A perimeter security system based on ultra-weak fiber Bragg grating high-speed wavelength demodulation was proposed. The demodulation system for signal acquisition and high-speed wavelength calculation was designed ba...A perimeter security system based on ultra-weak fiber Bragg grating high-speed wavelength demodulation was proposed. The demodulation system for signal acquisition and high-speed wavelength calculation was designed based on field programmable gate array (FPGA) platform. The principle of ultra-weak fiber Bragg grating high-speed demodulation and signal recognition method were analyzed theoretically, and the Support Vector Machine model was introduced to optimize the event recognition accuracy of the system. A perimeter security experimental system containing 1000 ultra-weak fiber Bragg gratings, ultra-weak fiber Bragg grating sense optical cables with a diameter of 2.0 mm and a reflectivity of 0.01%, steel space frames and demodulation equipments was built to recognize four typical events such as knocking, shaking, wind blowing and rainfall. The experimental resulted show that the system has a spatial resolution of 1m and an acquisition frequency of 200 Hz. The joint time-frequency domain detection method is used to achieve 99.2% alarm accuracy, and 98% recognition accuracy of two intrusion events, which has good anti-interference performance.展开更多
A loop topology based white light interferometric sensor network for perimeter security has been designed and demonstrated. In the perimeter security sensing system, where fiber sensors are packaged in the suspended c...A loop topology based white light interferometric sensor network for perimeter security has been designed and demonstrated. In the perimeter security sensing system, where fiber sensors are packaged in the suspended cable or buried cable, a bi-directional optical path interrogator is built by using Michelson or Mach-Zehnder interferometer. A practical implementation of this technique is presented by using an amplified spontaneous emission (ASE) light source and standard single mode fiber, which are common in communication industry. The sensor loop topology is completely passive and absolute length measurements can be obtained for each sensing fiber segment so that it can be used to measure quasi-distribution strain perturbation. For the long distance perimeter monitoring, this technique not only extends the multiplexing potential, but also provides a redundancy for the sensing system. One breakdown point is allowed in the sensor loop because the sensing system will still work even if the embedded sensor loop breaks somewhere.展开更多
文摘A perimeter security system based on ultra-weak fiber Bragg grating high-speed wavelength demodulation was proposed. The demodulation system for signal acquisition and high-speed wavelength calculation was designed based on field programmable gate array (FPGA) platform. The principle of ultra-weak fiber Bragg grating high-speed demodulation and signal recognition method were analyzed theoretically, and the Support Vector Machine model was introduced to optimize the event recognition accuracy of the system. A perimeter security experimental system containing 1000 ultra-weak fiber Bragg gratings, ultra-weak fiber Bragg grating sense optical cables with a diameter of 2.0 mm and a reflectivity of 0.01%, steel space frames and demodulation equipments was built to recognize four typical events such as knocking, shaking, wind blowing and rainfall. The experimental resulted show that the system has a spatial resolution of 1m and an acquisition frequency of 200 Hz. The joint time-frequency domain detection method is used to achieve 99.2% alarm accuracy, and 98% recognition accuracy of two intrusion events, which has good anti-interference performance.
基金This work was supported by the key project of Nature Science Foundation of Heilongjiang Province (No. ZD200810) and Key Project Foster Program for University and College Science and Technology Innovation (No. 708030), and partially supported by the National Nature Science Foundation of China, under grant number 60877046, 60707013, and 60807032, to the Harbin Engineering University.
文摘A loop topology based white light interferometric sensor network for perimeter security has been designed and demonstrated. In the perimeter security sensing system, where fiber sensors are packaged in the suspended cable or buried cable, a bi-directional optical path interrogator is built by using Michelson or Mach-Zehnder interferometer. A practical implementation of this technique is presented by using an amplified spontaneous emission (ASE) light source and standard single mode fiber, which are common in communication industry. The sensor loop topology is completely passive and absolute length measurements can be obtained for each sensing fiber segment so that it can be used to measure quasi-distribution strain perturbation. For the long distance perimeter monitoring, this technique not only extends the multiplexing potential, but also provides a redundancy for the sensing system. One breakdown point is allowed in the sensor loop because the sensing system will still work even if the embedded sensor loop breaks somewhere.