Completely random allocation of the treatment combinations to the experimental units is appropriate only if the experimental units are homogeneous. Such homogeneity may not always be guaranteed when the size of the ex...Completely random allocation of the treatment combinations to the experimental units is appropriate only if the experimental units are homogeneous. Such homogeneity may not always be guaranteed when the size of the experiment is relatively large. Suitably partitioning inhomogeneous units into homogeneous groups, known as blocks, is a practical design strategy. How to partition the experimental units for a given design is an important issue. The blocked general minimum lower order confounding is a new criterion for selecting blocked designs. With the help of doubling theory and second order saturated design, we present a theory on constructing optimal blocked designs under the blocked general minimum lower order confounding criterion.展开更多
文摘Completely random allocation of the treatment combinations to the experimental units is appropriate only if the experimental units are homogeneous. Such homogeneity may not always be guaranteed when the size of the experiment is relatively large. Suitably partitioning inhomogeneous units into homogeneous groups, known as blocks, is a practical design strategy. How to partition the experimental units for a given design is an important issue. The blocked general minimum lower order confounding is a new criterion for selecting blocked designs. With the help of doubling theory and second order saturated design, we present a theory on constructing optimal blocked designs under the blocked general minimum lower order confounding criterion.