A 3D model applying temperature-and carbon concentration-dependent material properties was developed to describe the scrap melting behavior and carbon diffusion under natural convection.Simulated results agreed reason...A 3D model applying temperature-and carbon concentration-dependent material properties was developed to describe the scrap melting behavior and carbon diffusion under natural convection.Simulated results agreed reasonably well with experimental ones.Scrap melting was subdivided into four stages:formation of a solidified layer,rapid melting of the solidified layer,carburization,and carburization+normal melting.The carburization stage could not be ignored at low temperature because the carburization time for the sample investigated was 214 s at 1573 K compared to 12 s at 1723 K.The thickness of the boundary layer with significant concentration difference at 1573 K increased from 130μm at 5 s to 140μm at 60 s.The maximum velocity caused by natural convection decreased from 0.029 m·s^(−1)at 5 s to 0.009 m·s^(−1)at 634 s because the differences in temperature and density between the molten metal and scrap decreased with time.展开更多
Investigation on the coal-oxygen scrap melting process shows that using internal-combustion coal-oxygen burner to melt scrap is feasible. Among four types of coal-oxygen furnaces-oxygen burner melting furnace is bette...Investigation on the coal-oxygen scrap melting process shows that using internal-combustion coal-oxygen burner to melt scrap is feasible. Among four types of coal-oxygen furnaces-oxygen burner melting furnace is better than other types on the quotas of process. The metal yield is 95%~97%, the melt down carbon and sulphur contents are >1.0% and <0.080% respectively for this melting furnace. The coal-oxygen scrap melting process would have a significant effect on the technological transformation of EAF and BOF in China.展开更多
Herein,a numerical simulation with simultaneous heat and mass transfers is carried out to investigate the scrap melting characteristics in molten steel after model verification by published experimental data.The numer...Herein,a numerical simulation with simultaneous heat and mass transfers is carried out to investigate the scrap melting characteristics in molten steel after model verification by published experimental data.The numerical results show that the scrap melting stages consist of the frozen shell formation stage,the frozen shell remelting stage and the parent scrap melting stage.The heat transfer coefficient and the carbon mass transfer coefficient between the scrap and the molten steel are,respectively,in the range of 4209-6249 W m^(-2) K^(-1) and 6.4×10^(-5) m s^(-1).Meanwhile,the effects of process parameters on scrap melting time were studied.An increase in the scrap preheating temperature(T_(scrap)),the molten steel temperature(T_(steel))and the carbon content of molten steel(C_(steel)),and a decrease in the scrap thickness dscrap,can reduce the frozen shell existence time,as well as the scrap melting time.On this basis,a quantitative relationship between the aforementioned process parameters and the scrap melting time is obtained to predict the formation of frozen shell(W),which provides process guidance for shortening the scrap melting time.The quantitative relationship is expressed as:lnΨ=311.32-2.34ln(T_(scrap))-39.99ln(T_(steel))-0.08ln(d_(scrap))-0.57ln(C_(steel)).展开更多
基金the National Key R&D Program of China(No.2019YFC1905701)the National Natural Science Foundation of China(Nos.51674022,51734003)the Key projects of NSFC(No.U1960201).
文摘A 3D model applying temperature-and carbon concentration-dependent material properties was developed to describe the scrap melting behavior and carbon diffusion under natural convection.Simulated results agreed reasonably well with experimental ones.Scrap melting was subdivided into four stages:formation of a solidified layer,rapid melting of the solidified layer,carburization,and carburization+normal melting.The carburization stage could not be ignored at low temperature because the carburization time for the sample investigated was 214 s at 1573 K compared to 12 s at 1723 K.The thickness of the boundary layer with significant concentration difference at 1573 K increased from 130μm at 5 s to 140μm at 60 s.The maximum velocity caused by natural convection decreased from 0.029 m·s^(−1)at 5 s to 0.009 m·s^(−1)at 634 s because the differences in temperature and density between the molten metal and scrap decreased with time.
文摘Investigation on the coal-oxygen scrap melting process shows that using internal-combustion coal-oxygen burner to melt scrap is feasible. Among four types of coal-oxygen furnaces-oxygen burner melting furnace is better than other types on the quotas of process. The metal yield is 95%~97%, the melt down carbon and sulphur contents are >1.0% and <0.080% respectively for this melting furnace. The coal-oxygen scrap melting process would have a significant effect on the technological transformation of EAF and BOF in China.
基金funded by the National Key R&D Program of China(Grant No.2017YFB0304205)Fundamental Research Funds for the Central Universities(Grant No.N2225046).
文摘Herein,a numerical simulation with simultaneous heat and mass transfers is carried out to investigate the scrap melting characteristics in molten steel after model verification by published experimental data.The numerical results show that the scrap melting stages consist of the frozen shell formation stage,the frozen shell remelting stage and the parent scrap melting stage.The heat transfer coefficient and the carbon mass transfer coefficient between the scrap and the molten steel are,respectively,in the range of 4209-6249 W m^(-2) K^(-1) and 6.4×10^(-5) m s^(-1).Meanwhile,the effects of process parameters on scrap melting time were studied.An increase in the scrap preheating temperature(T_(scrap)),the molten steel temperature(T_(steel))and the carbon content of molten steel(C_(steel)),and a decrease in the scrap thickness dscrap,can reduce the frozen shell existence time,as well as the scrap melting time.On this basis,a quantitative relationship between the aforementioned process parameters and the scrap melting time is obtained to predict the formation of frozen shell(W),which provides process guidance for shortening the scrap melting time.The quantitative relationship is expressed as:lnΨ=311.32-2.34ln(T_(scrap))-39.99ln(T_(steel))-0.08ln(d_(scrap))-0.57ln(C_(steel)).