In this paper, we study the exponential synchronization of chaotic Lur'e systems with time-varying delays via sampled-data control by using sector nonlinearties. In order to make full use of information about samplin...In this paper, we study the exponential synchronization of chaotic Lur'e systems with time-varying delays via sampled-data control by using sector nonlinearties. In order to make full use of information about sampling intervals and interval time-varying delays, new Lyapunov-Krasovskii functionals with triple integral terms are introduced. Based on the convex combination technique, two kinds of synchronization criteria are derived in terms of linear matrix inequal- ities, which can be efficiently solved via standard numerical software. Finally, three numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed results.展开更多
The robust guaranteed cost sampled-data control was studied for a class of uncertain nonlinear systems with time-varying delay. The parameter uncertainties are time-varying norm-bounded and appear in both the state an...The robust guaranteed cost sampled-data control was studied for a class of uncertain nonlinear systems with time-varying delay. The parameter uncertainties are time-varying norm-bounded and appear in both the state and the input control matrices. By applying an input delay approach, the system was transformed into a continuous time-delay system. Attention was focused on the design of a robust guaranteed cost sampled-data control law which guarantees that the closed-loop system is asymptotically stable and the quadratic performance index is less than a certain bound for all admissible uncertainties. By applying Lyapunov stability theory, the theorems were derived to provide sufficient conditions for the existence of robust guaranteed cost sampled-data control law in the form of linear matrix inequalities (LMIs), especially an optimal state-feedback guaranteed cost sampled-data control law which ensures the minimization of the guaranteed cost was given. The effectiveness of the proposed method was illustrated by a simulation example with the asymptotically stable curves of system state under the initial condition of x(0)=[0.679 6 0].展开更多
This paper examines the stabilization problem of a distributed networked control system under the effect of cyberattacks by employing a hybrid aperiodic triggering mechanism.The cyber-attack considered in the paper is...This paper examines the stabilization problem of a distributed networked control system under the effect of cyberattacks by employing a hybrid aperiodic triggering mechanism.The cyber-attack considered in the paper is a stochastic deception attack at the sensor-controller end. The probability of the occurrence of attack on a subsystem is represented using a random variable. A decentralized hybrid sampled-data strategy is introduced to save energy consumption and reduce the transmission load of the network. In the proposed decentralized strategy, each subsystem can decide independently whether its state should be transmitted to the controller or not. The scheme of the hybrid triggering mechanism for each subsystem composed of two stages: In the first stage, the next sampling instant is computed using a self-triggering strategy. Subsequently, in the second stage, an event-triggering condition is checked at these sampling instants and the control signal is computed only if the event-triggering condition is violated. The self-triggering condition used in the first stage is dependent on the selection of eventtriggering condition of the second stage. Finally, a comparison of the proposed approach with other triggering mechanisms existing in the literature is presented in terms of the sampling instants,transmission frequency and performance measures through simulation examples.展开更多
We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-d...We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-data control using the linear matrix inequality (LMI) approach. The Lyapunov–Krasovskii functional combined with the input delay approach as well as the free-weighting matrix approach is employed to derive several sufficient criteria in terms of LMIs to ensure that the delayed MJFCNNs with the Wiener process is stochastic asymptotical synchronous. Restrictions (e.g., time derivative is smaller than one) are removed to obtain a proposed sampled-data controller. Finally, a numerical example is provided to demonstrate the reliability of the derived results.展开更多
In this paper the fault tolerant synchronization of two chaotic systems based on fuzzy model and sample data is investigated. The problem of fault tolerant synchronization is formulated to study the global asymptotica...In this paper the fault tolerant synchronization of two chaotic systems based on fuzzy model and sample data is investigated. The problem of fault tolerant synchronization is formulated to study the global asymptotical stability of the error system with the fuzzy sampled-data controller which contains a state feedback controller and a fault compensator. The synchronization can be achieved no matter whether the fault occurs or not. To investigate the stability of the error system and facilitate the design of the fuzzy sampled-data controller, a Takagi Sugeno (T-S) fuzzy model is employed to represent the chaotic system dynamics. To acquire good performance and produce a less conservative analysis result, a new parameter-dependent Lyapunov-Krasovksii functional and a relaxed stabilization technique are considered. The stability conditions based on linear matrix inequality are obtained to achieve the fault tolerant synchronization of the chaotic systems. Finally, a numerical simulation is shown to verify the results.展开更多
Reinforcement Learning(RL)based control algorithms can learn the control strategies for nonlinear and uncertain environment during interacting with it.Guided by the rewards generated by environment,a RL agent can lear...Reinforcement Learning(RL)based control algorithms can learn the control strategies for nonlinear and uncertain environment during interacting with it.Guided by the rewards generated by environment,a RL agent can learn the control strategy directly in a model-free way instead of investigating the dynamic model of the environment.In the paper,we propose the sampled-data RL control strategy to reduce the computational demand.In the sampled-data control strategy,the whole control system is of a hybrid structure,in which the plant is of continuous structure while the controller(RL agent)adopts a discrete structure.Given that the continuous states of the plant will be the input of the agent,the state–action value function is approximated by the fully connected feed-forward neural networks(FCFFNN).Instead of learning the controller at every step during the interaction with the environment,the learning and acting stages are decoupled to learn the control strategy more effectively through experience replay.In the acting stage,the most effective experience obtained during the interaction with the environment will be stored and during the learning stage,the stored experience will be replayed to customized times,which helps enhance the experience replay process.The effectiveness of proposed approach will be verified by simulation examples.展开更多
This paper is concerned with the synchronization of delayed neural networks via sampled-data control. A new technique, namely, the free-matrix-based time-dependent discontinuous Lyapunov functional approach, is adopte...This paper is concerned with the synchronization of delayed neural networks via sampled-data control. A new technique, namely, the free-matrix-based time-dependent discontinuous Lyapunov functional approach, is adopted in constructing the Lyapunov functional, which takes advantage of the sampling characteristic of sawtooth input delay. Based on this discontinuous Lyapunov functional, some less conservative synchronization criteria are established to ensure that the slave system is synchronous with the master system. The desired sampled-data controller can be obtained through the use of the linear matrix inequality(LMI) technique. Finally, two numerical examples are provided to demonstrate the effectiveness and the improvements of the proposed methods.展开更多
The basic analysis and synthesis approaches for multirate sampled-data control system are reviewed. After giving the definition and some properties of multirate system are given, its origination, development and desig...The basic analysis and synthesis approaches for multirate sampled-data control system are reviewed. After giving the definition and some properties of multirate system are given, its origination, development and design methods are discussed in detail. Finally, some remarks, expectations and conclusions on the present research status and the research directions are given.展开更多
This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus...This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus is placed on the scenario that the dynamical state of the half-vehicle active suspension system is transmitted over an in-vehicle controller area network that only permits the transmission of sampled data packets.For this purpose,a stochastic sampling mechanism is developed such that the sampling periods can randomly switch among different values with certain mathematical probabilities.Then,an asynchronous fuzzy sampled-data controller,featuring distinct premise variables from the active suspension system,is constructed to eliminate the stringent requirement that the sampled-data controller has to share the same grades of membership.Furthermore,novel criteria for both stability analysis and controller design are derived in order to guarantee that the resultant closed-loop active suspension system is stochastically stable with simultaneous𝐻2 and𝐻∞performance requirements.Finally,the effectiveness of the proposed stochastic sampled-data multi-objective control method is verified via several numerical cases studies in both time domain and frequency domain under various road disturbance profiles.展开更多
Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and...Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.展开更多
Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these...Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these muscles may not effectively engage any of the remaining neurons in the descending pathway.A previous study unexpectedly found that a brief clinical round of passive activity significantly increased volitional muscle activation,as measured by surface electromyography.In this study,we further explored the effect of passive activity on surface electromyographic signals during volitional control tasks among individuals with complete spinal cord injury.Eleven patients with chronic complete thoracic spinal cord injury were recruited.Surface electromyography data from eight major leg muscles were acquired and compared before and after the passive activity protocol.The results indicated that the passive activity led to an increased number of activated volitional muscles and an increased frequency of activation.Although the cumulative root mean square of surface electromyography amplitude for volitional control of movement showed a slight increase after passive activity,the difference was not statistically significant.These findings suggest that brief passive activity may enhance the ability to initiate volitional muscle activity during surface electromyography tasks and underscore the potential of passive activity for improving residual motor control among patients with motor complete spinal cord injury.展开更多
Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug deliv...Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.展开更多
This paper proposes a novel sampled-data asynchronous fuzzy output feedback control approach for active suspension systems in restricted frequency domain.In order to better investigate uncertain suspension dynamics,th...This paper proposes a novel sampled-data asynchronous fuzzy output feedback control approach for active suspension systems in restricted frequency domain.In order to better investigate uncertain suspension dynamics,the sampleddata Takagi-Sugeno(T-S)fuzzy half-car active suspension(HCAS)system is considered,which is further modelled as a continuous system with an input delay.Firstly,considering that the fuzzy system and the fuzzy controller cannot share the identical premises due to the existence of input delay,a reconstructed method is employed to synchronize the time scales of membership functions between the fuzzy controller and the fuzzy system.Secondly,since external disturbances often belong to a restricted frequency range,a finite frequency control criterion is presented for control synthesis to reduce conservatism.Thirdly,given a full information of state variables is hardly available in practical suspension systems,a two-stage method is proposed to calculate the static output feedback control gains.Moreover,an iterative algorithm is proposed to compute the optimum solution.Finally,numerical simulations verify the effectiveness of the proposed controllers.展开更多
In this article, floating quantization effects on multirate sampled-data control systems are studied. It shows that the solutions of multirate digital feedback control systems with nonlinear plant and with floating qu...In this article, floating quantization effects on multirate sampled-data control systems are studied. It shows that the solutions of multirate digital feedback control systems with nonlinear plant and with floating quantization in the controller are uniformly ultimately bounded if the associated linear systems consisting of linearization of the plant and controller with no quantization are Schur stable. Moreover, it also shows that the difference between the response of multirate digital controllers without quantizers and the same plant with floating quantization in the controllers can be made as small as desired by selecting proper quantization level.展开更多
A robust H∞sampled-data stabilization problem for nonlinear dynamic positioning(DP) ships with Takagi-Sugeno(T-S) fuzzy models is discussed in this paper. Input delay approach is used to convert the sampleddata DP sh...A robust H∞sampled-data stabilization problem for nonlinear dynamic positioning(DP) ships with Takagi-Sugeno(T-S) fuzzy models is discussed in this paper. Input delay approach is used to convert the sampleddata DP ship system to a fuzzy system with time-varying delay. Adequate conditions are derived to determine the system's asymptotical stability and achieve H∞performance via Lyapunov stability theorems. Then, the fuzzy sampled-data controller is obtained by analyzing the stabilization condition. Simulation result shows that the proposed method and the designed controller for a DP ship are effective so that the DP ship can maintain the desired position, heading and velocities in the existence of varying environment disturbances.展开更多
For a sampled-data control system with nonuniform sampling, the sampling interval sequence, which is continuously distributed in a given interval, is described as a multiple independent and identically distributed (i....For a sampled-data control system with nonuniform sampling, the sampling interval sequence, which is continuously distributed in a given interval, is described as a multiple independent and identically distributed (i.i.d.) process. With this process, the closed-loop system is transformed into an asynchronous dynamical impulsive model with input delays. Sufficient conditions for the closed-loop mean-square exponential stability are presented in terms of linear matrix inequalities (LMIs), in which the relation between the nonuniform sampling and the mean-square exponential stability of the closed-loop system is explicitly established. Based on the stability conditions, the controller design method is given, which is further formulated as a convex optimization problem with LMI constraints. Numerical examples and experiment results are given to show the effectiveness and the advantages of the theoretical results.展开更多
The stability of sampled-data systems is investigated using a new type of Lyapunov functional.The interval from the sampling point t_(k) to t_(k+1) is assumed to be a sampling interval.By fully utilizing the character...The stability of sampled-data systems is investigated using a new type of Lyapunov functional.The interval from the sampling point t_(k) to t_(k+1) is assumed to be a sampling interval.By fully utilizing the characteristic information on the whole sampling interval,a new two-sided closed-loop Lyapunov functional is proposed,which utilizes the information on both the intervals from the sampling point t to k_(t) and from t to t_(k+1).Based on the two-sided closed-loop Lyapunov functional and modified free-matrix-based inequality,a less conservative stability criterion is derived for a sampled-data control system,and three numerical examples are provided to verify the effectiveness and reduced conservativeness of the proposed method.Furthermore,the proposed method is applied to solve the stability problem of electric power markets,and the practical significance of reducing the conservativeness is discussed.展开更多
By analyzing the output voltage ripple of a buck-boost converter with large equivalent series resistance(ESR) of output capacitor, one valley voltage-mode controller for buck-boost converter is proposed. Considering...By analyzing the output voltage ripple of a buck-boost converter with large equivalent series resistance(ESR) of output capacitor, one valley voltage-mode controller for buck-boost converter is proposed. Considering the fact that the increasing and decreasing slopes of the inductor current are assumed to be constant during each switching cycle, an especial sampleddata model of valley voltage-mode controlled buck-boost converter is established. Based on this model, the dynamical effect of an output-capacitor time-constant on the valley voltage-mode controlled buck-boost converter is revealed and analyzed via the bifurcation diagrams, the movements of eigenvalues, the Lyapunov exponent spectra, the boundary equations,and the operating-state regions. It is found that with gradual reduction of output-capacitor time-constant, the buck-boost converter in continuous conduction mode(CCM) shows the evolutive dynamic behavior from period-1 to period-2, period-4, period-8, chaos, and invalid state. The stability boundary and the invalidated boundary are derived theoretically by stability analysis, where the stable state of valley voltage-mode controlled buck-boost converter can enter into an unstable state, and the converter can shift from the operation region to a forbidden region. These results verified by time-domain waveforms and phase portraits of both simulation and experiment indicate that the sampled-data model is correct and the time constant of the output capacitor is a critical factor for valley voltage-mode controlled buck-boost converter, which has a significant effect on the dynamics as well as control stability.展开更多
A robust H∞ directional controller for a sampled-data autonomous airship with polytopic parameter uncertainties was proposed. By input delay approach, the linearized airship model was transformed into a continuous-ti...A robust H∞ directional controller for a sampled-data autonomous airship with polytopic parameter uncertainties was proposed. By input delay approach, the linearized airship model was transformed into a continuous-time system with time-varying delay. Sufficient conditions were then established based on the constructed Lyapunov-Krasovskii functional, which guarantee that the system is mean-square exponentially stable with H∞ performance. The desired controller can be obtained by solving the obtained conditions. Simulation results show that guaranteed minimum H∞ performance γ=1.4037 and fast response of attitude for sampled-data autonomous airship are achieved in spite of the existence of parameter uncertainties.展开更多
The method for controlling chaotic transition system was investigated using sampled- data . The output of chaotic transition system was sampled at a given sampling rate , then the sampled output was used by a feedback...The method for controlling chaotic transition system was investigated using sampled- data . The output of chaotic transition system was sampled at a given sampling rate , then the sampled output was used by a feedbacks subsystem to construct a control signal for controlling chaotic transition system to the origin . Numerical simulations are presented to show the effectiveness and feasibility of the developed controller.展开更多
文摘In this paper, we study the exponential synchronization of chaotic Lur'e systems with time-varying delays via sampled-data control by using sector nonlinearties. In order to make full use of information about sampling intervals and interval time-varying delays, new Lyapunov-Krasovskii functionals with triple integral terms are introduced. Based on the convex combination technique, two kinds of synchronization criteria are derived in terms of linear matrix inequal- ities, which can be efficiently solved via standard numerical software. Finally, three numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed results.
基金Project(12511109) supported by the Science and Technology Studies Foundation of Heilongjiang Educational Committee of 2011, China
文摘The robust guaranteed cost sampled-data control was studied for a class of uncertain nonlinear systems with time-varying delay. The parameter uncertainties are time-varying norm-bounded and appear in both the state and the input control matrices. By applying an input delay approach, the system was transformed into a continuous time-delay system. Attention was focused on the design of a robust guaranteed cost sampled-data control law which guarantees that the closed-loop system is asymptotically stable and the quadratic performance index is less than a certain bound for all admissible uncertainties. By applying Lyapunov stability theory, the theorems were derived to provide sufficient conditions for the existence of robust guaranteed cost sampled-data control law in the form of linear matrix inequalities (LMIs), especially an optimal state-feedback guaranteed cost sampled-data control law which ensures the minimization of the guaranteed cost was given. The effectiveness of the proposed method was illustrated by a simulation example with the asymptotically stable curves of system state under the initial condition of x(0)=[0.679 6 0].
文摘This paper examines the stabilization problem of a distributed networked control system under the effect of cyberattacks by employing a hybrid aperiodic triggering mechanism.The cyber-attack considered in the paper is a stochastic deception attack at the sensor-controller end. The probability of the occurrence of attack on a subsystem is represented using a random variable. A decentralized hybrid sampled-data strategy is introduced to save energy consumption and reduce the transmission load of the network. In the proposed decentralized strategy, each subsystem can decide independently whether its state should be transmitted to the controller or not. The scheme of the hybrid triggering mechanism for each subsystem composed of two stages: In the first stage, the next sampling instant is computed using a self-triggering strategy. Subsequently, in the second stage, an event-triggering condition is checked at these sampling instants and the control signal is computed only if the event-triggering condition is violated. The self-triggering condition used in the first stage is dependent on the selection of eventtriggering condition of the second stage. Finally, a comparison of the proposed approach with other triggering mechanisms existing in the literature is presented in terms of the sampling instants,transmission frequency and performance measures through simulation examples.
基金the Ministry of Science and Technology of India(Grant No.DST/Inspire Fellowship/2010/[293]/dt.18/03/2011)
文摘We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-data control using the linear matrix inequality (LMI) approach. The Lyapunov–Krasovskii functional combined with the input delay approach as well as the free-weighting matrix approach is employed to derive several sufficient criteria in terms of LMIs to ensure that the delayed MJFCNNs with the Wiener process is stochastic asymptotical synchronous. Restrictions (e.g., time derivative is smaller than one) are removed to obtain a proposed sampled-data controller. Finally, a numerical example is provided to demonstrate the reliability of the derived results.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50977008,60774048,and 60774093)the National High Technology Research and Development Program of China (Grant No. 2009AA04Z127)+1 种基金the Special Grant of Financial Support from China Postdoctoral Science Foundation (Grant No. 200902547)Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 200801451096)
文摘In this paper the fault tolerant synchronization of two chaotic systems based on fuzzy model and sample data is investigated. The problem of fault tolerant synchronization is formulated to study the global asymptotical stability of the error system with the fuzzy sampled-data controller which contains a state feedback controller and a fault compensator. The synchronization can be achieved no matter whether the fault occurs or not. To investigate the stability of the error system and facilitate the design of the fuzzy sampled-data controller, a Takagi Sugeno (T-S) fuzzy model is employed to represent the chaotic system dynamics. To acquire good performance and produce a less conservative analysis result, a new parameter-dependent Lyapunov-Krasovksii functional and a relaxed stabilization technique are considered. The stability conditions based on linear matrix inequality are obtained to achieve the fault tolerant synchronization of the chaotic systems. Finally, a numerical simulation is shown to verify the results.
基金supported by Imperial College London,UK,King’s College London,UK and Engineering and Physical Sciences Research Council(EPSRC),UK.
文摘Reinforcement Learning(RL)based control algorithms can learn the control strategies for nonlinear and uncertain environment during interacting with it.Guided by the rewards generated by environment,a RL agent can learn the control strategy directly in a model-free way instead of investigating the dynamic model of the environment.In the paper,we propose the sampled-data RL control strategy to reduce the computational demand.In the sampled-data control strategy,the whole control system is of a hybrid structure,in which the plant is of continuous structure while the controller(RL agent)adopts a discrete structure.Given that the continuous states of the plant will be the input of the agent,the state–action value function is approximated by the fully connected feed-forward neural networks(FCFFNN).Instead of learning the controller at every step during the interaction with the environment,the learning and acting stages are decoupled to learn the control strategy more effectively through experience replay.In the acting stage,the most effective experience obtained during the interaction with the environment will be stored and during the learning stage,the stored experience will be replayed to customized times,which helps enhance the experience replay process.The effectiveness of proposed approach will be verified by simulation examples.
基金Project supported by the National Natural Science Foundation of China(Grant No.61304064)the Scientific Research Fund of Hunan Provincial Education Department,China(Grant Nos.15B067 and 16C0475)a Discovering Grant from Australian Research Council
文摘This paper is concerned with the synchronization of delayed neural networks via sampled-data control. A new technique, namely, the free-matrix-based time-dependent discontinuous Lyapunov functional approach, is adopted in constructing the Lyapunov functional, which takes advantage of the sampling characteristic of sawtooth input delay. Based on this discontinuous Lyapunov functional, some less conservative synchronization criteria are established to ensure that the slave system is synchronous with the master system. The desired sampled-data controller can be obtained through the use of the linear matrix inequality(LMI) technique. Finally, two numerical examples are provided to demonstrate the effectiveness and the improvements of the proposed methods.
文摘The basic analysis and synthesis approaches for multirate sampled-data control system are reviewed. After giving the definition and some properties of multirate system are given, its origination, development and design methods are discussed in detail. Finally, some remarks, expectations and conclusions on the present research status and the research directions are given.
文摘This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus is placed on the scenario that the dynamical state of the half-vehicle active suspension system is transmitted over an in-vehicle controller area network that only permits the transmission of sampled data packets.For this purpose,a stochastic sampling mechanism is developed such that the sampling periods can randomly switch among different values with certain mathematical probabilities.Then,an asynchronous fuzzy sampled-data controller,featuring distinct premise variables from the active suspension system,is constructed to eliminate the stringent requirement that the sampled-data controller has to share the same grades of membership.Furthermore,novel criteria for both stability analysis and controller design are derived in order to guarantee that the resultant closed-loop active suspension system is stochastically stable with simultaneous𝐻2 and𝐻∞performance requirements.Finally,the effectiveness of the proposed stochastic sampled-data multi-objective control method is verified via several numerical cases studies in both time domain and frequency domain under various road disturbance profiles.
基金National Natural Science Foundation of China(32201491)Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FPEJ-2024-1101-02”.
文摘Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field.
基金supported by the Fundamental Research Funds for Central Public Welfare Research Institute,No.2020CZ-5(to WS and GS)the National Natural Science Foundation of China,No.31970970(to JSR)Fundamental Research Funds for the Central Universities,No.YWF-23-YG-QB-010(to JSR)。
文摘Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these muscles may not effectively engage any of the remaining neurons in the descending pathway.A previous study unexpectedly found that a brief clinical round of passive activity significantly increased volitional muscle activation,as measured by surface electromyography.In this study,we further explored the effect of passive activity on surface electromyographic signals during volitional control tasks among individuals with complete spinal cord injury.Eleven patients with chronic complete thoracic spinal cord injury were recruited.Surface electromyography data from eight major leg muscles were acquired and compared before and after the passive activity protocol.The results indicated that the passive activity led to an increased number of activated volitional muscles and an increased frequency of activation.Although the cumulative root mean square of surface electromyography amplitude for volitional control of movement showed a slight increase after passive activity,the difference was not statistically significant.These findings suggest that brief passive activity may enhance the ability to initiate volitional muscle activity during surface electromyography tasks and underscore the potential of passive activity for improving residual motor control among patients with motor complete spinal cord injury.
基金supported by the Natural Science Foundation of Shandong Province,No.ZR2023MC168the National Natural Science Foundation of China,No.31670989the Key R&D Program of Shandong Province,No.2019GSF107037(all to CS).
文摘Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.
基金supported by the National Natural Science Foundation of China(51705084)the Natural Science Foundation of Guangdong Province of China(2018A030313999,2019A1515011602)+2 种基金the Fundamental Research Funds for the Central Universities(2018MS46,N2003032)the Opening Project of Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing,South China University of Technology(2019kfkt06)the Research Grants of the University of Macao(MYRG2017-00135-FST,MYRG2019-00028-FST)。
文摘This paper proposes a novel sampled-data asynchronous fuzzy output feedback control approach for active suspension systems in restricted frequency domain.In order to better investigate uncertain suspension dynamics,the sampleddata Takagi-Sugeno(T-S)fuzzy half-car active suspension(HCAS)system is considered,which is further modelled as a continuous system with an input delay.Firstly,considering that the fuzzy system and the fuzzy controller cannot share the identical premises due to the existence of input delay,a reconstructed method is employed to synchronize the time scales of membership functions between the fuzzy controller and the fuzzy system.Secondly,since external disturbances often belong to a restricted frequency range,a finite frequency control criterion is presented for control synthesis to reduce conservatism.Thirdly,given a full information of state variables is hardly available in practical suspension systems,a two-stage method is proposed to calculate the static output feedback control gains.Moreover,an iterative algorithm is proposed to compute the optimum solution.Finally,numerical simulations verify the effectiveness of the proposed controllers.
基金Supported by National Natural Science Foundation of China(10671069) the program of Shanghai Priority Academic Discipline
文摘In this article, floating quantization effects on multirate sampled-data control systems are studied. It shows that the solutions of multirate digital feedback control systems with nonlinear plant and with floating quantization in the controller are uniformly ultimately bounded if the associated linear systems consisting of linearization of the plant and controller with no quantization are Schur stable. Moreover, it also shows that the difference between the response of multirate digital controllers without quantizers and the same plant with floating quantization in the controllers can be made as small as desired by selecting proper quantization level.
基金the National Natural Science Foundation of China(No.51579114)the Project of New Century Excellent Talents of Colleges and Universities of Fujian Province(No.JA12181)the Project of Young and Middle-Aged Teacher Education of Fujian Province(No.JAT170309)
文摘A robust H∞sampled-data stabilization problem for nonlinear dynamic positioning(DP) ships with Takagi-Sugeno(T-S) fuzzy models is discussed in this paper. Input delay approach is used to convert the sampleddata DP ship system to a fuzzy system with time-varying delay. Adequate conditions are derived to determine the system's asymptotical stability and achieve H∞performance via Lyapunov stability theorems. Then, the fuzzy sampled-data controller is obtained by analyzing the stabilization condition. Simulation result shows that the proposed method and the designed controller for a DP ship are effective so that the DP ship can maintain the desired position, heading and velocities in the existence of varying environment disturbances.
基金supported by National Natural Science Foundation of China (Nos.61104105,U0735003 and 60974047)Natural Science Foundation of Guangdong Province of China (No.9451009001002702)
文摘For a sampled-data control system with nonuniform sampling, the sampling interval sequence, which is continuously distributed in a given interval, is described as a multiple independent and identically distributed (i.i.d.) process. With this process, the closed-loop system is transformed into an asynchronous dynamical impulsive model with input delays. Sufficient conditions for the closed-loop mean-square exponential stability are presented in terms of linear matrix inequalities (LMIs), in which the relation between the nonuniform sampling and the mean-square exponential stability of the closed-loop system is explicitly established. Based on the stability conditions, the controller design method is given, which is further formulated as a convex optimization problem with LMI constraints. Numerical examples and experiment results are given to show the effectiveness and the advantages of the theoretical results.
基金Supported by the National Natural Science Foundation of China(61672225)。
文摘The stability of sampled-data systems is investigated using a new type of Lyapunov functional.The interval from the sampling point t_(k) to t_(k+1) is assumed to be a sampling interval.By fully utilizing the characteristic information on the whole sampling interval,a new two-sided closed-loop Lyapunov functional is proposed,which utilizes the information on both the intervals from the sampling point t to k_(t) and from t to t_(k+1).Based on the two-sided closed-loop Lyapunov functional and modified free-matrix-based inequality,a less conservative stability criterion is derived for a sampled-data control system,and three numerical examples are provided to verify the effectiveness and reduced conservativeness of the proposed method.Furthermore,the proposed method is applied to solve the stability problem of electric power markets,and the practical significance of reducing the conservativeness is discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61371033 and 51407054)the Foundation for the Author of National Excellent Doctoral Dissertation of China(Grant No.201442)the Fundamental Research Funds for the Central Universities of China(Grant No.2682016CX035)
文摘By analyzing the output voltage ripple of a buck-boost converter with large equivalent series resistance(ESR) of output capacitor, one valley voltage-mode controller for buck-boost converter is proposed. Considering the fact that the increasing and decreasing slopes of the inductor current are assumed to be constant during each switching cycle, an especial sampleddata model of valley voltage-mode controlled buck-boost converter is established. Based on this model, the dynamical effect of an output-capacitor time-constant on the valley voltage-mode controlled buck-boost converter is revealed and analyzed via the bifurcation diagrams, the movements of eigenvalues, the Lyapunov exponent spectra, the boundary equations,and the operating-state regions. It is found that with gradual reduction of output-capacitor time-constant, the buck-boost converter in continuous conduction mode(CCM) shows the evolutive dynamic behavior from period-1 to period-2, period-4, period-8, chaos, and invalid state. The stability boundary and the invalidated boundary are derived theoretically by stability analysis, where the stable state of valley voltage-mode controlled buck-boost converter can enter into an unstable state, and the converter can shift from the operation region to a forbidden region. These results verified by time-domain waveforms and phase portraits of both simulation and experiment indicate that the sampled-data model is correct and the time constant of the output capacitor is a critical factor for valley voltage-mode controlled buck-boost converter, which has a significant effect on the dynamics as well as control stability.
基金Projects(51205253,11272205)supported by the National Natural Science Foundation of ChinaProject(2012AA7052005)supported by the National High Technology Research and Development Program of China
文摘A robust H∞ directional controller for a sampled-data autonomous airship with polytopic parameter uncertainties was proposed. By input delay approach, the linearized airship model was transformed into a continuous-time system with time-varying delay. Sufficient conditions were then established based on the constructed Lyapunov-Krasovskii functional, which guarantee that the system is mean-square exponentially stable with H∞ performance. The desired controller can be obtained by solving the obtained conditions. Simulation results show that guaranteed minimum H∞ performance γ=1.4037 and fast response of attitude for sampled-data autonomous airship are achieved in spite of the existence of parameter uncertainties.
基金the National Natural Science Foundation of China (50209012)Chinese Postdoctoral Science Foundation K.C.Wong Education Foundation,Hong Kong.
文摘The method for controlling chaotic transition system was investigated using sampled- data . The output of chaotic transition system was sampled at a given sampling rate , then the sampled output was used by a feedbacks subsystem to construct a control signal for controlling chaotic transition system to the origin . Numerical simulations are presented to show the effectiveness and feasibility of the developed controller.