期刊文献+
共找到2,536篇文章
< 1 2 127 >
每页显示 20 50 100
Salting-in/Salting-out Mechanism of Carbon Dioxide in Aqueous Electrolyte Solutions 被引量:1
1
作者 张霞 张璐 +4 位作者 金坦 潘志君 陈浙宁 张强 庄巍 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2017年第6期811-816,I0003,共7页
The solvation of carbon dioxide in sea water plays an important role in the carbon circle and the world climate. The salting-out/salting-in mechanism of CO2 in electrolyte solutions still remains elusive at molecule l... The solvation of carbon dioxide in sea water plays an important role in the carbon circle and the world climate. The salting-out/salting-in mechanism of CO2 in electrolyte solutions still remains elusive at molecule level. The ability of ion salting-out/salting-in CO2 in electrolyte solution follows Hofmeister Series and the change of water mobility induced by salts can be predicted by the viscosity B-coefficients. In this work, the chemical potential of carbon dioxide and the dynamic properties of water in aqueous NaCl, KF and NaClO4 solutions are calculated and analyzed. According to the viscosity B-coefficients, NaClO4 (0.012) should salt out the carbon dioxide relative to in pure water, but the opposite effect is observed for it. Our simulation results suggest that the salting-in effect of NaClO4 is due to the strongly direct anion-CO2 interaction. The inconsistency between" Hofmeister Series and the viscosity B-coefficient suggests that it is not always right to indicate whether a salt belongs to salting-in or salting-out just from these properties of the salt solution in the absence of solute. 展开更多
关键词 salting effect Viscosity B-coefficient Hofmeister Series Water dynamics
下载PDF
Changes of Intramuscular Fat Composition,Lipid Oxidation and Lipase Activity in Biceps femoris and Semimembranosus of Xuanwei Ham During Controlled Salting Stages 被引量:4
2
作者 WANG Zhen-yu GAO Xiao-guang +2 位作者 ZHANG Ji-hong ZHANG De-quan MA Chang-wei 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第11期1993-2001,共9页
Fatty acid composition of neutral lipids (NLs), phospholipids (PLs) and free fatty acids (FFAs) from intramuscular fat (IMF), lipid oxidation and lipase activity in muscle Semimembranosus (SM) and msucle Bic... Fatty acid composition of neutral lipids (NLs), phospholipids (PLs) and free fatty acids (FFAs) from intramuscular fat (IMF), lipid oxidation and lipase activity in muscle Semimembranosus (SM) and msucle Biceps femoris (BF) of dry-cured Xuanwei ham during the 90-d salting stages were analysed. The salt content increased from 0.34 to 3.52%in BF and from 0.10 to 5.42%in SM during the 90 d salting stage, respectively. PLs of IMF in both BF and SM decreased 54.70%(P〈0.001) and 34.64%(P〈0.05), furthermore, the saturated fatty acids (SFA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) of PLs in both muscles were hydrolysed almost isochronously. FFAs were increased from 0.46 g 100 g-1 lipids to 2.92 g 100 g-1 lipids in BF at the end of salting, which was lower than SM (from 1.29 g 100 g-1 lipids to 9.70 g 100 g-1 lipids). The activities of acid lipase, neutral lipase and acid phospholipase all remained active in the 90 d. The thiobarbituric acid reactive substances (TBARS) was slowly increased to 1.34 mg kg-1 muscle in BF and to 2.44 mg kg-1 muscle in SM during the salting stage. In conclusion, the controlled salting process prompted the hydrolysis of PLs of IMF notably and increased the lipid oxidation of muscles within some limits. 展开更多
关键词 Xuanwei ham intramuscular fat lipid oxidation fatty acid composition salting
下载PDF
Changes in Some Parameters of Salting Brazilian Freshwater Fish Effect of Aqueous Extract of Basil
3
作者 Graziele Gustinelli Thiago Tetsuo Ushizima Léa Silvia Sant'Ana 《Journal of Food Science and Engineering》 2018年第6期257-262,共6页
Salting is a traditional process to preserve food,while news species have been salted showing good results.However,salt accelerates lipid oxidation,influencing shelf-life of salted products.Using of antioxidants incre... Salting is a traditional process to preserve food,while news species have been salted showing good results.However,salt accelerates lipid oxidation,influencing shelf-life of salted products.Using of antioxidants increases salted and/or desalted products shelf-life.Among the antioxidants employed in food industry spices have shown satisfactory results.In this work aqueous basil extract(Ocimunbasilicum)in pintachara salt was used.Pintachara is a hybrid of pintado and cachara(genus Pseudoplatystoma)whose flesh is much appreciated,being desirable to develop new product of this fish.The aqueous basil extract was used in a brine salt,and process was carried out with a control treatment.Samples were obtained during salting in 1,14,24,36,48 hours.In each sample period it analyzed moisture,water activity,salt content e TBARS.The aqueous basil extract interfered in salting processes and showed antioxidant action in this process.Practical applications:Brazilian consumers appreciate salted fish,as influence of Portuguese culture.There are some typical regional products,such as the pantaneiro cod,which consists on catfish from Pantanal that is salted as cod.The development of hybrids from native fishes in aquaculture leads to higher lipid content in the hybrids and the addition of natural antioxidants during salting process increases the product shelf-life and keeps the sensorial properties. 展开更多
关键词 Pintachara salting BASIL ANTIOXIDANT
下载PDF
Continuous preparation of strong and tough PVA nanocomposite fibers by mechanical stretching-assisted salting-out treatment
4
作者 Hang Chen Guangze Yang +2 位作者 Yingzhi Sun Yichao Xu Mingjie Liu 《Nano Research》 SCIE EI CSCD 2024年第4期3156-3163,共8页
Polymer composite fibers with superior properties such as excellent combined strength and toughness and biocompatibility can be used in high-tech applications of braided protective devices and smart wearable,however t... Polymer composite fibers with superior properties such as excellent combined strength and toughness and biocompatibility can be used in high-tech applications of braided protective devices and smart wearable,however the research of high-performance polymer composite fiber remains in the infant stage.Here we present a strategy to produce strong and tough anisotropic polymer nanocomposite fibers with orientedly aligned salt rods using mechanical stretching-assisted salting-out treatment.The prepared nanocomposite fibers have a tensile strength of up to 786±2.7 MPa and an elongation at break of 81%,and the anisotropic fibers exhibit good transmission of mechanical vibration in the longitudinal direction with high resolution.During the fabrication process,the salt builds up into oriented rods during the directional salting process,and the polymer is confined to the 150 nm domain between the rods after the solvent is completely evaporated,giving the nanocomposite fibers superior mechanical properties.The presented strategy can be applied to the continuous mass production of nanocomposite fibers and is also generalizable to other polymer nanocomposites,which could extend the applicability of nanocomposite fibers to conditions involving more demanding mechanical loading and mechanical vibration transmission. 展开更多
关键词 poly(vinyl alcohol)(PVA)nanofibers oriented structure ultrastrong and stiff mechanical vibration transmission salting out continuous production
原文传递
Failure transition of shear-to-dilation band of rock salt under triaxial stresses 被引量:3
5
作者 Jianfeng Liu Xiaosong Qiu +3 位作者 Jianxiong Yang Chao Liang Jingjing Dai Yu Bian 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期56-64,共9页
Great potential of underground gas/energy storage in salt caverns seems to be a promising solution to support renewable energy.In the underground storage method,the operating cycle unfortunately may reach up to daily ... Great potential of underground gas/energy storage in salt caverns seems to be a promising solution to support renewable energy.In the underground storage method,the operating cycle unfortunately may reach up to daily or even hourly,which generates complicated pressures on the salt cavern.Furthermore,the mechanical behavior of rock salt may change and present distinct failure characteristics under different stress states,which affects the performance of salt cavern during the time period of full service.To reproduce a similar loading condition on the cavern surrounding rock mass,the cyclic triaxial loading/unloading tests are performed on the rock salt to explore the mechanical transition behavior and failure characteristics under different confinement.Experimental results show that the rock salt samples pre-sent a diffused shear failure band with significant bulges at certain locations in low confining pressure conditions(e.g.5 MPa,10 MPa and 15 MPa),which is closely related to crystal misorientation and grain boundary sliding.Under the elevated confinement(e.g.20 MPa,30 MPa and 40 MPa),the dilation band dominates the failure mechanism,where the large-size halite crystals are crushed to be smaller size and new pores are developing.The failure transition mechanism revealed in the paper provides additional insight into the mechanical performance of salt caverns influenced by complicated stress states. 展开更多
关键词 Rock salt Cyclic mechanical loading Shear band Dilation band Underground gas storage(UGS)
下载PDF
Dynamic simulation analysis of molten salt reactor-coupled air-steam combined cycle power generation system 被引量:2
6
作者 Jing-Lei Huang Guo-Bin Jia +3 位作者 Li-Feng Han Wen-Qian Liu Li Huang Zheng-Han Yang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期222-233,共12页
A nonlinear dynamic simulation model based on coordinated control of speed and flow rate for the molten salt reactor and combined cycle systems is proposed here to ensure the coordination and stability between the mol... A nonlinear dynamic simulation model based on coordinated control of speed and flow rate for the molten salt reactor and combined cycle systems is proposed here to ensure the coordination and stability between the molten salt reactor and power system.This model considers the impact of thermal properties of fluid variation on accuracy and has been validated with Simulink.This study reveals the capability of the control system to compensate for anomalous situations and maintain shaft stability in the event of perturbations occurring in high-temperature molten salt tank outlet parameters.Meanwhile,the control system’s impact on the system’s dynamic characteristics under molten salt disturbance is also analyzed.The results reveal that after the disturbance occurs,the controlled system benefits from the action of the control,and the overshoot and disturbance amplitude are positively correlated,while the system power and frequency eventually return to the initial values.This simulation model provides a basis for utilizing molten salt reactors for power generation and maintaining grid stability. 展开更多
关键词 Molten salt reactor Combined cycle Dynamic characteristic CONTROL
下载PDF
Ionization Engineering of Hydrogels Enables Highly Efficient Salt‑Impeded Solar Evaporation and Night‑Time Electricity Harvesting 被引量:2
7
作者 Nan He Haonan Wang +3 位作者 Haotian Zhang Bo Jiang Dawei Tang Lin Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期131-146,共16页
Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic ... Interfacial solar evaporation holds immense potential for brine desalination with low carbon footprints and high energy utilization.Hydrogels,as a tunable material platform from the molecular level to the macroscopic scale,have been considered the most promising candidate for solar evaporation.However,the simultaneous achievement of high evaporation efficiency and satisfactory tolerance to salt ions in brine remains a challenging scientific bottleneck,restricting the widespread application.Herein,we report ionization engineering,which endows polymer chains of hydrogels with electronegativity for impeding salt ions and activating water molecules,fundamentally overcoming the hydrogel salt-impeded challenge and dramatically expediting water evaporating in brine.The sodium dodecyl benzene sulfonate-modified carbon black is chosen as the solar absorbers.The hydrogel reaches a ground-breaking evaporation rate of 2.9 kg m−2 h−1 in 20 wt%brine with 95.6%efficiency under one sun irradiation,surpassing most of the reported literature.More notably,such a hydrogel-based evaporator enables extracting clean water from oversaturated salt solutions and maintains durability under different high-strength deformation or a 15-day continuous operation.Meantime,on the basis of the cation selectivity induced by the electronegativity,we first propose an all-day system that evaporates during the day and generates salinity-gradient electricity using waste-evaporated brine at night,anticipating pioneer a new opportunity for all-day resource-generating systems in fields of freshwater and electricity. 展开更多
关键词 Solar evaporation Hydrogel evaporators Salt impeding Ionization engineering Cyclic vapor-electricity generation
下载PDF
Biomass-enhanced Janus sponge-like hydrogel with salt resistance and highstrength for efficient solar desalination 被引量:1
8
作者 Aqiang Chu Meng Yang +4 位作者 Juanli Chen Jinmin Zhao Jing Fang Zhensheng Yang Hao Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第11期1698-1710,共13页
Interfacial solar-driven evaporation technology shows great potential in the field of industrial seawater desalination, and the development ofefficient and low-cost evaporation materials is key to achieving large-scale ... Interfacial solar-driven evaporation technology shows great potential in the field of industrial seawater desalination, and the development ofefficient and low-cost evaporation materials is key to achieving large-scale applications. Hydrogels are considered to be promising candidates;however, conventional hydrogel-based interfacial solar evaporators have difficulty in simultaneously meeting multiple requirements, including ahigh evaporation rate, salt resistance, and good mechanical properties. In this study, a Janus sponge-like hydrogel solar evaporator (CPAS) withexcellent comprehensive performance was successfully constructed. The introduction of biomass agar (AG) into the polyvinyl alcohol (PVA)hydrogel backbone reduced the enthalpy of water evaporation, optimized the pore structure, and improved the mechanical properties. Meanwhile, by introducing hydrophobic fumed nano-silica aerogel (SA) and a synergistic foaming-crosslinking process, the hydrogel spontaneouslyformed a Janus structure with a hydrophobic surface and hydrophilic bottom properties. Based on the reduction of the evaporation enthalpy andthe modulation of the pore structure, the CPAS evaporation rate reached 3.56 kg m^(-2) h^(-1) under one sun illumination. Most importantly, owingto the hydrophobic top surface and 3D-interconnected porous channels, the evaporator could work stably in high concentrations of salt-water(25 wt% NaCl), showing strong salt resistance. Efficient water evaporation, excellent salt resistance, scalable preparation processes, and low-costraw materials make CPAS extremely promising for practical applications. 展开更多
关键词 Solar interfacial evaporation HYDROGEL Biomass DESALINATION Salt resistance
下载PDF
The transcription factor ZmNAC84 increases maize salt tolerance by regulating ZmCAT1 expression 被引量:1
9
作者 Yitian Pan Tong Han +2 位作者 Yang Xiang Caifen Wang Aying Zhang 《The Crop Journal》 SCIE CSCD 2024年第5期1344-1356,共13页
Salt stress severely affects plant growth and yield.The transcription factor NAC plays a variety of important roles in plant abiotic stress,but we know relatively little about the specific molecular mechanisms of NAC ... Salt stress severely affects plant growth and yield.The transcription factor NAC plays a variety of important roles in plant abiotic stress,but we know relatively little about the specific molecular mechanisms of NAC in antioxidant defense.Here,our genetic studies reveal the positive regulation of salt tolerance in maize by the transcription factor ZmNAC84.Under salt stress,overexpression of ZmNAC84 in maize increased the expression of ZmCAT1,enhanced CAT activity,and consequently reduced H_(2)O_(2) accumulation,thereby improving salt stress tolerance in maize.Whereas RNA interference-mediated knockdown of ZmNAC84 produced the opposite effect.Subsequently,we found that ZmNAC84 directly binds to and regulates the expression of the ZmCAT1 promoter,and the hybridized material also demonstrated that ZmCAT1 is a downstream target gene of ZmNAC84.In addition,phenotypic and biochemical analyses indicated that ZmCAT1 positively regulated salt tolerance by regulating H_(2)O_(2) accumulation under salt stress.Taken together,these results reveal the function of ZmNAC84 in regulating ZmCAT1-mediated antioxidant defense in response to salt stress in plants. 展开更多
关键词 MAIZE ZmNAC84 ZmCAT1 Salt stress
下载PDF
Synergistic effects of carbon cycle metabolism and photosynthesis in Chinese cabbage under salt stress 被引量:1
10
作者 Hao Liang Qiling Shi +8 位作者 Xing Li Peipei Gao Daling Feng Xiaomeng Zhang Yin Lu Jingsen Yan Shuxing Shen Jianjun Zhao Wei Ma 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期461-472,共12页
Chinese cabbage(Brassica rapa ssp. pekinensis) has a long cultivation history and is one of the vegetable crops with the largest cultivation area in China. However, salt stress severely damages photosynthesis and horm... Chinese cabbage(Brassica rapa ssp. pekinensis) has a long cultivation history and is one of the vegetable crops with the largest cultivation area in China. However, salt stress severely damages photosynthesis and hormone metabolism, nutritional balances, and results in ion toxicity in plants. To better understand the mechanisms of salt-induced growth inhibition in Chinese cabbage, RNA-seq and physiological index determination were conducted to explore the impacts of salt stress on carbon cycle metabolism and photosynthesis in Chinese cabbage. Here, we found that the number of thylakoids and grana lamellae and the content of starch granules and chlorophyll in the leaves of Chinese cabbage under salt stress showed a time-dependent response, first increasing and then decreasing. Chinese cabbage increased the transcript levels of genes related to the photosynthetic apparatus and carbon metabolism under salt stress, probably in an attempt to alleviate damage to the photosynthetic system and enhance CO_(2) fixation and energy metabolism. The transcription of genes related to starch and sucrose synthesis and degradation were also enhanced;this might have been an attempt to maintain intracellular osmotic pressure by increasing soluble sugar concentrations. Soluble sugars could also be used as potential reactive oxygen species(ROS) scavengers, in concert with peroxidase(POD)enzymes, to eliminate ROS that accumulate during metabolic processes. Our study characterizes the synergistic response network of carbon metabolism and photosynthesis under salt stress. 展开更多
关键词 Chinese cabbage Salt stress Carbon metabolism PHOTOSYNTHESIS CHLOROPLAST
下载PDF
Nanopriming with selenium doped carbon dots improved rapeseed germination and seedling salt tolerance 被引量:1
11
作者 Mohammad Nauman Khan Chengcheng Fu +7 位作者 Xiaohui Liu Yanhui Li Jiasen Yan Lin Yue Jiaqi Li Zaid Khan Lixiao Nie Honghong Wu 《The Crop Journal》 SCIE CSCD 2024年第5期1333-1343,共11页
Soil salinity is a big environmental issue affecting crop production.Although seed nanopriming has been widely used to improve seed germination and seedling growth under salinity,our knowledge about the underlying mec... Soil salinity is a big environmental issue affecting crop production.Although seed nanopriming has been widely used to improve seed germination and seedling growth under salinity,our knowledge about the underlying mechanisms is still insufficient.Herein,we newly synthesized selenium-doped carbon dots nanoparticles coated with poly acrylic acid(poly acrylic acid coated selenium doped carbon dots,PAA@Se-CDs)and used it to prime seeds of rapeseeds.The TEM(transmission electron microscope)size and zeta potential of PAA@Se-CDs are 3.8±0.2 nm and-30 mV,respectively.After 8 h priming,the PAA@Se-CDs nanoparticles were detected in the seed compartments(seed coat,cotyledon,and radicle),while no such signals were detected in the NNP(no nanoparticle control)group(SeO_2 was used as the NNP).Nanopriming with PAA@Se-CDs nanoparticles increased rapeseeds germination(20%)and seedling fresh weight(161%)under saline conditions compared to NNP control.PAA@Se-CDs nanopriming significantly enhanced endo-β-mannanase activities(255%increase,21.55μmol h^(-1)g^(-1)vs.6.06μmol h^(-1)g^(-1),at DAS 1(DAS,days after sowing)),total soluble sugar(33.63 mg g^(-1)FW(fresh weight)vs.20.23 mg g^(-1)FW)and protein contents(1.96μg g^(-1)FW vs.1.0μg g^(-1)FW)to support the growth of germinating seedlings of rapeseeds under salt stress,in comparison with NNP co ntrol.The respiration rate and ATP content were increased by 76%and 607%,respectively.The oxidative damage of salinity due to the overaccumulation of reactive oxygen species(ROS)was alleviated by PAA@Se-CDs nanopriming by increasing the antioxidant enzyme activities(SOD(superoxide dismutase),POD(peroxidase),and CAT(catalase)).Another mechanism behind PAA@Se-CDs nanopriming improving rapeseeds salt tolerance at seedling stage was reducing sodium(Na^(+))accumulation and improving potassium(K^(+))retention,hence increasing the K^(+)/Na^(+)ratio under saline conditions.Overall,our results not only showed that seed nanopriming with PAA@Se-CDs could be a good approach to improve salt tolerance,but also add more knowledge to the mechanism behind nanopriming-improved plant salt tolerance at germination and early seedling growth stage. 展开更多
关键词 PAA@Se-CDs Nanopriming Salt stress Antioxidant system K^(+)/Na^(+) balance ATP production
下载PDF
Ecological problems and ecological restoration zoning of the Aral Sea 被引量:1
12
作者 BAO Anming YU Tao +7 位作者 XU Wenqiang LEI Jiaqiang JIAPAER Guli CHEN Xi Tojibaev KOMILJON Shomurodov KHABIBULLO Xabibullaev B SAGIDULLAEVICH Idirisov KAMALATDIN 《Journal of Arid Land》 SCIE CSCD 2024年第3期315-330,共16页
The Aral Sea was the fourth largest lake in the world but it has shrunk dramatically as a result of irrational human activities, triggering the "Aral Sea ecological crisis". The ecological problems of the Ar... The Aral Sea was the fourth largest lake in the world but it has shrunk dramatically as a result of irrational human activities, triggering the "Aral Sea ecological crisis". The ecological problems of the Aral Sea have attracted widespread attention, and the alleviation of the Aral Sea ecological crisis has reached a consensus among the five Central Asian countries(Kazakhstan, Uzbekistan, Tajikistan, Kyrgyzstan, and Turkmenistan). In the past decades, many ecological management measures have been implemented for the ecological restoration of the Aral Sea. However, due to the lack of regional planning and zoning, the results are not ideal. In this study, we mapped the ecological zoning of the Aral Sea from the perspective of ecological restoration based on soil type, soil salinity, surface water, groundwater table, Normalized Difference Vegetation Index(NDVI), land cover, and aerosol optical depth(AOD) data. Soil salinization and salt dust are the most prominent ecological problems in the Aral Sea. We divided the Aral Sea into 7 first-level ecological restoration subregions(North Aral Sea catchment area in the downstream of the Syr Darya River(Subregion Ⅰ);artificial flood overflow area in the downstream of the Aral Sea(Subregion Ⅱ);physical/chemical remediation area of the salt dust source area in the eastern part of the South Aral Sea(Subregion Ⅲ);physical/chemical remediation area of severe salinization in the central part of the South Aral Sea(Subregion Ⅳ);existing water surface and potential restoration area of the South Aral Sea(Subregion Ⅴ);Aral Sea vegetation natural recovery area(Subregion Ⅵ);and vegetation planting area with slight salinization in the South Aral Sea(Subregion Ⅶ)) and 14 second-level ecological restoration subregions according to the ecological zoning principles. Implementable measures are proposed for each ecological restoration subregion. For Subregion Ⅰ and Subregion Ⅱ with lower elevations, artificial flooding should be carried out to restore the surface of the Aral Sea. Subregion Ⅲ and Subregion Ⅳ have severe salinization, making it difficult for vegetation to grow. In these subregions, it is recommended to cover and pave the areas with green biomatrix coverings and environmentally sustainable bonding materials. In Subregion Ⅴ located in the central and western parts of the South Aral Sea, surface water recharge should be increased to ensure that this subregion can maintain normal water levels. In Subregion Ⅵ and Subregion Ⅶ where natural conditions are suitable for vegetation growth, measures such as afforestation and buffer zones should be implemented to protect vegetation. This study could provide a reference basis for future comprehensive ecological management and restoration of the Aral Sea. 展开更多
关键词 ecological restoration zoning salt and dust storms soil salinization ecological crisis Aral Sea Central Asia
下载PDF
CO_(2)点阵激光联合5%米诺地尔酊治疗斑秃疗效分析
13
作者 严莹 沈巍 +1 位作者 谢晓蕾 钟华杰 《浙江临床医学》 2024年第8期1185-1187,共3页
目的分析CO_(2)点阵激光联合5%米诺地尔酊治疗斑秃的疗效。方法选取2022年7月至12月本院就诊斑秃患者60例,采用随机法分为对照组和观察组,各30例。对照组予5%米诺地尔酊外用治疗,观察组在CO_(2)点阵激光治疗后外用5%米诺地尔酊治疗,比... 目的分析CO_(2)点阵激光联合5%米诺地尔酊治疗斑秃的疗效。方法选取2022年7月至12月本院就诊斑秃患者60例,采用随机法分为对照组和观察组,各30例。对照组予5%米诺地尔酊外用治疗,观察组在CO_(2)点阵激光治疗后外用5%米诺地尔酊治疗,比较两组治疗前后SALT评分、治疗总有效率、美容满意度、疾病复发率和不良反应。结果两组治疗前后比较,治疗1、3个月后观察组SALT评分均低于对照组(P<0.05),治疗3个月后满意度观察组高于对照组(P<0.05),总有效率观察组高于对照组(P<0.05);两组复发率及不良反应发生率比较,差异无统计学意义(P>0.05)。结论CO_(2)点阵激光联合米诺地尔酊治疗斑秃可提高斑秃治疗疗效,且早期起效,提高患者治疗的整体满意度,且并未增加不良反应的发生率。 展开更多
关键词 CO_(2)点阵激光 5%米诺地尔酊 斑秃 SALT评分
下载PDF
Genome-Wide Exploration of the Grape GLR Gene Family and Differential Responses of VvGLR3.1 and VvGLR3.2 to Low Temperature and Salt Stress 被引量:1
14
作者 Honghui Sun Ruichao Liu +6 位作者 Yueting Qi Hongsheng Gao Xueting Wang Ning Jiang Xiaotong Guo Hongxia Zhang Chunyan Yu 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第3期533-549,共17页
Grapes,one of the oldest tree species globally,are rich in vitamins.However,environmental conditions such as low temperature and soil salinization significantly affect grape yield and quality.The glutamate receptor(GLR... Grapes,one of the oldest tree species globally,are rich in vitamins.However,environmental conditions such as low temperature and soil salinization significantly affect grape yield and quality.The glutamate receptor(GLR)family,comprising highly conserved ligand-gated ion channels,regulates plant growth and development in response to stress.In this study,11 members of the VvGLR gene family in grapes were identified using whole-genome sequence analysis.Bioinformatic methods were employed to analyze the basic physical and chemical properties,phylogenetic trees,conserved domains,motifs,expression patterns,and evolutionary relationships.Phylogenetic and collinear analyses revealed that the VvGLRs were divided into three subgroups,showing the high conservation of the grape GLR family.These members exhibited 2 glutamate receptor binding regions(GABAb and GluR)and 3-4 transmembrane regions(M1,M2,M3,and M4).Real-time quantitative PCR analysis demonstrated the sensitivity of all VvGLRs to low temperature and salt stress.Subsequent localization studies in Nicotiana tabacum verified that VvGLR3.1 and VvGLR3.2 proteins were located on the cell membrane and cell nucleus.Additionally,yeast transformation experiments confirmed the functionality of VvGLR3.1 and VvGLR3.2 in response to low temperature and salt stress.Thesefindings highlight the significant role of the GLR family,a highly conserved group of ion channels,in enhancing grape stress resistance.This study offers new insights into the grape GLR gene family,providing fundamental knowledge for further functional analysis and breeding of stress-resistant grapevines. 展开更多
关键词 Genome-wide identification glutamate receptor(GLR)family low temperature stress salt stress GRAPE
下载PDF
Nitrogen application regulates antioxidant capacity and flavonoid metabolism,especially quercetin,in grape seedlings under salt stress
15
作者 Congcong Zhang Han Wang +13 位作者 Guojie Nai Lei Ma Xu Lu Haokai Yan Meishuang Gong YuanyuanLi Ying Lai Zhihui Pu Li Wei Guiping Chen Ping Sun Baihong Chen Shaoying Ma Sheng Li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第12期4074-4092,共19页
Salt stress is a typical abiotic stress in plants that causes slow growth,stunting,and reduced yield and fruit quality.Fertilization is necessary to ensure proper crop growth.However,the effect of fertilization on sal... Salt stress is a typical abiotic stress in plants that causes slow growth,stunting,and reduced yield and fruit quality.Fertilization is necessary to ensure proper crop growth.However,the effect of fertilization on salt tolerance in grapevine is unclear.In this study,we investigated the effect of nitrogen fertilizer(0.01 and 0.1 mol L^(-1)NH_(4)NO_(3))application on the salt(200 mmol L^(-1)NaCl)tolerance of grapevine based on physiological indices,and transcriptomic and metabolomic analyses.The results revealed that 0.01 mol L^(-1)NH_(4)NO_(3) supplementation significantly reduced the accumulation of superoxide anion(O_(2)^(-)·),enhanced the activities of superoxide dismutase(SOD)and peroxidase(POD),and improved the levels of ascorbic acid(AsA)and glutathione(GSH)in grape leaves compared to salt treatment alone.Specifically,joint transcriptome and metabolome analyses showed that the differentially expressed genes(DEGs)and differentially accumulated metabolites(DAMs)were significantly enriched in the flavonoid biosynthesis pathway(ko00941)and the flavone and flavonol biosynthesis pathway(ko00944).In particular,the relative content of quercetin(C00389)was markedly regulated by salt and nitrogen.Further analysis revealed that exogenous foliar application of quercetin improved the SOD and POD activities,increased the AsA and GSH contents,and reduced the H_(2)O_(2) and O_(2)^(-)·contents.Meanwhile,10 hub DEGs,which had high Pearson correlations(R^(2)>0.9)with quercetin,were repressed by nitrogen.In conclusion,all the results indicated that moderate nitrogen and quercetin application under salt stress enhanced the antioxidant system defense response,thus providing a new perspective for improving salt tolerance in grapes. 展开更多
关键词 GRAPEVINE salt stress nitrogen multi-omics QUERCETIN antioxidant
下载PDF
The source of lithium in Lakkor Co Salt Lake on Qinghai-Tibet Plateau,China:evidence from hydrochemical characteristics and boron isotope
16
作者 Zheng Yan Li Bin Kai Li +2 位作者 Mao-Yong He Xue Qin Wen Jiang Di Zhou 《Acta Geochimica》 EI CAS CSCD 2024年第5期933-946,共14页
The availability of lithium resources is of great significance for the development of modern technologies,as well as for civil and military industries.The Qinghai-Tibet Plateau is a region known for its abundance of l... The availability of lithium resources is of great significance for the development of modern technologies,as well as for civil and military industries.The Qinghai-Tibet Plateau is a region known for its abundance of lithium-rich salt lakes.However,the specific origin of lithium in these lakes is still unknown,which hinders the advancement of the lithium resource business in this region.To research this issue,this study involved the collection of 20 samples from Lakkor Co Salt Lake on Qinghai-Tibet Plateau,encompassing samples of surface brine,cold springs,fresh lakes,and recharge rivers.The composition of anions and cations in these samples was determined.Furthermore,the analysis extensivelyutilizedthePiperthree-linediagram,Gibbs model,and ion proportion coefficient.The findings of this study indicate that as the moves from the recharge water system to salt lake,there is a transition in water type from strong carbonate to moderate carbonate and weak carbonate,as well as Na sulfate.This research based on a similar source of both lithium and boron,utilized ion correlation analysis and boron isotope study in the Lakkor Co area,and analyzed the source and transporting process of lithium.The main origin of lithium in Lakkor Co is the dissolution of lithiumrich rocks,recharge water systems,and deep hydrothermal fluids.These findings are highly significant in enhancing the foundational data of lithium-rich brine resources in the Qinghai-Tibet Plateau and are beneficial for assessing the future development of such deposits. 展开更多
关键词 LITHIUM Hydrochemical Li-rich Salt lake Boron isotope
下载PDF
AcWRKY28 mediated activation of AcCPK genes confers salt tolerance in pineapple(Ananas comosus)
17
作者 Qiao Zhou Samaranayaka Vidana Gamage Nirosha Priyadarshani +11 位作者 Rongjuan Qin Han Cheng Tiantian Luo Myat Hnin Wai Mohammad Aqa Mohammadi Yanhui Liu Chang Liu Hanyang Cai Xiaomei Wang Yeqiang Liu Yuan Qin Lulu Wang 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期398-412,共15页
Unfavorable environmental cues severely affect crop productivity resulting in significant economic losses to farmers. In plants, multiple regulatory genes, such as the WRKY transcription factor (TF) family, modulate t... Unfavorable environmental cues severely affect crop productivity resulting in significant economic losses to farmers. In plants, multiple regulatory genes, such as the WRKY transcription factor (TF) family, modulate the expression of defense genes. However, the role of the pineapple WRKY genes is poorly understood. Here, we studied the pineapple WRKY gene, AcWRKY28, by generating AcWRKY28 over-expressing transgenic pineapple plants. Overexpression of AcWRKY28 enhanced the salt stress resistance in transgenic pineapple lines. Comparative transcriptome analysis of transgenic and wild-type pineapple plants showed that “plant-pathogen interaction” pathway genes, including 9calcium-dependent protein kinases (CPKs), were up-regulated in AcWRKY28 over-expressing plants. Furthermore, chromatin immunoprecipitation and yeast one-hybrid assays revealed AcCPK12, AcCPK3, AcCPK8, AcCPK1, and AcCPK15 as direct targets of AcWRKY28. Consistently, the study of AcCPK12 over-expressing Arabidopsis lines showed that AcCPK12 enhances salt, drought, and disease resistance. This study shows that AcWRKY28 plays a crucial role in promoting salt stress resistance by activating the expression of AcCPK genes. 展开更多
关键词 PINEAPPLE AcWRKY AcCPK Transcription factor Salt stress CHIP
下载PDF
Growth kinetics of titanium carbide coating by molten salt synthesis process on graphite sheet surface
18
作者 Xiaoyu Shi Chongxiao Guo +4 位作者 Jiamiao Ni Songsong Yao Liqiang Wang Yue Liu Tongxiang Fan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第8期1858-1864,共7页
The synthesis of carbide coatings on graphite substrates using molten salt synthesis(MSS),has garnered significant interest due to its cost-effective nature.This study investigates the reaction process and growth kine... The synthesis of carbide coatings on graphite substrates using molten salt synthesis(MSS),has garnered significant interest due to its cost-effective nature.This study investigates the reaction process and growth kinetics involved in MSS,shedding light on key aspects of the process.The involvement of Ti powder through liquid-phase mass transfer is revealed,where the diffusion distance and quantity of Ti powder play a crucial role in determining the reaction rate by influencing the C content gradient on both sides of the carbide.Furthermore,the growth kinetics of the carbide coating are predominantly governed by the diffusion behavior of C within the carbide layer,rather than the chemical reaction rate.To analyze the kinetics,the thickness of the carbide layer is measured with respect to heat treatment time and temperature,unveiling a parabolic relationship within the temperature range of 700-1300℃.The estimated activation energy for the reaction is determined to be 179283 J·mol^(-1).These findings offer valuable insights into the synthesis of carbide coatings via MSS,facilitating their optimization and enhancing our understanding of their growth mechanisms and properties for various applications. 展开更多
关键词 titanium carbide GRAPHITE molten salt kinetic analysis
下载PDF
Construction of coal pitch-based HA-K grafted poly condensates and their excellent anti-temperature and viscosity-reducing properties
19
作者 Jing Tan Wei Zhang +6 位作者 Xiu-Ling Yan Hao Zhou Sher Bahadar Khan Seitkhan Azat Shi-You Yan Hao-Jie Ma Xin-Tai Su 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2806-2816,共11页
Humic acids(HAs)are widely used as filtrate and viscosity reducers in drilling fluids.However,their practical utility is limited due to poor stability in salt resistance and high-temperature resistance.Hightemperature... Humic acids(HAs)are widely used as filtrate and viscosity reducers in drilling fluids.However,their practical utility is limited due to poor stability in salt resistance and high-temperature resistance.Hightemperature coal pitch(CP)is a by-product from coal pyrolysis above 650℃.The substance's molecular structure is characterized by a dense arrangement of aromatic hydrocarbon and alkyl substituents.This unique structure gives it unique chemical properties and excellent drilling performance,surpassing traditional humic acids in drilling operations.Potassium humate is prepared from CP(CP-HA-K)by thermal catalysis.A new type of high-quality humic acid temperature-resistant viscosity-reducer(Graft CP-HA-K polymer)is synthesized with CP-HA-K,hydrolyzed polyacrylonitrile sodium salt(Na-HPAN),urea,formaldehyde,phenol and acrylamide(AAM)as raw materials.The experimental results demonstrate that the most favorable conditions for the catalytic preparation of CP-HA-K are 1 wt%catalyst dosage,30 wt%KOH dosage,a reaction temperature of 250℃,and a reaction time of 2 h,resulting in a maximum yield of CP-HA-K of 39.58%.The temperature resistance of the Graft CP-HA-K polymer is measured to be 177.39℃,which is 55.39℃ higher than that of commercial HA-K.This is due to the abundant presence of amide,hydroxyl,and amine functional groups in the Graft CP-HA-K polymer,which increase the length of the carbon chains,enhance the electrostatic repulsion on the surface of solid particles.After being aged to 120℃ for a specified duration,the Graft CP-HA-K polymer demonstrates significantly higher viscosity reduction(42.12%)compared to commercial HA-K(C-HA-K).Furthermore,the Graft CP-HA-K polymer can tolerate a high salt concentration of 8000 mg.L-1,measured after the addition of optimum amount of 3 wt%Graft CP-HA-K polymer.The action mechanism of Graft CP-HA-K polymer on high-temperature drilling fluid is that the Graft CP-HA-K polymer can increase the repulsive force between solid particles and disrupt bentonite's reticulation structure.Overall,this research provides novelty insights into the synthesis of artificial humic acid materials and the development of temperature-resistant viscosity reducers,offering a new avenue for the utilization of CP resources. 展开更多
关键词 Viscosity breaker Heat resistance Base mud Graft CP-HA-K polymer CP Salt resistance
下载PDF
Effect of the anionic composition of sulfolane based electrolytes on the performances of lithium-sulfur batteries
20
作者 Elena V.Karaseva Elena V.Kuzmina +2 位作者 Bo-Quan Li Qiang Zhang Vladimir S.Kolosnitsyn 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期231-240,I0005,共11页
In lithium-sulfur batteries,cell design,specifically electrolyte design,has a key impact on the battery performance.The effect of lithium salt anion donor number(DN)(DN[PF_(6)]^(-)=2.5,DN[N(SO_(2)CF_(3))_(2)]^(-)=5.4,... In lithium-sulfur batteries,cell design,specifically electrolyte design,has a key impact on the battery performance.The effect of lithium salt anion donor number(DN)(DN[PF_(6)]^(-)=2.5,DN[N(SO_(2)CF_(3))_(2)]^(-)=5.4,DN[ClO_(4)]^(-)=8.4,DN[SO_(3)CF_(3)]^(-)=16.9,and DN[NO_(3)]^(-)=21.1)on the patterns of lithium-sulfur batteries and lithium metal electrode performances with sulfola ne-based electrolytes is investigated.An increase in DN of lithium salt anions leads to an increase in the depth and rate of electrochemical reduction of sulfur and long-chain lithium polysulfides and to a decrease in those for medium-and short-chain lithium polysulfides.DN of lithium salt anions has weak effect on the discharge capacity of lithium-sulfur batteries and the Coulomb efficiency during cycling,with the exception of LiSO_(3)CF_(3)and LiNO_(3).An increase in DN of lithium salt anions leads to an increase in the cycling duration of lithium metal anodes and to a decrease in the presence of lithium polysulfides.In sulfolane solutions of LiNO_(3)and LiSO_(3)CF_(3),lithium polysulfides do not affect the cycling duration of lithium metal anodes. 展开更多
关键词 Donor number Lithium salt SULFOLANE Lithium polysulfide ELECTROLYTE Lithium-sulfur battery Lithium metal electrode
下载PDF
上一页 1 2 127 下一页 到第
使用帮助 返回顶部