This paper illuminates the preparation of grating-like polystyrene latex monolayer structure, which can minimize the effects of the size deviation of spheres and the defect transfer on the accuracy as calibration samp...This paper illuminates the preparation of grating-like polystyrene latex monolayer structure, which can minimize the effects of the size deviation of spheres and the defect transfer on the accuracy as calibration samples for micro-scopes. The latex films are grown on freshly cleaved mica substrates by vertical deposition method. The concentration dependence of the structure and the topography of latex films is characterized by optical microscope, ultraviolet- visible transmission spectrum and scanning probe microscope. The origination of such a grating-like structure is also discussed.展开更多
Scanning Probe Microscopes (SPMs) observe specimen surfaces with probes by detecting the physical amount of a material between the cantilever and the surface. SPMs have a high resolution and can measure mechanical cha...Scanning Probe Microscopes (SPMs) observe specimen surfaces with probes by detecting the physical amount of a material between the cantilever and the surface. SPMs have a high resolution and can measure mechanical characteristics such as stiffness, adsorptive properties, and viscoelasticity. These features make it easy to identify the surface structure of complex materials;therefore, the use of SPMs has increased in recent years. Wood cell walls are primarily composed of cellulose, hemicellulose, and lignin. It is believed that hemicellulose and lignin surround the cellulose framework;however, their detailed formation remains unknown. Therefore, we observed wood cell walls via scanning probe microscopy to try to reveal the formation of the cellulose framework. We determined that the size of the cellulose microfibril bundle and hemicellulose lignin module composite was 18.48 nm based on topography and that the size of the cellulose microfibril bundle was 15.33 nm based on phase images. In the viscoelasticity image, we found that the viscoelasticities of each cell wall of the same cell were not the same. This is because the cellulose microfibrils in each cell wall lean in different directions. The angle between the leaning of the cellulose microfibril and the cantilever affects the viscoelasticity measurement.展开更多
An experimental study on cutting amorphous alloy at nanometer scale is conducted by applying the principle and technology of scanning probe microscope(SPM) It is revealed from the experiments that cutting inside SPM...An experimental study on cutting amorphous alloy at nanometer scale is conducted by applying the principle and technology of scanning probe microscope(SPM) It is revealed from the experiments that cutting inside SPM is an excellent and direct way to research the material removal process at small size Based on the experimental results,the chip formation mechanism for the cutting of amorphous alloy is discussed It is found that the deformation along the direction of chip flow occurs ahead of the appearance of localized shear,and a simplified geometrical model is proposed to illustrate the deformation.展开更多
The surface of a compact disk is analyzed by using SPM and the quantitative micromorphology analysissoftware SPMIAS developed by the author. Images at the same position but with different scanning ranges areobtained ...The surface of a compact disk is analyzed by using SPM and the quantitative micromorphology analysissoftware SPMIAS developed by the author. Images at the same position but with different scanning ranges areobtained under the same experimental conditions. Micromorphology parameters are calculated and compared, andthe relationship between the changing of the scanning range and the changing of micromorphology parameters issummarized.展开更多
The localized micro-galvanic corrosion process and the kinetic information of Mg-(7,9)Al-1Fe-x Nd alloys were investigated by in situ observation under electrochemical control and in situ atomic force microscopy(AFM)i...The localized micro-galvanic corrosion process and the kinetic information of Mg-(7,9)Al-1Fe-x Nd alloys were investigated by in situ observation under electrochemical control and in situ atomic force microscopy(AFM)in an electrolyte environment.The results revealed that the formation of the Nd-rich phase in alloys resulted in a decrease in the Volta potential difference from~400 m V(AlFe3/α-Mg)to~220 mV(Nd-rich/α-Mg),reducing the corrosion products around the cathodic phase and corrosion current density of the microscale area.The addition of Nd significantly improved the corrosion resistance,mainly due to the suppression of the micro-galvanic corrosion between the second phases and substrate.Finally,the corrosion mechanism of Mg-(7,9)Al-1Fe-x Nd alloys was discussed based on in situ observations and electrochemical results.展开更多
Significant progress has been made in mixed boundary-value problems associated with three-dimensional(3D) crack and contact analyses of advanced materials featuring more complexities compared to the conventional iso...Significant progress has been made in mixed boundary-value problems associated with three-dimensional(3D) crack and contact analyses of advanced materials featuring more complexities compared to the conventional isotropic elastic materials.These include material anisotropy and multifield coupling,two typical characteristics of most current multifunctional materials.In this paper we try to present a state-of-the-art description of 3D exact/analytical solutions derived for crack and contact problems of elastic solids with both transverse isotropy and multifield coupling in the latest decade by the potential theory method in the spirit of V.I.Fabrikant.whose ingenious breakthrough brings new vigor and vitality to the old research subject of classical potential theory.We are particularly interested in crack and contact problems with certain nonlinear features.Emphasis is also placed on the coupling between the temperature field(or the like) and other physical fields(e.g.,elastic,electric,and magnetic fields).We further highlight the practical significance of 3D contact solutions,in particular in applications related to modern scanning probe microscopes.展开更多
As the bridge between basic principles and applications of nanotechnology,nanofabrication methods play significant role in supporting the development of nanoscale science and engineering,which is changing and improvin...As the bridge between basic principles and applications of nanotechnology,nanofabrication methods play significant role in supporting the development of nanoscale science and engineering,which is changing and improving the production and lifestyle of the human.Photo lithography and other alternative technologies,such as nanoimprinting,electron beam lithography,focused ion beam cutting,and scanning probe lithography,have brought great progress of semiconductor industry,IC manufacturing and micro/nanoelectromechanical system(MEMS/NEMS)devices.However,there remains a lot of challenges,relating to the resolution,cost,speed,and so on,in realizing high-quality products with further development of nanotechnology.None of the existing techniques can satisfy all the needs in nanoscience and nanotechnology at the same time,and it is essential to explore new nanofabrication methods.As a newly developed scanning probe microscope(SPM)-based lithography,friction-induced nanofabrication provides opportunities for maskless,flexible,low-damage,low-cost and environment-friendly processing on a wide variety of materials,including silicon,quartz,glass surfaces,and so on.It has been proved that this fabrication route provides with a broad application prospect in the fabrication of nanoimprint templates,microfluidic devices,and micro/nano optical structures.This paper hereby involved the principals and operations of friction-induced nanofabrication,including friction-induced selective etching,and the applications were reviewed as well for looking ahead at opportunities and challenges with nanotechnology development.The present review will not only enrich the knowledge in nanotribology,but also plays a positive role in promoting SPM-based nanofabrication.展开更多
The purpose of this article is to reduce the barrier of developing a house made scanning probe microscope (SPM). Here in this paper, we cover all the details of programming an SPM controller with LabVIEW. The main c...The purpose of this article is to reduce the barrier of developing a house made scanning probe microscope (SPM). Here in this paper, we cover all the details of programming an SPM controller with LabVIEW. The main controller has three major sequential portions. They are system initialization portion, scan control and image display portion and system shutdown portion. The most complicated and essential part of the main controller is the scan control and image display portion, which is achieved with various parallel tasks. These tasks are scan area and image size adjusting module, Y axis scan control module, X axis scan and image transferring module, parameters readjusting module, emergency shutdown module, etc. A NI7831R FPGA board is used to output the control signals and utilize the Z-axis real time feedback controls. The system emergency shutdown is also carried out by the FPGA module. Receiving the shutdown command from the main controller, the FPGA board will move the probe to its XYZ zero position, turn off all the high voltage control signals and also eliminate the possible oscillations in the system. Finally, how to operate the controller is also briefly introduced. That messy wires fly back and forth is the main drawback of LabVIEW programming. Especially when the program is complicated, this problem becomes more serious. We use a real example to show how to achieve complex functionalities with structural programming and parallel multi task programming. The actual code showed in this paper is clear, intuitive and simple. Following the examples showed in this paper, readers are able to develop simple LabVIEW programs to achieve complex functionalities.展开更多
A scanning probe microscope(SPM)stage controlled by three stepper motors is designed,which has more flexibilitiesthan that of one motor controlled stage,while the control whom is more complicated.In this project,we bu...A scanning probe microscope(SPM)stage controlled by three stepper motors is designed,which has more flexibilitiesthan that of one motor controlled stage,while the control whom is more complicated.In this project,we build the stageactions in an Arduino microcontroller,and finite state machine(FSM)is also built in the Arduino micro controller to communicatewith a computer and a radio frequency(RF)controller.A special displaying scheme with five states is employed to indicatethe operation of the stage.Finally,the stage is fully tested and has a700nm resolution in Z motion of the SPM.展开更多
Hydrogen-bonded molecules and their dynamics are significantly important in chemistry and biology due to their widespread functionality.Besides their natural abundance and diversity,applications of molecules with dyna...Hydrogen-bonded molecules and their dynamics are significantly important in chemistry and biology due to their widespread functionality.Besides their natural abundance and diversity,applications of molecules with dynamic conformations in artificial networks allow information storage and molecular motor design on the nanometer scale.Here,we report hydrogen-bonded molecular networks with tunable helical conformation on metal surfaces.The dynamics of helical conformation in two-dimensional hydrogenbond networks are triggered and resolved by scanning probe microscopy at the single-molecule level.In combinationwith theoretical calculations,the surfacespecific hydrogen bonds are identified as the origin of the dynamic helical conformation.Our results provide a distinctive access to molecular architecture with tunable helical conformation driven by hydrogenbond interaction on surfaces.展开更多
基金supported by Science and Technology Commission of Shanghai Municipality (Grant No 0652NM028)Shanghai Leading Academic Discipline Project of China (B113)the International Research Training Group (IRTG)
文摘This paper illuminates the preparation of grating-like polystyrene latex monolayer structure, which can minimize the effects of the size deviation of spheres and the defect transfer on the accuracy as calibration samples for micro-scopes. The latex films are grown on freshly cleaved mica substrates by vertical deposition method. The concentration dependence of the structure and the topography of latex films is characterized by optical microscope, ultraviolet- visible transmission spectrum and scanning probe microscope. The origination of such a grating-like structure is also discussed.
文摘Scanning Probe Microscopes (SPMs) observe specimen surfaces with probes by detecting the physical amount of a material between the cantilever and the surface. SPMs have a high resolution and can measure mechanical characteristics such as stiffness, adsorptive properties, and viscoelasticity. These features make it easy to identify the surface structure of complex materials;therefore, the use of SPMs has increased in recent years. Wood cell walls are primarily composed of cellulose, hemicellulose, and lignin. It is believed that hemicellulose and lignin surround the cellulose framework;however, their detailed formation remains unknown. Therefore, we observed wood cell walls via scanning probe microscopy to try to reveal the formation of the cellulose framework. We determined that the size of the cellulose microfibril bundle and hemicellulose lignin module composite was 18.48 nm based on topography and that the size of the cellulose microfibril bundle was 15.33 nm based on phase images. In the viscoelasticity image, we found that the viscoelasticities of each cell wall of the same cell were not the same. This is because the cellulose microfibrils in each cell wall lean in different directions. The angle between the leaning of the cellulose microfibril and the cantilever affects the viscoelasticity measurement.
基金This project is supported by Foundation of National Education Ministry for Returned Overseas Chinese Scholars(No.2000367) an
文摘An experimental study on cutting amorphous alloy at nanometer scale is conducted by applying the principle and technology of scanning probe microscope(SPM) It is revealed from the experiments that cutting inside SPM is an excellent and direct way to research the material removal process at small size Based on the experimental results,the chip formation mechanism for the cutting of amorphous alloy is discussed It is found that the deformation along the direction of chip flow occurs ahead of the appearance of localized shear,and a simplified geometrical model is proposed to illustrate the deformation.
文摘The surface of a compact disk is analyzed by using SPM and the quantitative micromorphology analysissoftware SPMIAS developed by the author. Images at the same position but with different scanning ranges areobtained under the same experimental conditions. Micromorphology parameters are calculated and compared, andthe relationship between the changing of the scanning range and the changing of micromorphology parameters issummarized.
基金financial support from the National Natural Science Foundation of China(No.51961026)。
文摘The localized micro-galvanic corrosion process and the kinetic information of Mg-(7,9)Al-1Fe-x Nd alloys were investigated by in situ observation under electrochemical control and in situ atomic force microscopy(AFM)in an electrolyte environment.The results revealed that the formation of the Nd-rich phase in alloys resulted in a decrease in the Volta potential difference from~400 m V(AlFe3/α-Mg)to~220 mV(Nd-rich/α-Mg),reducing the corrosion products around the cathodic phase and corrosion current density of the microscale area.The addition of Nd significantly improved the corrosion resistance,mainly due to the suppression of the micro-galvanic corrosion between the second phases and substrate.Finally,the corrosion mechanism of Mg-(7,9)Al-1Fe-x Nd alloys was discussed based on in situ observations and electrochemical results.
基金supported by the National Natural Science Foundation of China(Grant 11321202)the Specialized Research Fund for the Doctoral Program of Higher Education(Grant 20130101110120)
文摘Significant progress has been made in mixed boundary-value problems associated with three-dimensional(3D) crack and contact analyses of advanced materials featuring more complexities compared to the conventional isotropic elastic materials.These include material anisotropy and multifield coupling,two typical characteristics of most current multifunctional materials.In this paper we try to present a state-of-the-art description of 3D exact/analytical solutions derived for crack and contact problems of elastic solids with both transverse isotropy and multifield coupling in the latest decade by the potential theory method in the spirit of V.I.Fabrikant.whose ingenious breakthrough brings new vigor and vitality to the old research subject of classical potential theory.We are particularly interested in crack and contact problems with certain nonlinear features.Emphasis is also placed on the coupling between the temperature field(or the like) and other physical fields(e.g.,elastic,electric,and magnetic fields).We further highlight the practical significance of 3D contact solutions,in particular in applications related to modern scanning probe microscopes.
基金Supported by National Natural Science Foundation of China(Grant Nos.51775462,51991373).
文摘As the bridge between basic principles and applications of nanotechnology,nanofabrication methods play significant role in supporting the development of nanoscale science and engineering,which is changing and improving the production and lifestyle of the human.Photo lithography and other alternative technologies,such as nanoimprinting,electron beam lithography,focused ion beam cutting,and scanning probe lithography,have brought great progress of semiconductor industry,IC manufacturing and micro/nanoelectromechanical system(MEMS/NEMS)devices.However,there remains a lot of challenges,relating to the resolution,cost,speed,and so on,in realizing high-quality products with further development of nanotechnology.None of the existing techniques can satisfy all the needs in nanoscience and nanotechnology at the same time,and it is essential to explore new nanofabrication methods.As a newly developed scanning probe microscope(SPM)-based lithography,friction-induced nanofabrication provides opportunities for maskless,flexible,low-damage,low-cost and environment-friendly processing on a wide variety of materials,including silicon,quartz,glass surfaces,and so on.It has been proved that this fabrication route provides with a broad application prospect in the fabrication of nanoimprint templates,microfluidic devices,and micro/nano optical structures.This paper hereby involved the principals and operations of friction-induced nanofabrication,including friction-induced selective etching,and the applications were reviewed as well for looking ahead at opportunities and challenges with nanotechnology development.The present review will not only enrich the knowledge in nanotribology,but also plays a positive role in promoting SPM-based nanofabrication.
文摘The purpose of this article is to reduce the barrier of developing a house made scanning probe microscope (SPM). Here in this paper, we cover all the details of programming an SPM controller with LabVIEW. The main controller has three major sequential portions. They are system initialization portion, scan control and image display portion and system shutdown portion. The most complicated and essential part of the main controller is the scan control and image display portion, which is achieved with various parallel tasks. These tasks are scan area and image size adjusting module, Y axis scan control module, X axis scan and image transferring module, parameters readjusting module, emergency shutdown module, etc. A NI7831R FPGA board is used to output the control signals and utilize the Z-axis real time feedback controls. The system emergency shutdown is also carried out by the FPGA module. Receiving the shutdown command from the main controller, the FPGA board will move the probe to its XYZ zero position, turn off all the high voltage control signals and also eliminate the possible oscillations in the system. Finally, how to operate the controller is also briefly introduced. That messy wires fly back and forth is the main drawback of LabVIEW programming. Especially when the program is complicated, this problem becomes more serious. We use a real example to show how to achieve complex functionalities with structural programming and parallel multi task programming. The actual code showed in this paper is clear, intuitive and simple. Following the examples showed in this paper, readers are able to develop simple LabVIEW programs to achieve complex functionalities.
文摘A scanning probe microscope(SPM)stage controlled by three stepper motors is designed,which has more flexibilitiesthan that of one motor controlled stage,while the control whom is more complicated.In this project,we build the stageactions in an Arduino microcontroller,and finite state machine(FSM)is also built in the Arduino micro controller to communicatewith a computer and a radio frequency(RF)controller.A special displaying scheme with five states is employed to indicatethe operation of the stage.Finally,the stage is fully tested and has a700nm resolution in Z motion of the SPM.
基金the financial support from the Science and Technology Commission of Shanghai Municipality(no.20ZR1436900)ShanghaiTech start-up funding.
文摘Hydrogen-bonded molecules and their dynamics are significantly important in chemistry and biology due to their widespread functionality.Besides their natural abundance and diversity,applications of molecules with dynamic conformations in artificial networks allow information storage and molecular motor design on the nanometer scale.Here,we report hydrogen-bonded molecular networks with tunable helical conformation on metal surfaces.The dynamics of helical conformation in two-dimensional hydrogenbond networks are triggered and resolved by scanning probe microscopy at the single-molecule level.In combinationwith theoretical calculations,the surfacespecific hydrogen bonds are identified as the origin of the dynamic helical conformation.Our results provide a distinctive access to molecular architecture with tunable helical conformation driven by hydrogenbond interaction on surfaces.