The vibration characteristics and attenuation of the subgrade caused by passing trains in a seasonally frozen region of Daqing, China are investigated. Three field experiments were conducted during different times thr...The vibration characteristics and attenuation of the subgrade caused by passing trains in a seasonally frozen region of Daqing, China are investigated. Three field experiments were conducted during different times through the year, in normal, freezing and thawing periods, respectively, and the influence of the season, train speed and train type, is described in this paper. The results show that: (1) the vertical component is the greatest among the three components of the measured vibration near the rail track, and as the distance to the railway track increases, the dominant vibration depends on the season. (2) Compared with the vibration in the normal period, the vertical and longitudinal vibrations increase while the lateral vibration decreases in the freezing period. However, in the thawing period, the vertical and longitudinal vibrations decrease, and the lateral vibration increases. (3) As train speeds increase, the subgrade vibration increases. (4) The vibration induced by a freight train is greater than by a passenger train. These observations provide a better understanding of the vibration and dynamic stability of the subgrade and may be useful in developing criteria for railway and building construction in cold regions.展开更多
To investigate the vibration characteristics of a railway subgrade in different seasons, three field experiments were carried out in the seasonally frozen Daqing area of China during spring, smnmer, and winter. The vi...To investigate the vibration characteristics of a railway subgrade in different seasons, three field experiments were carried out in the seasonally frozen Daqing area of China during spring, smnmer, and winter. The vibration characteristics and attenuation rates of the subgrade induced by passing trains were investigated, and the influences of the season, train speed, train type, train load, and number of train compartments are described in this paper. The results show that: (1) near the rail track the vibration in the vertical direction was more significant than in the lateral and longitudinal directions, and as the distance from the railway track increased, the acceleration amplitudes and the attenuation rates all decreased in all three directions; (2) the acceleration amplitudes and at- tenuation rates decreased in the three different study seasons as the distance from the railway track increased, and the attenuation rates in the freezing period were the largest; and (3) the acceleration amplitude induced by a freight train was greater than that by a passenger train, and the subgrade vibration increased with increasing passenger train speeds when the number of train compart- ments was similar. These results have great significance for enhanced understanding of the characteristics of wain-induced vibra- tion embankment response in seasonally frozen regions, and provide essential field monitoring data on train-induced vibrations in order to improve the performance criteria of railroading in seasonally frozen regions.展开更多
Regarding the freezing damage of high-grade highway subgrade in seasonally frozen area,the thesis explores the effect on the dynamic behavior of subgrade soil under freeze–thaw cycles and draws the change law of para...Regarding the freezing damage of high-grade highway subgrade in seasonally frozen area,the thesis explores the effect on the dynamic behavior of subgrade soil under freeze–thaw cycles and draws the change law of parameters(including dynamic strength,dynamic cohesion,and internal friction angle;and dynamic elastic modulus)of high-grade highway-subgrade soil with the number of freeze–thaw cycles.It aims to provide the reference for operation and maintenance of a high-grade highway.Conclusions:(1)Dynamic strength tends to decline evidently after freeze–thaw cycles,with 60%~70%decline after three cycles,and remains stable after five to seven cycles.(2)With the number of freeze–thaw cycles increasing,the internal friction angle fluctuates within a certain range without an obvious change law,only presenting the tendency of dropping off.The dynamic cohesion declines obviously,about 20%~40%after seven freeze–thaw cycles,and then tends to be stable.(3)With the number of freeze-thaw cycles increasing,the dynamic elastic modulus and maximum dynamic elastic modulus are inclined to decrease distinctly.After five freeze–thaw cycles,the former declines 30%~40%and then remains stable.Meanwhile,the latter falls 20%~40%.展开更多
Background:Global modeling of carbon storage and sequestration often mischaracterizes unique ecosystems such as the seasonally dry tropical forest of the central region of the Gulf of Mexico,because species diversity ...Background:Global modeling of carbon storage and sequestration often mischaracterizes unique ecosystems such as the seasonally dry tropical forest of the central region of the Gulf of Mexico,because species diversity is usually underestimated,as is their carbon content.In this study,aboveground and soil carbon stocks were estimated to determine the climate mitigation potential of this highly degraded landscape(<25%of forest cover).Results:Tree species in the study area had carbon content values that were 30%–40%higher than the standard value proposed by the IPCC(i.e.,50%).Tropical oak forest in the region,despite its restricted distribution and low species richness,accounted for the highest mean carbon stocks per unit area.The main factors driving spatial variability in carbon stocks were:maximum precipitation,soil organic matter,clay and silt content.No strong relationship was found between aboveground carbon stocks and soil organic carbon in the study area.Quanti-fication of carbon stocks is an important consideration in the assessment of the conservation value of remnants of native vegetation in human-modified landscapes.Conclusions:This study demonstrates the importance of the highly fragmented tropical dry regions of the Neo-tropics in maintaining landscape functionality and providing key ecosystem services such as carbon sequestration.Our results also highlight how crucial field-based studies are for strengthening the accuracy of global models.Furthermore,this approach reveals the real contribution of ecosystems that are not commonly taken into account in the mitigation of climate change effects.展开更多
Adopting the quasi-three-dimensional (Quasi-3D) numerical method to optimize the anti-freeze design parameters of an underground pipeline usually involves heavy numerical calculations. Here, the fitting formulae bet...Adopting the quasi-three-dimensional (Quasi-3D) numerical method to optimize the anti-freeze design parameters of an underground pipeline usually involves heavy numerical calculations. Here, the fitting formulae between the safe con-veyance distance (SCD) of a water pipeline and six influencing factors are established based on the lowest water temper-ature (LWT) along the pipeline axis direction. With reference to the current widely used anti-freeze design approaches for underground pipelines in seasonally frozen areas, this paper first analyzes the feasibility of applying the maximum frozen penetration (MFP) instead of the mean annual ground surface temperature (MAGST) and soil water content (SWC) to calculate the SCD. The results show that the SCD depends on the buried depth if the MFP is fixed and the variation of the MAGST and SWC combination does not significantly change the SCD. A comprehensive formula for the SCD is estab-lished based on the relationships between the SCD and several primary influencing factors and the interaction among them. This formula involves five easy-to-access parameters: the MFP, buried depth, pipeline diameter, flow velocity, and inlet water temperature. A comparison between the analytical method and the numerical results based on the Quasi-3D method indicates that the two methods are in good agreement overall. The analytic method can be used to optimize the anti-freeze design parameters of underground water pipelines in seasonally frozen areas under the condition of a 1.5 safety coefficient.展开更多
Frozen ground is significantly stiffer than unfrozen ground. For bridges supported on deep foundations, bridge stiffness is also measurably higher in winter months. Significant changes due to seasonal freezing in brid...Frozen ground is significantly stiffer than unfrozen ground. For bridges supported on deep foundations, bridge stiffness is also measurably higher in winter months. Significant changes due to seasonal freezing in bridge pier boundary conditions require addi- tional detailing in order to ensure a ductile performance of the bridge during a design earthquake event. This paper reports the lat- est results obtained from a project that systematically investigated the effects of seasonally frozen soil on the seismic behavior of highway bridges in cold regions. A bridge was chosen and was monitored to study its seismic performance and assess the impact of seasonally frozen soil on its dynamic properties. A Finite Element (FE) model was created for this bridge to analyze the impact of seasonal frost. It was found that when frost depth reaches 1.2 m, the first transverse modal frequency increases about 200% when compared with the no-frost case. The results show that seasonal frost has a significant impact on the overall dynamic be- havior of bridges supported by pile foundations in cold regions, and that these effects should be accounted for in seismic design.展开更多
The distribution of many plant species has been shaped by climate changes,and their current phenotypic and genetic variability refect microclimatically suitable habitats.This study relates contemporary climate to vari...The distribution of many plant species has been shaped by climate changes,and their current phenotypic and genetic variability refect microclimatically suitable habitats.This study relates contemporary climate to variability patterns of phenotypic traits and molecular markers in the Argentinean distribution of Anadenanthera colubrina var.cebil,as well as to identify the most relevant phenotypic trait or molecular marker associated with those patterns.Individuals from four populations in both biogeographic provinces,Paranaense and Yungas,were investigated.Multivariate analyses and multiple linear regressions were carried out to determine relationships among phenotypic traits and nuclear microsatellites,respectively,to climatic variables,and to identify the phenotypic traits as well as nuclear microsatellite loci most sensitive to climate.Two and three clusters of individuals were detected based on genetic and phenotypic data,respectively.Only clusters based on genetic data refected the biogeographic origin of individuals.Reproductive traits were the most relevant indicators of climatic effects.One microsatellite locus Ac41.1 appeared to be non-neutral presenting a strong correlation with climate variable temperature seasonality.Our findings show complex patterns of genetic and phenotypic variability in the Argentinean distribution of A.colubrina var.cebil related to the present or contemporary climate,and provides an example for an integrative approach to better understand climate impact on contemporary genetic and phenotypic variability in light of global climate change.展开更多
Seasonally frozen soil in alpine and subalpine zones in the mountains of Qinghai-Tibetan Plateau is particularly sensitive to global climate change. Therefore, a better understanding of the thermal properties of froze...Seasonally frozen soil in alpine and subalpine zones in the mountains of Qinghai-Tibetan Plateau is particularly sensitive to global climate change. Therefore, a better understanding of the thermal properties of frozen soil is crucial for predicting the responses of frozen soils to soil warming. In this study, thermal properties of frozen soil with different moisture contents under subzero temperature (0°C - 20°C) in an alpine forest in western Sichuan were analyzed by KD<sub>2</sub> Pro in its cooling and heating processes, respectively. Our results reveal that the soil apparent volumetric specific heat capacity (C<sub>v</sub>) and apparent thermal conductivity (K) under the same water content show similar response patterns to changing temperature lower than -2°C in both heating and cooling processes. Moreover, ice content of frozen soils can be well predicted by Logistic model in cooling and heating processes. The C<sub>v</sub> and K tend to increase along with increasing soil moisture contents. Remarkably, asymptotic characters of the value of C<sub>v</sub> and K are at the vicinity of the initial temperature of phase transitions, indicating that both C<sub>v</sub> and K are particularly sensitive to changing soil temperature at the range of -2°C to 0°C. Therefore, the widely distributed frozen soil layers with temperature above -2°C in alpine and subalpine zones over Qinghai-Tibetan Plateau are susceptible to the observed climate warming during cold season.展开更多
In the light of the national policy of fallow, this study was conducted to determine how the different water management and lime application would affect soil physical and chemical properties, rice yield and cadmium ...In the light of the national policy of fallow, this study was conducted to determine how the different water management and lime application would affect soil physical and chemical properties, rice yield and cadmium (Cd) content of rice in fallow season. The results showed that, compared with the arid fallow, the waterlogging fallow decreased the soil pH value whereas signifcantly increased the soil organic matter content and the cation exchange quantity, and reduced the soil effective cadmium content and the rice cadmium content whereas could increase the rice yield to a certain extent. In the fooded fallow or the dry fallow, the application of lime mainly depended on the alkali conditioning of lime and the antagonistic effect of Ca2+, which could signifcantly reduce the cadmium content of rice, and its effect would increase linearly with the increase of lime dosage, whereas had no significant effect on soil organic matter content and cation exchange quantity. In order to establish a linear equation of lime dosage and related indexes under the condition of waterlogging fallow or dry fallow, calculations showed that each application of lime at 1 000 kg/hm2 or kg/hmss2 could improve soil pH value by 0.238 2 or 0.246 5units respectively, and reduce the effective Cd content to 0.007 5 mg/kg both in the arid fallow and the waterlogging fallow conditions. The lime theoretic application rate for the lowest Cd content of late rice in the arid fallow was 5 120 kg/hm2, and the minimum limit of the Cd content in rice was 0.124 2 mg/kg; and the lime theoretic application rate for the highest yield of late rice in the submerged water fallow was 4 636 kg/hm2, the minimum theoretic Cd content in rice is 0.100 7 mg/kg, and it could reduce the Cd content in rice under the condition of submerged fallow and decrease the dosage of lime.展开更多
In this study, in-situ testing results are given, and the analytical relationship of the vibrations' amplitudes inside an em- bankment by the thawing of the subgrade surface of seasonably deep frozen soils is provide...In this study, in-situ testing results are given, and the analytical relationship of the vibrations' amplitudes inside an em- bankment by the thawing of the subgrade surface of seasonably deep frozen soils is provided. The peculiarities of the vi- bration waves' propagation during the springtime thawing of soils compared to those during the summertime period and the correlation of the vibrations with the under-rail basement moduln~ nf ala^tieitv nro dofinod展开更多
Recent studies have revealed that the predominant tidal constituents have seasonal variations at some locations.However,how to accurately obtain these variations remains a problem for the traditional harmonic analysis...Recent studies have revealed that the predominant tidal constituents have seasonal variations at some locations.However,how to accurately obtain these variations remains a problem for the traditional harmonic analysis(HA)due to the tradeoff between length of time window and resolution of constituents.Therefore,a method named as"two-step HA"is developed in this study,which consists of both long-and short-time-window HA.Through a series of ideal experiments,practical application at two tidal gauges and comparison with the traditional HA,the feasibility and accuracy of the two-step HA are verified:The two-step HA performs better than the traditional HA in estimating monthly amplitudes and phases for the predominant constituents,whether they have seasonal variability or not.In addition to capturing variations of the predominant constituents at tidal gauges,the two-step HA would be useful in investigation of the coherence and incoherence of internal tides.展开更多
[Objective] This study aimed to examine indicative roles of texture representing soil organic carbon presence and variability subsequent to cultivation under cold temperate climates with seasonal freeze-thaw events. [...[Objective] This study aimed to examine indicative roles of texture representing soil organic carbon presence and variability subsequent to cultivation under cold temperate climates with seasonal freeze-thaw events. [Method] Three chronosequences were selected for paired comparisons. Soil samples were collected at six depths with a 10 cm increment. Analysis of variance with general linear model and regression was performed for statistical analysis. [Result] In seasonally frozen soils where fragmentation of macroaggregates was stimulated, soil organic carbon level was positively associated with clay + silt proportion due to a wider textural range, better than sole clay content. Exponential function better fitted the experimental data to present progressively increased effectiveness of clay + silt content in maintaining carbon. Clay content explained 12%-41% and 14%-43% of variation via linear and exponential functions, respectively. Accordingly, clay + silt content explained 47%-65% and 46%-70%. [Conclusion] Texture reflected soil organic carbon occurrence as consequences of reclamation. For seasonally frozen soils with wider textural ranges, it is robust to adapt clay + silt content as dependent variable and exponential function. The generated algorithms provided an available pathway to estimate soil organic carbon losses following cultivation and to evaluate soil fertility.展开更多
Aims Seasonally tropical dry forests of the Yucatan Peninsula are typically found in sites with nutrient-poor soils because of the recent geologi-cal origin of the region.The landscape is dominated by extensive karsti...Aims Seasonally tropical dry forests of the Yucatan Peninsula are typically found in sites with nutrient-poor soils because of the recent geologi-cal origin of the region.The landscape is dominated by extensive karstic plates that shape environments where vegetation regenera-tion through seed germination may be limited by the availability of suitable microsites.In this study,we documented the survival and growth of seedlings from three dominant tree species(Bursera simaruba,Piscidia piscipula and Lysiloma latisiliquum)in seasonally tropical dry forests in Yucatan.Specifically,we evaluated the effect of nutrient addition(N and P,separately and in combination)on seedling survival and growth across three sites with differing levels of precipitation.Methods We conducted a nutrient addition experiment,whereby we estab-lished 12 plots of dimensions 10×10 m(100 m^(2))at each site,from which three plots were randomly selected to receive one of four treatments:N addition,P addition,N and P addition and no nutri-ent addition(controls).Prior to treatment application,in each plot,we planted 10 seedlings of each species in October 2010 and sub-sequently conducted surveys of plant growth and survival every 20 days from November 2010 to April 2011.Important Findings Overall,nutrient addition increased seedling survival and the mag-nitude of this effect was similar among sites.We did not observe an additive effect of the N+P treatment on survival.Similarly,we observed a positive effect of nutrient addition on seedling growth,but this effect was contingent upon site;regarding survival,the effects of N and P on seedling growth were not additive.These results suggest that seedling recruitment and growth in the three dominant species of trees in Yucatan are limited by nutrient avail-ability but that the magnitude of this effect,particularly on seedling growth,is specific for species and site.展开更多
In the boreal summer and autumn of 2023,the globe experienced an extremely hot period across both oceans and continents.The consecutive record-breaking mean surface temperature has caused many to speculate upon how th...In the boreal summer and autumn of 2023,the globe experienced an extremely hot period across both oceans and continents.The consecutive record-breaking mean surface temperature has caused many to speculate upon how the global temperature will evolve in the coming 2023/24 boreal winter.In this report,as shown in the multi-model ensemble mean(MME)prediction released by the Institute of Atmospheric Physics at the Chinese Academy of Sciences,a medium-to-strong eastern Pacific El Niño event will reach its mature phase in the following 2−3 months,which tends to excite an anomalous anticyclone over the western North Pacific and the Pacific-North American teleconnection,thus serving to modulate the winter climate in East Asia and North America.Despite some uncertainty due to unpredictable internal atmospheric variability,the global mean surface temperature(GMST)in the 2023/24 winter will likely be the warmest in recorded history as a consequence of both the El Niño event and the long-term global warming trend.Specifically,the middle and low latitudes of Eurasia are expected to experience an anomalously warm winter,and the surface air temperature anomaly in China will likely exceed 2.4 standard deviations above climatology and subsequently be recorded as the warmest winter since 1991.Moreover,the necessary early warnings are still reliable in the timely updated mediumterm numerical weather forecasts and sub-seasonal-to-seasonal prediction.展开更多
在当今世界文化交流愈发频繁的背景下,推动中华文明走向世界成为重中之重。翻译作为推动跨文化交流的重要手段之一,是连接不同文化的桥梁。而文化负载词由于其涵盖的大量民族特色词汇,成为翻译过程中的挑战,同时也是文化传播的重要工具...在当今世界文化交流愈发频繁的背景下,推动中华文明走向世界成为重中之重。翻译作为推动跨文化交流的重要手段之一,是连接不同文化的桥梁。而文化负载词由于其涵盖的大量民族特色词汇,成为翻译过程中的挑战,同时也是文化传播的重要工具。文章基于目的论视角,以纪录片Seasons of China中的中文文化负载词英译为例,探讨译者在翻译过程中采取的恰当翻译方法,以期为纪录片的文化负载词翻译研究提供一定的借鉴与参考。展开更多
In many songbird species,birdsong features phonological syntax,meaning that the units within their vocal se-quences are ordered in a non-random way that adheres to a rule.While such syntactical patterns have been rich...In many songbird species,birdsong features phonological syntax,meaning that the units within their vocal se-quences are ordered in a non-random way that adheres to a rule.While such syntactical patterns have been richly described in many species,comparatively little is known about how those patterns contribute to song achieving its important functions.For each of song’s main functions,territorial defense and mate attraction,evidence of a role for syntax is limited.One species for which syntax has been thoroughly described is the Hermit Thrush(Catharus guttatus),which presents song types from their repertoires in a semi-predictable order and,in doing so,rapidly cycle up and down the frequency spectrum.The objective of the present study was to explore the importance of song syntax in the Hermit Thrush through a within-subject examination of how measures of syntax,such as the predictability of song type order within song sequences,shift over the breeding season.We hypothesized that,if such syntactical characteristics are important to breeding behaviour,they would be most prominent at the start of the breeding season when activity associated with territory establishment and mate attraction is most intense.Analysis revealed that,as predicted,the rigidness of song type ordering within se-quences was highest at the start of the season and declined thereafter.That song type sequences were most predictable at the vitally important early part of the breeding season fit our hypothesis that this aspect of song syntax is important to song’s functions related to territory establishment and/or mate attraction.Future work will clarify whether that role relates to one of song’s two main functions or serves song transmission in some broader way.展开更多
Episodes of drought-induced decline in tree growth and mortality are becoming more frequent as a result of climate warming and enhanced water stress in semi-arid areas.However,the ecophysiological mechanisms under-lyi...Episodes of drought-induced decline in tree growth and mortality are becoming more frequent as a result of climate warming and enhanced water stress in semi-arid areas.However,the ecophysiological mechanisms under-lying the impact of drought on tree growth remains unre-solved.In this study,earlywood and latewood tree-ring growth,δ^(13)C,andδ^(18)O chronologies of Picea mongolica from 1900 to 2013 were developed to clarify the intra-and inter-annual tree-ring growth responses to increasingly fre-quent droughts.The results indicate that annual basal area increment residuals(BAI_(res)),which removed tree age and size effects,have significantly decreased since 1960.How-ever,the decreasing trend of earlywood BAI_(res) was higher than that of latewood.Climate response analysis suggests that the dominant parameters for earlywood and latewood proxies(BAI_(res),δ^(13)C andδ^(18)O)were drought-related climate variables(Palmer drought severity index,temperature,rela-tive humidity,and vapor pressure deficit).The most signifi-cant period of earlywood and latewood proxies’responses to climate variables were focused on June-July and July-August,respectively.BAI_(res),andδ^(13)C were significantly affected by temperature and moisture conditions,whereasδ^(18)O was slightly affected.Decreasing stomatal conduct-ance due to drought outweighed the influence of increasing CO_(2) on intrinsic water use efficiency(iWUE),and ultimately led to a decline in BAI_(res).Compared to latewood,the faster decreasing BAI_(res) and smaller increasing iWUE of early-wood suggested trees were more vulnerable to water stress in the early growing season.Our study provides insights into the inter-and intra-annual mechanisms of tree-ring growth in semi-arid regions under rising CO_(2) and climate change.展开更多
Forest productivity is closely linked to seasonal variations and vertical differentiation in leaf traits.However,leaf structural and chemical traits variation among co-existing species,and plant functional types withi...Forest productivity is closely linked to seasonal variations and vertical differentiation in leaf traits.However,leaf structural and chemical traits variation among co-existing species,and plant functional types within the canopy are poorly quantified.In this study,the seasonality of leaf chlorophyll,nitrogen(N),and phosphorus(P)were quantified vertically along the canopy of four major tree species and two types of herbs in a temperate deciduous forest.The role of shade tolerance in shaping the seasonal variation and vertical differentiation was examined.During the entire season,chlorophyll content showed a distinct asymmetric unimodal pattern for all species,with greater chlorophyll levels in autumn than in spring,and the timing of peak chlorophyll per leaf area gradually decreased as shade tolerance increased.Chlorophyll a:b ratios gradually decreased with increasing shade tolerance.Leaf N and P contents sharply declined during leaf expansion,remained steady in the mature stage and decreased again during leaf senescence.Over the seasons,the lower canopy layer had significantly higher chlorophyll per leaf mass but not chlorophyll per leaf area than the upper canopy layer regardless of degree of shade tolerance.However,N and P per leaf area of intermediate shade-tolerant and fully shade-tolerant tree species were significantly higher in the upper canopy than in the lower.Seasonal variations in N:P ratios suggest changes in N or P limitation.These findings indicate that shade tolerance is a key feature shaping inter-specific differences in leaf chlorophyll,N,and P contents as well as their seasonality in temperate deciduous forests,which have significant implications for modeling leaf photosynthesis and ecosystem production.展开更多
Plankton are an important component of marine protected areas(MPAs),and its communities would require much smaller interpatch distances to ensure connection among MPAs.According to the survey from MPAs dominated by ar...Plankton are an important component of marine protected areas(MPAs),and its communities would require much smaller interpatch distances to ensure connection among MPAs.According to the survey from MPAs dominated by artificial reefs and adjacent waters(estuary area(EA),aquaculture area(AA),artificial reef area(ARA),natural area(NA)and comprehensive effect area(CEA))in Haizhou Bay in spring and autumn,we analyzed phyto-zooplankton composition,abundance and biomass,and correlation with hydrologic variables to gain information about the forces that structure the plankton.The results showed that the dominant zooplankton were copepods(spring,98.9%;autumn,94.2%),while the phytoplankton were mainly composed of Bacillariophyta(spring,61.8%;autumn,95.6%).The RDA results showed that temperature,salinity and depth highly associated with the distribution and composition of plankton species among the habitats than other factors in spring;temperature,Chla and DO had the strongest influence in autumn.The zooplankton in the ARA and AA ecosystems basically contained the same species as those in other habitats,and each habitat also exhibited a relatively unique combination of plankton species.The structures of the EA zooplankton in spring and the EA phytoplankton in both seasons were much different than other habitats,which may have been caused by factors such as currents and tides.We concluded that there exists similarity of the plankton community between artificial reef area and adjacent waters,whereas the EAs may be relatively independent systems.Therefore,these interaction between plankton community should be considered when designing MPA networks,and ocean circulations should be considered more than the environmental factors.展开更多
Among the impacts of climate change,there is the intensification of phenomena such as the El Niño South-ern Oscillation(ENSO)responsible for El Niño and La Niña.However,understanding their effects on th...Among the impacts of climate change,there is the intensification of phenomena such as the El Niño South-ern Oscillation(ENSO)responsible for El Niño and La Niña.However,understanding their effects on the functional pro-cesses of forests is limited.Therefore,this study evaluated the effects of ENSO on litter stock and water holding capac-ity(WHC)in a successional forest in eastern Amazonia.Evaluations occurred in periods with the most rainfall in El Niño(2019)and least in La Niña(2021)years.Twelve permanent plots were used to sample litter.ENSO effects were evident for WHC,higher during El Niño.However,this influence was not clear for litter,as only in the rainy season effects were found.There was a positive correlation of WHC with precipitation and humidity,while litter stocks were negatively correlated with temperature and wind speed.Although the subject of this study requires long-term assessments,preliminary results suggests that,depending on the intensity of ENSO,forest functional processes can be strongly impacted and altered.The conclusion reinforces warnings by the scientific community about the impacts of climate change on the maintenance of litter stocks,decomposition and,consequently,the biogeochemical cycle and essential ecosystem services for the maintenance of Amazonia biodiversity.The need to develop long-term research to understand the effects of climatic change on litter stocks and water holding capacity is highlighted,especially in Amazonia.展开更多
基金National Natural Science Foundation of China Under Grant No. 50678055, 50538030the State Key Laboratory of Frozen Soil Engineering Open Foundation of China Under Grant No. SKLFSE200402the Doctor Subject Special Scientifi c Foundation of China Under Grant No. 20070213076
文摘The vibration characteristics and attenuation of the subgrade caused by passing trains in a seasonally frozen region of Daqing, China are investigated. Three field experiments were conducted during different times through the year, in normal, freezing and thawing periods, respectively, and the influence of the season, train speed and train type, is described in this paper. The results show that: (1) the vertical component is the greatest among the three components of the measured vibration near the rail track, and as the distance to the railway track increases, the dominant vibration depends on the season. (2) Compared with the vibration in the normal period, the vertical and longitudinal vibrations increase while the lateral vibration decreases in the freezing period. However, in the thawing period, the vertical and longitudinal vibrations decrease, and the lateral vibration increases. (3) As train speeds increase, the subgrade vibration increases. (4) The vibration induced by a freight train is greater than by a passenger train. These observations provide a better understanding of the vibration and dynamic stability of the subgrade and may be useful in developing criteria for railway and building construction in cold regions.
基金supported by the 973 Program of China (Grant No. 2012CB026104)the National Natural Science Foundation of China (Grant Nos. 51174261 and 51078111)+1 种基金the Open Research Fund Program of the State Key Laboratory of Permafrost Engineering of China (Grant No. SKLFSE201007)the Ministry of Railways Science and Technology Research and Development Program (Grant No. 2009G010-E)
文摘To investigate the vibration characteristics of a railway subgrade in different seasons, three field experiments were carried out in the seasonally frozen Daqing area of China during spring, smnmer, and winter. The vibration characteristics and attenuation rates of the subgrade induced by passing trains were investigated, and the influences of the season, train speed, train type, train load, and number of train compartments are described in this paper. The results show that: (1) near the rail track the vibration in the vertical direction was more significant than in the lateral and longitudinal directions, and as the distance from the railway track increased, the acceleration amplitudes and the attenuation rates all decreased in all three directions; (2) the acceleration amplitudes and at- tenuation rates decreased in the three different study seasons as the distance from the railway track increased, and the attenuation rates in the freezing period were the largest; and (3) the acceleration amplitude induced by a freight train was greater than that by a passenger train, and the subgrade vibration increased with increasing passenger train speeds when the number of train compart- ments was similar. These results have great significance for enhanced understanding of the characteristics of wain-induced vibra- tion embankment response in seasonally frozen regions, and provide essential field monitoring data on train-induced vibrations in order to improve the performance criteria of railroading in seasonally frozen regions.
基金funded by the National Natural Science Foundation of China (No. 51378057)
文摘Regarding the freezing damage of high-grade highway subgrade in seasonally frozen area,the thesis explores the effect on the dynamic behavior of subgrade soil under freeze–thaw cycles and draws the change law of parameters(including dynamic strength,dynamic cohesion,and internal friction angle;and dynamic elastic modulus)of high-grade highway-subgrade soil with the number of freeze–thaw cycles.It aims to provide the reference for operation and maintenance of a high-grade highway.Conclusions:(1)Dynamic strength tends to decline evidently after freeze–thaw cycles,with 60%~70%decline after three cycles,and remains stable after five to seven cycles.(2)With the number of freeze–thaw cycles increasing,the internal friction angle fluctuates within a certain range without an obvious change law,only presenting the tendency of dropping off.The dynamic cohesion declines obviously,about 20%~40%after seven freeze–thaw cycles,and then tends to be stable.(3)With the number of freeze-thaw cycles increasing,the dynamic elastic modulus and maximum dynamic elastic modulus are inclined to decrease distinctly.After five freeze–thaw cycles,the former declines 30%~40%and then remains stable.Meanwhile,the latter falls 20%~40%.
基金This study was funded by The Rufford Foundation(Rufford small grant#206761,to N.M.-S.)the Instituto de Ecologia,A.C.(project INECOL,20030-10281,to J.L.)the Consejo Nacional de Ciencia y Tecnologia(CONACYT,Scholarship#263474,to N.M.-S.).
文摘Background:Global modeling of carbon storage and sequestration often mischaracterizes unique ecosystems such as the seasonally dry tropical forest of the central region of the Gulf of Mexico,because species diversity is usually underestimated,as is their carbon content.In this study,aboveground and soil carbon stocks were estimated to determine the climate mitigation potential of this highly degraded landscape(<25%of forest cover).Results:Tree species in the study area had carbon content values that were 30%–40%higher than the standard value proposed by the IPCC(i.e.,50%).Tropical oak forest in the region,despite its restricted distribution and low species richness,accounted for the highest mean carbon stocks per unit area.The main factors driving spatial variability in carbon stocks were:maximum precipitation,soil organic matter,clay and silt content.No strong relationship was found between aboveground carbon stocks and soil organic carbon in the study area.Quanti-fication of carbon stocks is an important consideration in the assessment of the conservation value of remnants of native vegetation in human-modified landscapes.Conclusions:This study demonstrates the importance of the highly fragmented tropical dry regions of the Neo-tropics in maintaining landscape functionality and providing key ecosystem services such as carbon sequestration.Our results also highlight how crucial field-based studies are for strengthening the accuracy of global models.Furthermore,this approach reveals the real contribution of ecosystems that are not commonly taken into account in the mitigation of climate change effects.
基金financially supported by the National Basic Research Program of China (No. 2013CBA01803)the National Natural Science Foundation of China (No. 41101065)and the CAS "Equipment Development Project for Scientific Research" (No. YZ201523)
文摘Adopting the quasi-three-dimensional (Quasi-3D) numerical method to optimize the anti-freeze design parameters of an underground pipeline usually involves heavy numerical calculations. Here, the fitting formulae between the safe con-veyance distance (SCD) of a water pipeline and six influencing factors are established based on the lowest water temper-ature (LWT) along the pipeline axis direction. With reference to the current widely used anti-freeze design approaches for underground pipelines in seasonally frozen areas, this paper first analyzes the feasibility of applying the maximum frozen penetration (MFP) instead of the mean annual ground surface temperature (MAGST) and soil water content (SWC) to calculate the SCD. The results show that the SCD depends on the buried depth if the MFP is fixed and the variation of the MAGST and SWC combination does not significantly change the SCD. A comprehensive formula for the SCD is estab-lished based on the relationships between the SCD and several primary influencing factors and the interaction among them. This formula involves five easy-to-access parameters: the MFP, buried depth, pipeline diameter, flow velocity, and inlet water temperature. A comparison between the analytical method and the numerical results based on the Quasi-3D method indicates that the two methods are in good agreement overall. The analytic method can be used to optimize the anti-freeze design parameters of underground water pipelines in seasonally frozen areas under the condition of a 1.5 safety coefficient.
基金funded by the Alaska University Transportation Center (AUTC) and the State of Alaska Department of Transportation and Public Facilities (AKDOT&PF),under AUTC Project No. 107014
文摘Frozen ground is significantly stiffer than unfrozen ground. For bridges supported on deep foundations, bridge stiffness is also measurably higher in winter months. Significant changes due to seasonal freezing in bridge pier boundary conditions require addi- tional detailing in order to ensure a ductile performance of the bridge during a design earthquake event. This paper reports the lat- est results obtained from a project that systematically investigated the effects of seasonally frozen soil on the seismic behavior of highway bridges in cold regions. A bridge was chosen and was monitored to study its seismic performance and assess the impact of seasonally frozen soil on its dynamic properties. A Finite Element (FE) model was created for this bridge to analyze the impact of seasonal frost. It was found that when frost depth reaches 1.2 m, the first transverse modal frequency increases about 200% when compared with the no-frost case. The results show that seasonal frost has a significant impact on the overall dynamic be- havior of bridges supported by pile foundations in cold regions, and that these effects should be accounted for in seismic design.
基金supported financially by the Agencia Nacional de Promoción Científica y Tecnológica(AGENCIA)undergrant PICT 2011 N°1795 to M.V.García。
文摘The distribution of many plant species has been shaped by climate changes,and their current phenotypic and genetic variability refect microclimatically suitable habitats.This study relates contemporary climate to variability patterns of phenotypic traits and molecular markers in the Argentinean distribution of Anadenanthera colubrina var.cebil,as well as to identify the most relevant phenotypic trait or molecular marker associated with those patterns.Individuals from four populations in both biogeographic provinces,Paranaense and Yungas,were investigated.Multivariate analyses and multiple linear regressions were carried out to determine relationships among phenotypic traits and nuclear microsatellites,respectively,to climatic variables,and to identify the phenotypic traits as well as nuclear microsatellite loci most sensitive to climate.Two and three clusters of individuals were detected based on genetic and phenotypic data,respectively.Only clusters based on genetic data refected the biogeographic origin of individuals.Reproductive traits were the most relevant indicators of climatic effects.One microsatellite locus Ac41.1 appeared to be non-neutral presenting a strong correlation with climate variable temperature seasonality.Our findings show complex patterns of genetic and phenotypic variability in the Argentinean distribution of A.colubrina var.cebil related to the present or contemporary climate,and provides an example for an integrative approach to better understand climate impact on contemporary genetic and phenotypic variability in light of global climate change.
文摘Seasonally frozen soil in alpine and subalpine zones in the mountains of Qinghai-Tibetan Plateau is particularly sensitive to global climate change. Therefore, a better understanding of the thermal properties of frozen soil is crucial for predicting the responses of frozen soils to soil warming. In this study, thermal properties of frozen soil with different moisture contents under subzero temperature (0°C - 20°C) in an alpine forest in western Sichuan were analyzed by KD<sub>2</sub> Pro in its cooling and heating processes, respectively. Our results reveal that the soil apparent volumetric specific heat capacity (C<sub>v</sub>) and apparent thermal conductivity (K) under the same water content show similar response patterns to changing temperature lower than -2°C in both heating and cooling processes. Moreover, ice content of frozen soils can be well predicted by Logistic model in cooling and heating processes. The C<sub>v</sub> and K tend to increase along with increasing soil moisture contents. Remarkably, asymptotic characters of the value of C<sub>v</sub> and K are at the vicinity of the initial temperature of phase transitions, indicating that both C<sub>v</sub> and K are particularly sensitive to changing soil temperature at the range of -2°C to 0°C. Therefore, the widely distributed frozen soil layers with temperature above -2°C in alpine and subalpine zones over Qinghai-Tibetan Plateau are susceptible to the observed climate warming during cold season.
文摘In the light of the national policy of fallow, this study was conducted to determine how the different water management and lime application would affect soil physical and chemical properties, rice yield and cadmium (Cd) content of rice in fallow season. The results showed that, compared with the arid fallow, the waterlogging fallow decreased the soil pH value whereas signifcantly increased the soil organic matter content and the cation exchange quantity, and reduced the soil effective cadmium content and the rice cadmium content whereas could increase the rice yield to a certain extent. In the fooded fallow or the dry fallow, the application of lime mainly depended on the alkali conditioning of lime and the antagonistic effect of Ca2+, which could signifcantly reduce the cadmium content of rice, and its effect would increase linearly with the increase of lime dosage, whereas had no significant effect on soil organic matter content and cation exchange quantity. In order to establish a linear equation of lime dosage and related indexes under the condition of waterlogging fallow or dry fallow, calculations showed that each application of lime at 1 000 kg/hm2 or kg/hmss2 could improve soil pH value by 0.238 2 or 0.246 5units respectively, and reduce the effective Cd content to 0.007 5 mg/kg both in the arid fallow and the waterlogging fallow conditions. The lime theoretic application rate for the lowest Cd content of late rice in the arid fallow was 5 120 kg/hm2, and the minimum limit of the Cd content in rice was 0.124 2 mg/kg; and the lime theoretic application rate for the highest yield of late rice in the submerged water fallow was 4 636 kg/hm2, the minimum theoretic Cd content in rice is 0.100 7 mg/kg, and it could reduce the Cd content in rice under the condition of submerged fallow and decrease the dosage of lime.
文摘In this study, in-situ testing results are given, and the analytical relationship of the vibrations' amplitudes inside an em- bankment by the thawing of the subgrade surface of seasonably deep frozen soils is provided. The peculiarities of the vi- bration waves' propagation during the springtime thawing of soils compared to those during the summertime period and the correlation of the vibrations with the under-rail basement moduln~ nf ala^tieitv nro dofinod
基金The National Natural Science Foundation of China under contract No.41806012。
文摘Recent studies have revealed that the predominant tidal constituents have seasonal variations at some locations.However,how to accurately obtain these variations remains a problem for the traditional harmonic analysis(HA)due to the tradeoff between length of time window and resolution of constituents.Therefore,a method named as"two-step HA"is developed in this study,which consists of both long-and short-time-window HA.Through a series of ideal experiments,practical application at two tidal gauges and comparison with the traditional HA,the feasibility and accuracy of the two-step HA are verified:The two-step HA performs better than the traditional HA in estimating monthly amplitudes and phases for the predominant constituents,whether they have seasonal variability or not.In addition to capturing variations of the predominant constituents at tidal gauges,the two-step HA would be useful in investigation of the coherence and incoherence of internal tides.
基金Supported by the National Natural Science Foundation of China(41171384,41271414and 41301529)
文摘[Objective] This study aimed to examine indicative roles of texture representing soil organic carbon presence and variability subsequent to cultivation under cold temperate climates with seasonal freeze-thaw events. [Method] Three chronosequences were selected for paired comparisons. Soil samples were collected at six depths with a 10 cm increment. Analysis of variance with general linear model and regression was performed for statistical analysis. [Result] In seasonally frozen soils where fragmentation of macroaggregates was stimulated, soil organic carbon level was positively associated with clay + silt proportion due to a wider textural range, better than sole clay content. Exponential function better fitted the experimental data to present progressively increased effectiveness of clay + silt content in maintaining carbon. Clay content explained 12%-41% and 14%-43% of variation via linear and exponential functions, respectively. Accordingly, clay + silt content explained 47%-65% and 46%-70%. [Conclusion] Texture reflected soil organic carbon occurrence as consequences of reclamation. For seasonally frozen soils with wider textural ranges, it is robust to adapt clay + silt content as dependent variable and exponential function. The generated algorithms provided an available pathway to estimate soil organic carbon losses following cultivation and to evaluate soil fertility.
基金Consejo Nacional de Ciencia y Tecnología of México(PhD to L.S.P.,128856 to V.P.T.).
文摘Aims Seasonally tropical dry forests of the Yucatan Peninsula are typically found in sites with nutrient-poor soils because of the recent geologi-cal origin of the region.The landscape is dominated by extensive karstic plates that shape environments where vegetation regenera-tion through seed germination may be limited by the availability of suitable microsites.In this study,we documented the survival and growth of seedlings from three dominant tree species(Bursera simaruba,Piscidia piscipula and Lysiloma latisiliquum)in seasonally tropical dry forests in Yucatan.Specifically,we evaluated the effect of nutrient addition(N and P,separately and in combination)on seedling survival and growth across three sites with differing levels of precipitation.Methods We conducted a nutrient addition experiment,whereby we estab-lished 12 plots of dimensions 10×10 m(100 m^(2))at each site,from which three plots were randomly selected to receive one of four treatments:N addition,P addition,N and P addition and no nutri-ent addition(controls).Prior to treatment application,in each plot,we planted 10 seedlings of each species in October 2010 and sub-sequently conducted surveys of plant growth and survival every 20 days from November 2010 to April 2011.Important Findings Overall,nutrient addition increased seedling survival and the mag-nitude of this effect was similar among sites.We did not observe an additive effect of the N+P treatment on survival.Similarly,we observed a positive effect of nutrient addition on seedling growth,but this effect was contingent upon site;regarding survival,the effects of N and P on seedling growth were not additive.These results suggest that seedling recruitment and growth in the three dominant species of trees in Yucatan are limited by nutrient avail-ability but that the magnitude of this effect,particularly on seedling growth,is specific for species and site.
基金the Key Research Program of Frontier Sciences,CAS(Grant No.ZDBS-LYDQC010)the National Natural Science Foundation of China(Grant No.42175045).
文摘In the boreal summer and autumn of 2023,the globe experienced an extremely hot period across both oceans and continents.The consecutive record-breaking mean surface temperature has caused many to speculate upon how the global temperature will evolve in the coming 2023/24 boreal winter.In this report,as shown in the multi-model ensemble mean(MME)prediction released by the Institute of Atmospheric Physics at the Chinese Academy of Sciences,a medium-to-strong eastern Pacific El Niño event will reach its mature phase in the following 2−3 months,which tends to excite an anomalous anticyclone over the western North Pacific and the Pacific-North American teleconnection,thus serving to modulate the winter climate in East Asia and North America.Despite some uncertainty due to unpredictable internal atmospheric variability,the global mean surface temperature(GMST)in the 2023/24 winter will likely be the warmest in recorded history as a consequence of both the El Niño event and the long-term global warming trend.Specifically,the middle and low latitudes of Eurasia are expected to experience an anomalously warm winter,and the surface air temperature anomaly in China will likely exceed 2.4 standard deviations above climatology and subsequently be recorded as the warmest winter since 1991.Moreover,the necessary early warnings are still reliable in the timely updated mediumterm numerical weather forecasts and sub-seasonal-to-seasonal prediction.
文摘在当今世界文化交流愈发频繁的背景下,推动中华文明走向世界成为重中之重。翻译作为推动跨文化交流的重要手段之一,是连接不同文化的桥梁。而文化负载词由于其涵盖的大量民族特色词汇,成为翻译过程中的挑战,同时也是文化传播的重要工具。文章基于目的论视角,以纪录片Seasons of China中的中文文化负载词英译为例,探讨译者在翻译过程中采取的恰当翻译方法,以期为纪录片的文化负载词翻译研究提供一定的借鉴与参考。
基金partly funded by an NSERC Discovery Grant received by LS Phillmorea UNB University Research Fund grant received by SP Roach
文摘In many songbird species,birdsong features phonological syntax,meaning that the units within their vocal se-quences are ordered in a non-random way that adheres to a rule.While such syntactical patterns have been richly described in many species,comparatively little is known about how those patterns contribute to song achieving its important functions.For each of song’s main functions,territorial defense and mate attraction,evidence of a role for syntax is limited.One species for which syntax has been thoroughly described is the Hermit Thrush(Catharus guttatus),which presents song types from their repertoires in a semi-predictable order and,in doing so,rapidly cycle up and down the frequency spectrum.The objective of the present study was to explore the importance of song syntax in the Hermit Thrush through a within-subject examination of how measures of syntax,such as the predictability of song type order within song sequences,shift over the breeding season.We hypothesized that,if such syntactical characteristics are important to breeding behaviour,they would be most prominent at the start of the breeding season when activity associated with territory establishment and mate attraction is most intense.Analysis revealed that,as predicted,the rigidness of song type ordering within se-quences was highest at the start of the season and declined thereafter.That song type sequences were most predictable at the vitally important early part of the breeding season fit our hypothesis that this aspect of song syntax is important to song’s functions related to territory establishment and/or mate attraction.Future work will clarify whether that role relates to one of song’s two main functions or serves song transmission in some broader way.
基金This study was supported by the National Natural Science Foundation of China(42277448,41971104 and 41807431)the National Science Foundation of Shaanxi Province(2019JQ-325)the Fundamental Research Funds for the Central Universities(GK201903068 and GK202206032).
文摘Episodes of drought-induced decline in tree growth and mortality are becoming more frequent as a result of climate warming and enhanced water stress in semi-arid areas.However,the ecophysiological mechanisms under-lying the impact of drought on tree growth remains unre-solved.In this study,earlywood and latewood tree-ring growth,δ^(13)C,andδ^(18)O chronologies of Picea mongolica from 1900 to 2013 were developed to clarify the intra-and inter-annual tree-ring growth responses to increasingly fre-quent droughts.The results indicate that annual basal area increment residuals(BAI_(res)),which removed tree age and size effects,have significantly decreased since 1960.How-ever,the decreasing trend of earlywood BAI_(res) was higher than that of latewood.Climate response analysis suggests that the dominant parameters for earlywood and latewood proxies(BAI_(res),δ^(13)C andδ^(18)O)were drought-related climate variables(Palmer drought severity index,temperature,rela-tive humidity,and vapor pressure deficit).The most signifi-cant period of earlywood and latewood proxies’responses to climate variables were focused on June-July and July-August,respectively.BAI_(res),andδ^(13)C were significantly affected by temperature and moisture conditions,whereasδ^(18)O was slightly affected.Decreasing stomatal conduct-ance due to drought outweighed the influence of increasing CO_(2) on intrinsic water use efficiency(iWUE),and ultimately led to a decline in BAI_(res).Compared to latewood,the faster decreasing BAI_(res) and smaller increasing iWUE of early-wood suggested trees were more vulnerable to water stress in the early growing season.Our study provides insights into the inter-and intra-annual mechanisms of tree-ring growth in semi-arid regions under rising CO_(2) and climate change.
基金This work was supported by the National Natural Science Foundation of China(32171765).
文摘Forest productivity is closely linked to seasonal variations and vertical differentiation in leaf traits.However,leaf structural and chemical traits variation among co-existing species,and plant functional types within the canopy are poorly quantified.In this study,the seasonality of leaf chlorophyll,nitrogen(N),and phosphorus(P)were quantified vertically along the canopy of four major tree species and two types of herbs in a temperate deciduous forest.The role of shade tolerance in shaping the seasonal variation and vertical differentiation was examined.During the entire season,chlorophyll content showed a distinct asymmetric unimodal pattern for all species,with greater chlorophyll levels in autumn than in spring,and the timing of peak chlorophyll per leaf area gradually decreased as shade tolerance increased.Chlorophyll a:b ratios gradually decreased with increasing shade tolerance.Leaf N and P contents sharply declined during leaf expansion,remained steady in the mature stage and decreased again during leaf senescence.Over the seasons,the lower canopy layer had significantly higher chlorophyll per leaf mass but not chlorophyll per leaf area than the upper canopy layer regardless of degree of shade tolerance.However,N and P per leaf area of intermediate shade-tolerant and fully shade-tolerant tree species were significantly higher in the upper canopy than in the lower.Seasonal variations in N:P ratios suggest changes in N or P limitation.These findings indicate that shade tolerance is a key feature shaping inter-specific differences in leaf chlorophyll,N,and P contents as well as their seasonality in temperate deciduous forests,which have significant implications for modeling leaf photosynthesis and ecosystem production.
基金financed by the Jiangsu Haizhou Bay National Sea Ranching Demonstration Project(No.D-8005-18-0188)the Shanghai Municipal Science and Technology Commission Local Capacity Construction Project(No.21010502200).
文摘Plankton are an important component of marine protected areas(MPAs),and its communities would require much smaller interpatch distances to ensure connection among MPAs.According to the survey from MPAs dominated by artificial reefs and adjacent waters(estuary area(EA),aquaculture area(AA),artificial reef area(ARA),natural area(NA)and comprehensive effect area(CEA))in Haizhou Bay in spring and autumn,we analyzed phyto-zooplankton composition,abundance and biomass,and correlation with hydrologic variables to gain information about the forces that structure the plankton.The results showed that the dominant zooplankton were copepods(spring,98.9%;autumn,94.2%),while the phytoplankton were mainly composed of Bacillariophyta(spring,61.8%;autumn,95.6%).The RDA results showed that temperature,salinity and depth highly associated with the distribution and composition of plankton species among the habitats than other factors in spring;temperature,Chla and DO had the strongest influence in autumn.The zooplankton in the ARA and AA ecosystems basically contained the same species as those in other habitats,and each habitat also exhibited a relatively unique combination of plankton species.The structures of the EA zooplankton in spring and the EA phytoplankton in both seasons were much different than other habitats,which may have been caused by factors such as currents and tides.We concluded that there exists similarity of the plankton community between artificial reef area and adjacent waters,whereas the EAs may be relatively independent systems.Therefore,these interaction between plankton community should be considered when designing MPA networks,and ocean circulations should be considered more than the environmental factors.
基金This study was funded in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior Brazil(CAPES)Finance Code 001.A master’s scholarship was granted by CAPES to JIMR(Process 88887.716287/2022-00)a doctoral scholarship to VPO(Process 88887.644953/2021-00).
文摘Among the impacts of climate change,there is the intensification of phenomena such as the El Niño South-ern Oscillation(ENSO)responsible for El Niño and La Niña.However,understanding their effects on the functional pro-cesses of forests is limited.Therefore,this study evaluated the effects of ENSO on litter stock and water holding capac-ity(WHC)in a successional forest in eastern Amazonia.Evaluations occurred in periods with the most rainfall in El Niño(2019)and least in La Niña(2021)years.Twelve permanent plots were used to sample litter.ENSO effects were evident for WHC,higher during El Niño.However,this influence was not clear for litter,as only in the rainy season effects were found.There was a positive correlation of WHC with precipitation and humidity,while litter stocks were negatively correlated with temperature and wind speed.Although the subject of this study requires long-term assessments,preliminary results suggests that,depending on the intensity of ENSO,forest functional processes can be strongly impacted and altered.The conclusion reinforces warnings by the scientific community about the impacts of climate change on the maintenance of litter stocks,decomposition and,consequently,the biogeochemical cycle and essential ecosystem services for the maintenance of Amazonia biodiversity.The need to develop long-term research to understand the effects of climatic change on litter stocks and water holding capacity is highlighted,especially in Amazonia.