 per cent on the previous quarter,according to a report by Unleashed.However,year-on-year growth showed a modest increase of 2 per cent,reflecting the Bank of England’s assessment of weak growth in the manufacturing sector.
基金National Key R&D Program of China(Grant No.2018YFB1701701)Sailing Talent Program+1 种基金Guangdong Provincial Science and Technologies Program of China(Grant No.2017B090922008)Special Grand Grant from Tianjin City Government of China。
文摘Big data on product sales are an emerging resource for supporting modular product design to meet diversified customers’requirements of product specification combinations.To better facilitate decision-making of modular product design,correlations among specifications and components originated from customers’conscious and subconscious preferences can be investigated by using big data on product sales.This study proposes a framework and the associated methods for supporting modular product design decisions based on correlation analysis of product specifications and components using big sales data.The correlations of the product specifications are determined by analyzing the collected product sales data.By building the relations between the product components and specifications,a matrix for measuring the correlation among product components is formed for component clustering.Six rules for supporting the decision making of modular product design are proposed based on the frequency analysis of the specification values per component cluster.A case study of electric vehicles illustrates the application of the proposed method.
基金financial interest(such as honorariaeducational grants+2 种基金participation in speakers’bureausmembership,employment,consultancies,stock ownership,or other equity interestand expert testimony or patent-licensing arrangements),or nonfinancial interest(such as personal or professional relationships,affiliations,knowledge or beliefs)in the subject matter or materials discussed in this manuscript.
文摘We explore the impacts of economic and financial dislocations caused by COVID-19 pandemic shocks on food sales in the United States from January 2020 to January 2021.We use the US weekly economic index(WEI)to measure economic dislocations and the Chicago Board Options Exchange volatility index(VIX)to capture the broader stock market dislocations.We validate the NARDL model by testing a battery of models using the autoregressive distributed lags(ARDL)methodology(ARDL,NARDL,and QARDL specifications).Our study postulates that an increase in WEI has a significant negative long-term effect on food sales,whereas a decrease in WEI has no statistically significant(long-run)effect.Thus,policy responses that ignore asymmetric effects and hidden cointegration may fail to promote food security during pandemics.
文摘With the integration of global economy development and the rapid growth of science knowledge and technology,the needs of people’s consumption are increasingly personalized and diversified.Such a market background makes sales forecasting become an indispensable part of enterprise management and development.The definition of the sales forecasting is that based on the past few years’sales situation,the enterprises through systematic sales forecasting models estimate of the quantity and amount of all or some specific sales products and services in a specific time in the future.Accurate sales forecasting can promote enterprises to do better in future revenue,and can also encourage enterprises to set and keep an efficient sales management team.This paper will analyze traditional sales forecasting methods and sales forecasting methods based on big data models related to the perspective of machine learning,and then compare them.The research shows that the two sales forecasting methods have their own advantages and disadvantages.In the future,enterprises can adopt the two sales forecasting methods in parallel to maximize the utilization advantage of sales forecasting for enterprises.
文摘Reliable sales forecasts are important to the garment industry. In recent years, the global climate is warming, the weather changes frequently, and clothing sales are affected by weather fluctuations. The purpose of this study is to investigate whether weather data can improve the accuracy of product sales and to establish a corresponding clothing sales forecasting model. This model uses the basic attributes of clothing product data, historical sales data, and weather data. It is based on a random forest, XGB, and GBDT adopting a stacking strategy. We found that weather information is not useful for basic clothing sales forecasts, but it did improve the accuracy of seasonal clothing sales forecasts. The MSE of the dresses, down jackets, and shirts are reduced by 86.03%, 80.14%, and 41.49% on average. In addition, we found that the stacking strategy model outperformed the voting strategy model, with an average MSE reduction of 49.28%. Clothing managers can use this model to forecast their sales when they make sales plans based on weather information.
文摘The analysis of company data useful for economic decisions,if not interpreted in an overall view of the company situation,can lead to wrong conclusions.This is the case when a company has to choose between several sales options for one or more products in the presence of a limiting factor.The continuation of the investigation often denies the initial analysis.Not everything is as it appears,therefore,at the beginning of the deepening of the data useful for economic decisions.As it is well known,the choices of profitability concerning the planning of the sale of company products take place,at least in the majority of cases,through the determination of the contribution margin,i.e.the profitability margin connected to the individual goods/services sold by the companies(selling price net of variable costs).The contribution margin can be determined with four objectives:(1)Determination of the yield of the single product,net of variable costs only.In this case,the margin defines unitary,from net product yield to unitary contribution margin.(2)Determination of the return on total sales of an individual product,net of variable costs.In this hypothesis,reference is made to the first level(or gross)contribution margin.(3)Determination of the ability of the individual product to contribute to the coverage of fixed costs common to the company.This margin is determined net of special product variable and fixed costs.This aggregate is defined as a Level II(or semi-gross)margin.(4)Determination of the useful value in the planning choices in case of presence of scarce productive factors.In this case,it must identify the so-called unitary margin for low factor.Here we will only deal with the problem of the use of the contribution margin in the presence of rare factors.To complete the analysis,below are some very brief considerations regarding,respectively,the unitary,level I,and level II contribution margin in order to better understand where the problem of the most convenient choice of income is located in the event of the presence of rare production factors,especially in an environment characterized by a plurality of sales options.
文摘Objective To explore the influence of new drug R&D investment and sales expense on the performance of biomedical enterprises.Methods The financial statements of 76 listed biomedical enterprises for 5 consecutive years were selected,and the data were modeled to study the effect of R&D investment and sales expense on the performance of biomedical enterprises by using financial indicators as tools and statistical methods of multiple linear regression.Results and Conclusion Under the premise that the weak related factors such as enterprise scale,life cycle and asset-liability ratio are set as unrelated variables,the R&D investment intensity of biomedical enterprises is negatively correlated with the current performance,which also shows that the R&D of biomedical enterprises has the characteristics of high risk.Besides,the influence of early R&D investment is delayed.However,the sales expense of leading biomedical enterprises with large scales have higher proportion.Meanwhile the greater sales expense of the same enterprise in different periods,the better the enterprise performance is.Biomedical enterprises should consider their own development stage to develop more patented drugs.Besides,they must formulate plans for allocating reasonable sales personnel and cost expense to ensure that enterprises can obtain better benefits.
文摘In 2022,the international economic and trade environment is in turmoil,singed by the pandemic,while domestic sales are weak.In the face of complex and severe situation at home and abroad,China textile industry has shown strong resilience.In 2022,36,000 enterprises in China's textile industry achieved more than 5,200 billion yuan in main business revenue and 200 billion yuan in profit,with operating margin of 3.9 percent.In 2022,China's textile and apparel exports reached a new record high of 340.95 bilion US dollars,up 2.5 percent year-on-year.
文摘Retail sales of new energy vehicles(NEVs)in China jumped 85.6 percent year on year in April,data from the China Passenger Car Association(CPCA)showed on 9 May.A total of 527,000 NEVs were sold in China in April,down 3.6 percent from March,according to the CPCA.NEV sales of major domestic brands accounted for 70.5 percent of the total NEV sales in the country,the data revealed.
文摘In the process of my country’s energy transition,the clean energy of hydropower,wind power and photovoltaic power generation has ushered in great development,but due to the randomness and volatility of its output,it has caused a certain waste of clean energy power generation resources.Regarding the purchase and sale of electricity by electricity retailers under the condition of limited clean energy consumption,this paper establishes a quantitative model of clean energy restricted electricity fromthe perspective of power system supply and demand balance.Then it analyzes the source-charge dual uncertain factors in the electricity retailer purchasing and selling scenarios in the mid-to long-term electricity market and the day-ahead market.Through the multi-scenario analysis method,the uncertain clean energy consumption and the user’s power demand are combined to form the electricity retailer’s electricity purchase and sales scene,and the typical scene is obtained by using the hierarchical clustering algorithm.This paper establishes a electricity retailer’s risk decisionmodel for purchasing and selling electricity in themid-and long-term market and reduce-abandonment market,and takes the maximum profit expectation of the electricity retailer frompurchasing and selling electricity as the objective function.At the same time,in themediumand longterm electricity market and the day-ahead market,the electricity retailer’s purchase cost,electricity sales income,deviation assessment cost and electricity purchase and sale risk are considered.The molecular results show that electricity retailers can obtain considerable profits in the reduce-abandonment market by optimizing their own electricity purchase and sales strategies,on the premise of balancing profits and risks.
基金This research is funded by the School of Computer Sciences,and Division of Research&Innovation,Universiti Sains Malaysia,Short Term Grant(304/PKOMP/6315435)granted to Pantea Keikhosrokiani.
文摘The COVID-19 has brought us unprecedented difficulties and thousands of companies have closed down.The general public has responded to call of the government to stay at home.Offline retail stores have been severely affected.Therefore,in order to transform a traditional offline sales model to the B2C model and to improve the shopping experience,this study aims to utilize historical sales data for exploring,building sales prediction and recommendation models.A novel data science life-cycle and process model with Recency,Frequency,and Monetary(RFM)analysis method with the combination of various analytics algorithms are utilized in this study for sales prediction and product recommendation through user behavior analytics.RFM analysis method is utilized for segmenting customer levels in the company to identify the importance of each level.For the purchase prediction model,XGBoost and Random Forest machine learning algorithms are used to build prediction models and 5-fold Cross-Validation method is utilized to evaluate their.For the product recommendation model,the association rules theory and Apriori algorithm are used to complete basket analysis and recommend products according to the outcomes.Moreover,some suggestions are proposed for the marketing department according to the outcomes.Overall,the XGBoost model achieved better performance and better accuracy with F1-score around 0.789.The proposed recommendation model provides good recommendation results and sales combinations for improving sales and market responsiveness.Furthermore,it recommend specific products to new customers.This study offered a very practical and useful business transformation case that assists companies in similar situations to transform their business models.
基金Under the auspices of National Natural Science Foundation of China(No.41301143)
文摘Using data from the Economic Advisory Center of the State Information Center(SIC), we examined the spatial patterns of car sales in China at the prefectural level in 2012. We first analyzed the spatial distributions of car sales of different kinds of automakers(foreign automakers, Sino-foreign joint automakers, and Chinese automakers), and then identified spatial clusters using the local Moran's indexes. Location quotient analysis was applied to examine the relative advantage of each type of automaker in the local markets. To explain the variations of car sales across cities, we collected several socioeconomic variables and conducted regression analyses. Further, factor analysis was used to extract independent variables to avoid the problem of multicollinearity. By incorporating a spatial lag or spatial error in the models, we calibrated our spatial regression models to address the spatial dependence problem. The analytical results show that car sales varied significantly across cities in China, and most of the cities with higher car sales were the developed cities. Different automakers exhibit diverse spatial patterns in terms of car sales volume, spatial clusters, and location quotients. The scale and incomes factor were extracted and verified as the two most significant and positive factors that shape the spatial distributions of car sales, and together with the spatial effect, explained most of the variations of car sales across cities.
文摘Budgeting planning plays an important role in coordinating activities in organizations. An accurate sales volume forecasting is the key to the entire budgeting process. All of the other parts of the master budget are dependent on the sales volume forecasting in some way. If the sales volume forecasting is sloppily done, then the rest of the budgeting process is largely a waste of time. Therefore, the sales volume forecasting process is a critical one for most businesses, and also a difficult area of management. Most of researches and companies use the statistical methods, regression analysis, or sophisticated computer simulations to analyze the sales volume forecasting. Recently, various prediction Artificial Intelligent (AI) techniques have been proposed in forecasting. Support Vector Regression (SVR) has been applied successfully to solve problems in numerous fields and proved to be a better prediction model. However, the select of appropriate SVR parameters is difficult. Therefore, to improve the accuracy of SVR, a hybrid intelligent support system based on evolutionary computation to solve the difficulties involved with the parameters selection is presented in this research. Genetic Algorithms (GAs) are used to optimize free parameters of SVR. The experimental results indicate that GA-SVR can achieve better forecasting accuracy and performance than traditional SVR and artificial neural network (ANN) prediction models in sales volume forecasting.
基金Supported by Anhui Provincial Science and Technology Major Project(18030701202)General Project of Anhui Provincial Key Research and Development Program(201904a06020056)。
文摘The forecast of sales volume trend of fresh vegetables has significant referential function for government dominant departments,producers and consumers.In order to evaluate the e-commerce sales information of fresh vegetables scientifically and accurately,the sales volume information of such four common vegetables as baby cabbage,potatoes,bok choy and tomatoes,from Anhui Jinghui Vegetable E-commerce Co.,Ltd.was selected as the research object to establish the sales trend prediction system.Taking the improved SVR as an example,we introduced the overall architecture,detailed design and function realization of the system.The system can reflect the short-term sales volume trend of fresh vegetables,and also can provide guidance for the realization of e-commerce order-oriented management and scientific production.
文摘Chinese traditional sales channels are seriously attacked by the new ones. Household appliances industry will realize the specialized divisions of. development, manufacture, sale and services completely. The model of sales channel in marketing is set as the core of this research; the merits and demerits of different sales channels are analyzed; the complicated selective relationship and the conflicts among the manufacturer, middlemen, and ultimate consumers, and the solutions to present multi-channels market and the developments of the sales channels are elaborated in an overall view; the opinion that the only way to develop this industry is raised to establish the competitive sales channels. The aim is to let local household appliances industry use the natural merits to build up a suitable channel rapidly and efficiently, and to speed up the self development and oeffection.