To study the seismic resilience of a concrete-framed hospital building with viscous dampers,the elastoplastic time history analysis of a three-story concrete-framed hospital building under moderate and rare earthquake...To study the seismic resilience of a concrete-framed hospital building with viscous dampers,the elastoplastic time history analysis of a three-story concrete-framed hospital building under moderate and rare earthquakes was carried out by finite element analysis software.The structure’s overall response was studied,meanwhile,the seismic resilience of the building was evaluated from three aspects:repair cost,repair time,and casualties.The results show that viscous dampers can effectively reduce the repair cost,repair time,and casualties under earthquakes.Compared with the structure without dampers,the repair cost and repair time of the structure with dampers have been reduced by 67%and 69%respectively under moderate earthquakes,42%and 39%respectively under rare earthquakes,and the seismic resilience grade has been increased from zero to one star.展开更多
The concept of seismic resilience has received significant attention from academia and industry during the last two decades. Different frameworks have been proposed for seismic resilience assessment of engineering sys...The concept of seismic resilience has received significant attention from academia and industry during the last two decades. Different frameworks have been proposed for seismic resilience assessment of engineering systems at different scales(e.g., buildings, bridges, communities, and cities). Testbeds including Centerville virtual community(CVC), Memphis testbed(MTB), and the virtual city of Turin, Italy(VC-TI) have been developed during the last decade. However, the resilience assessment results of Chinese cities still require calibration based on a unified evaluation model. Therefore, a geographic information system(GIS)-based benchmark model of a medium-sized city located in the southeastern coastal region of China was developed. The benchmark city can be used to compare existing assessment frameworks and calibrate the assessment results. The demographics, site conditions, and potential hazard exposure of the benchmark city, as well as land use and building inventory are described in this paper. Data of lifeline systems are provided, including power, transportation, water, drainage, and natural gas distribution networks, as well as the locations of hospitals, emergency shelters, and schools. Data from past earthquakes and the literature were obtained to develop seismic fragility models, consequence models, and recovery models, which can be used as basic data or calibration data in the resilience assessment process. To demonstrate the completeness of the data included in the benchmark city, a case study on the accessibility of emergency rescue after earthquakes was conducted, and the preliminary results were discussed. The ultimate goal of this benchmark city is to provide a platform for calibrating resilience assessment results and to facilitate the development of resilient cities in China.展开更多
Bridges designed following a conventional approach minimize the risk of collapse,but often require challenging,costly,and time-consuming restoration after an earthquake occurs.The new seismic design philosophy require...Bridges designed following a conventional approach minimize the risk of collapse,but often require challenging,costly,and time-consuming restoration after an earthquake occurs.The new seismic design philosophy requires bridges to maintain functionality even after severe earthquakes.In this context,this paper proposes a controlled rocking pile foundation(CRPF)system and numerically evaluates bridges′degree of seismic resilience.The CRPF system allows a pile cap to rock on a pile foundation and dissipate seismic energy through inelastic deformations of replaceable bar fuses that connect a pile cap and piles.Following the conceptual design of the CRPF system,two analytical models were developed for a bridge pier utilizing the CRPF system and a pier designed to develop a plastic hinge in its column.The analytical results indicate that,after experiencing a severe earthquake,a conventionally designed bridge pier sustained substantial damage in its column and exhibited significant residual displacement.In contrast,a pier using the CRPF system showed negligible residual displacement and maintained elastic behavior except,as expected,for bar fuses.The damaged fuses can be rapidly replaced to recover bridge seismic resistance following an earthquake.Therefore,the CRPF system helps to achieve the desired postearthquake performance objectives.展开更多
The natural landscape in China exposes many existing RC buildings to aggressive environments.Such exposure can lead to deterioration in structural performance with regard to resisting events such as earthquakes.Corros...The natural landscape in China exposes many existing RC buildings to aggressive environments.Such exposure can lead to deterioration in structural performance with regard to resisting events such as earthquakes.Corrosion of embedded reinforcement is one of the most common mechanisms by which such structural degradation occurs.There has been increasing attention in recent years toward seismic resilience in communities and their constituent construction;however,to date,studies have neglected the effect of natural aging.This study aims to examine the effect of reinforcement corrosion on the seismic resilience of RC frames that are designed according to Chinese seismic design codes.A total of twenty RC frames are used to represent design and construction that is typical of coastal China,with consideration given to various seismic fortification levels and elevation arrangements.Seismic fragility relationships are developed for case frames under varying levels of reinforcement corrosion,i.e.,corrosion rates are increased from 5%to 15%.Subsequently,the seismic resilience levels of uncorroded and corroded RC frames are compared using a normalized loss factor.It was found that the loss of resilience of the corroded frames is greater than that of their uncorroded counterparts.At the Rare Earthquake hazard level,the corrosioninduced increase in loss of resilience can be more than 200%,showing the significant effect of reinforcement corrosion on structural resilience under the influence of earthquakes.展开更多
The objective of this paper is to demonstrate how assessment of seismic vulnerability can be effective in protection against earthquakes.Findings are reported from a case study in a densely populated urban area near a...The objective of this paper is to demonstrate how assessment of seismic vulnerability can be effective in protection against earthquakes.Findings are reported from a case study in a densely populated urban area near an active fault,utilizing practical methods and exact engineering data.Vulnerability factors were determined due to technical considerations,and a field campaign was performed to collect the required data.Multi-criteria decision making was carried out by means of an analytical hierarchy process including a fuzzy standardization.Earthquake scenarios were applied through an implicit vulnerability model.GIS was utilized and the results were analyzed by classifying the state of vulnerability in levels as very low,low,moderate,high,and very high.Seismic resilience was evaluated as vulnerabilities below the moderate state,being about 40% in an intensity of 6 Mercalli and less than 10% in 10 Mercalli.It is concluded that seismic resilience in the area studied is not acceptable,the area is vulnerable in the expected scenarios,and due to the high seismicity of the region,proper crisis management planning is required in parallel with attempts toward retrofitting.In this regard,an emergency map was developed with reference to the assessed vulnerabilities.展开更多
Resilience of a community after an extreme event depends on the resilience of different infrastructure including buildings.There is no well-established approach to characterize and integrate building resilience for co...Resilience of a community after an extreme event depends on the resilience of different infrastructure including buildings.There is no well-established approach to characterize and integrate building resilience for community-level applications.This paper investigates how different potential functionality measures can be used to quantify building resilience indexes,and how the results could be aggregated for a set of buildings to provide an indi-cator for the resilience of an entire community.The quantification of building resilience is based on different functionality measures including repair cost,occupancy level,and asset value.An archetype city block with four different buildings is defined.The individual results for each building are combined using a weight-based ap-proach to quantify the resilience index for the city block.The study then considers small-scale communities with different number of buildings to investigate the influence of contractor availability and collapse probability on the resilience indexes for the set of buildings.Both parameters are shown to be important when quantifying the resilience index.It is also demonstrated that the overall resilience of a community is directly influenced by the resilience of individual buildings.The findings presented here are useful both from the perspective of quantifying the resilience of a community on the basis of its building inventory,as well as for possible inclusion into a holistic framework that aims to quantify community resilience.展开更多
Internet data center buildings have great importance for maintaining the post-earthquake functionality of telecommunication networks.It is essential to maintain the functionality of internet data center buildings duri...Internet data center buildings have great importance for maintaining the post-earthquake functionality of telecommunication networks.It is essential to maintain the functionality of internet data center buildings during earthquakes or recover immediately after earthquakes,which is referred to as seismic resilience.In this study,a seismic resilience assessment framework based on the Chinese code GB/T 38591-2020 is introduced first.The seismic damage and post-earthquake repair of both structural components and non-structural components are considered in the resilience assessment framework.A method for post-earthquake functionality loss quantification is proposed based on damage state and functionality loss of component.The subsystem level and system level functionality loss can be obtained by an integration principle.The seismic resilience of a typical internet data center building was evaluated to demonstrate the effectiveness of the proposed method.To enhance the seismic resilience level,different disaster mitigation techniques including the energy dissipation technology using buckling restrained braces and the base-isolation technology using lead-rubber bearings are adopted.The seismic resilience is quantified and the corresponding seismic resilience curves under different earthquake intensities are developed based on evaluation results.展开更多
A resilience-incorporated risk assessment framework is proposed and demonstrated in this study to manifest the advantageous seismic resilience of precast concrete frame(PCF)structures with“dry”connections in terms o...A resilience-incorporated risk assessment framework is proposed and demonstrated in this study to manifest the advantageous seismic resilience of precast concrete frame(PCF)structures with“dry”connections in terms of their low damage and rapid recovery.The framework integrates various uncertainties in the seismic hazard,fragility,capacity,demand,loss functions,and post-earthquake recovery.In this study,the PCF structures are distinguished from ordinary reinforced concrete frame(RCF)structures by characterizing multiple limit states for the PCF based on its unique damage mechanisms.Accordingly,probabilistic story-wise pushover analyses are performed to yield story-wise capacities for the predefined limit states.In the seismic resilience analysis,a step-wise recovery model is proposed to idealize the functionality recovery process,with separate considerations of the repair and non-repair events.The recovery model leverages the economic loss and downtime to delineate the stochastic post-earthquake recovery curves for the resilience loss estimation.As such,contingencies in the probabilistic post-earthquake repairs are incorporated and the empirical judgments on the recovery parameters are largely circumvented.The proposed framework is demonstrated through a comparative study between two“dry”connected PCFs and one RCF designed as alternative structural systems for a prototype building.The results from the risk quantification indicate that the PCFs show reduced loss hazards and lower expected losses relative to the RCF.Particularly,the PCF equipped with energy dissipation devices at the“dry”connections largely reduces the expected economic loss,downtime,and resilience loss by 29%,56%,and 60%,respectively,compared to the RCF.展开更多
The improvement of the seismic resilience of existing reinforced-concrete(RC) frame buildings, which is essential for the seismic resilience of a city, has become a critical issue. Although seismic isolation is an eff...The improvement of the seismic resilience of existing reinforced-concrete(RC) frame buildings, which is essential for the seismic resilience of a city, has become a critical issue. Although seismic isolation is an effective method for improving the resilient performance of such buildings, target-oriented quantitative improvements of the resilient performance of these buildings have been reported rarely. To address this gap, the seismic resilience of two existing RC frame buildings located in a high seismic intensity region of China were assessed based on the Chinese Standard for Seismic Resilience Assessment of Buildings. The critical engineering demand parameters(EDPs) affecting the seismic resilience of such buildings were identified. Subsequently, the seismic resilience of buildings retrofitted with different isolation schemes(i.e., yield ratios) were evaluated and compared, with emphasis on the relationships among yield ratios, EDPs, and levels of seismic resilience. Accordingly, to achieve the highest level of seismic resilience with respect to the Chinese standard, a yield ratio of 3% was recommended and successfully applied to the target-oriented design for the seismic-resilience improvement of an existing RC frame building. The research outcome can provide an important reference for the resilience-based retrofitting of existing RC frame buildings using seismic isolation in urban cities.展开更多
The seismic performance of medical systems is crucial for the seismic resilience of communities.The report summarizes the observed damage to twelve hospital buildings in the area affected by the MW 7.8 and MW 7.5 eart...The seismic performance of medical systems is crucial for the seismic resilience of communities.The report summarizes the observed damage to twelve hospital buildings in the area affected by the MW 7.8 and MW 7.5 earthquakes on February 6,2023 in Turkey.They include five base-isolated buildings and seven fixed-base buildings in southcentral Turkey's seven most heavily affected provinces.By relating the post-quake occupancy statuses of the hospitals with the estimated seismic demands during the earthquake doublet,the report offers the following observations:(1)the base-isolated hospital buildings on friction pendulum bearings generally exhibited superior performance of achieving the goal of immediate occupancy and provided better protection for nonstructural elements than fixed-base counterparts did;(2)the fixed-base hospital buildings of reinforced concrete structures constructed after 2001 successfully achieved the goal of collapse prevention even under very high seismic demands;(3)some fixed-base hospitals also remained operational even if they were very close to the fault rupture and were subjected to higher-than-design-level earthquake ground motions.展开更多
Probabilistic seismic performance assessment method for buildings offers a valuable approach to simulate the broader regional impacts:economic losses,downtime,and casualties.A crucial aspect of this process entails ac...Probabilistic seismic performance assessment method for buildings offers a valuable approach to simulate the broader regional impacts:economic losses,downtime,and casualties.A crucial aspect of this process entails ac-counting for the spatial correlation of building performances,aiming for an accurate estimation of the probability of extreme regional losses,such as the simultaneous collapse of buildings with similar structural characteristics.In this study,a correlation model based on a Gaussian random field is employed,and several key challenges associated with its application are addressed.In addition,efficiency of five different methods of selecting station records from the same earthquake scenario is compared.The minimum number of earthquake records necessary to achieve a stable correlation result is determined.Additionally,spatial correlations derived from different his-tory earthquake events are compared.By addressing these critical issues,this research contributes to refining the reliability of probabilistic methods for regional resilience assessment.展开更多
A magnetorheological self-centering brace(MR–SCB)has been proposed to improve the energy dissipation capability of the brace.In this paper,a 15-story MR–SCB braced frame is numerically analyzed to examine its seismi...A magnetorheological self-centering brace(MR–SCB)has been proposed to improve the energy dissipation capability of the brace.In this paper,a 15-story MR–SCB braced frame is numerically analyzed to examine its seismic performance and resilience.The MR–SCB provides higher lateral stiffness than the buckling restrained brace and greater energy dissipation capability than the existing self-centering brace.The brace also exhibits a reliable recentering capacity.Under rare earthquakes,the maximum average residual deformation ratio of the structure is less than the 0.5%limit.Under mega earthquakes,the maximum average interstory drift ratio of the structure does not exceed the 2.0%elastoplastic limit,and its maximum average floor acceleration ratio is 1.57.The effects of mainshock and aftershock on the structural behavior are also investigated.The interstory drift and residual deformation of the structure increase with the increase of the intensity of the aftershock.Under aftershocks with the same intensity as the mainshocks,the maximum increment of the residual deformation ratio of the structure is 81.8%,and the average interstory drift ratios of the 12^(th),7^(th),and 3^(rd)stories of the structure are increased by 13.4%,9.2%and 7.5%,respectively.The strong aftershock may significantly cause increased damage to the structure,and increase its collapse risk and residual deformation.展开更多
According to news reports on severe earthquakes since 2008,a total of 51 cases with magnitudes of 6.0 or above were analyzed,and 14 frequently occurring secondary disasters were identified.A disaster chain model was d...According to news reports on severe earthquakes since 2008,a total of 51 cases with magnitudes of 6.0 or above were analyzed,and 14 frequently occurring secondary disasters were identified.A disaster chain model was developed using principles from complex network theory.The vulnerability and risk level of each edge in this model were calculated,and high-risk edges and disaster chains were identified.The analysis reveals that the edge“floods→building collapses”has the highest vulnerability.Implementing measures to mitigate this edge is crucial for delaying the spread of secondary disasters.The highest risk is associated with the edge“building collapses→casualties,”and increased risks are also identified for chains such as“earthquake→building collapses→casualties,”“earthquake→landslides and debris flows→dammed lakes,”and“dammed lakes→floods→building collapses.”Following an earthquake,the prompt implementation of measures is crucial to effectively disrupt these chains and minimize the damage from secondary disasters.展开更多
The ductile design principle has been widely adopted in seismic design of structures,so the main structural components are designed to have the dual functions of bearing and energy dissipation under the earthquake.In ...The ductile design principle has been widely adopted in seismic design of structures,so the main structural components are designed to have the dual functions of bearing and energy dissipation under the earthquake.In recent years,the intensity of major earthquakes occurred in China,Chile,New Zealand,and Japan had reached or exceeded the design level of the maximum credible earthquake.In most cases,the designed structures did not collapse and the casualties were small.However,many structures were seriously damaged and must be overhauled or rebuilt,resulting in huge economic losses.Therefore,researchers have paid more attention to the seismic resilient structures.The shear wall can provide an efficient lateral force resisting capacity and has a wide range of applications in building structures.This review firstly summarized the research advances of seismic resilient shear wall structures,mainly from three aspects:high-performance materials,replaceable components,and hybrid structural systems;then,the development of seismic performance analysis,design methods,and engineering applications of seismic resilient shear wall structures were presented;finally,the key issues that need to be explored in the future research were discussed,which was helpful for the wide application of seismic resilient shear wall structures.展开更多
To realize seismic-resilient reinforced concrete(RC)moment-resisting frame structures,a novel selfcentering RC column with a rubber layer placed at the bottom(SRRC column)is proposed herein.For the column,the longitud...To realize seismic-resilient reinforced concrete(RC)moment-resisting frame structures,a novel selfcentering RC column with a rubber layer placed at the bottom(SRRC column)is proposed herein.For the column,the longitudinal reinforcement dissipates seismic energy,the rubber layer allows the rocking of the column,and the unbonded prestressed tendon enables self-centering capacity.A refined finite element model of the SRRC column is developed,the effectiveness of which is validated based on experimental results.Results show that the SRRC column exhibits stable energy dissipation capacity and no strength degradation;additionally,it can significantly reduce permanent residual deformation and mitigate damage to concrete.Extensive parametric studies pertaining to SRRC columns have been conducted to investigate the critical factors affecting their seismic performance.展开更多
The increasing intensity of strong earthquakes has a large impact on the seismic safety of bridges worldwide.As the key component in the transportation network,the cable-stayed bridge should cope with the increasing f...The increasing intensity of strong earthquakes has a large impact on the seismic safety of bridges worldwide.As the key component in the transportation network,the cable-stayed bridge should cope with the increasing future hazards to improve seismic safety.Seismic fragility analysis can assist the resilience assessment under different levels of seismic intensity.However,such an analysis is computationally intensive,especially when considering various random factors.The present paper implemented the deep learning neural networks that are integrated into the performance-based earthquake engineering framework to predict fragility functions and associated resilience index of cable-stayed bridges under seismic hazards to improve the computational efficiency while having sufficient accuracy.In the proposed framework,the Latin hypercube sampling was improved with additional uniformity to enhance the training process of the neural network.The well-trained neural network was then applied in a probabilistic simulation process to derive different component fragilities of the cable-stayed bridge.The estimated fragility functions were combined with the Monte Carlo simulations to predict system resilience.The proposed integrated framework in this study was demonstrated on an existing single-pylon cable-stayed bridge in China.Results reveal that this integrated framework yields accurate predictions of fragility functions for the cable-stayed bridge and has reasonable accuracy compared with the conventional methods.展开更多
Post-tensioning self-centering walls are a well-developed and resilient technology.However,despite extensive research,the application of this technology has previously been limited to low-rise buildings.A ten-story se...Post-tensioning self-centering walls are a well-developed and resilient technology.However,despite extensive research,the application of this technology has previously been limited to low-rise buildings.A ten-story selfcentering wall building has now been designed and constructed using the state-of-art design methodologies and construction detailing,as described in this paper.The building is designed in accordance with direct displacement-based design methodology,with modification of seismic demand due to relevant issues including higher-mode effects,second order effects,torsional effects,and flexural deformation of wall panels.Wall sections are designed with external energydissipating devices of steel dampers,and seismic performance of such designed self-centering walls is evaluated through numerical simulation.It is the first engineering project that uses self-centering walls in a high-rise building.The seismic design procedure of such a high-rise building,using self-centering wall structures,is comprehensively reviewed in this work,and additional proposals are put forward.Description of construction detailing,including slotted beams,flexible wall-to-floor connections,embedded beams,and damper installation,is provided.The demonstration project promotes the concept of seismic resilient structures and contributes to the most appealing city planning strategy of resilient cities at present.The paper could be a reference for industry engineers to promote the self-centering wall systems worldwide.展开更多
基金Financial support for this work was provided by the Science and Technology Commission of Shanghai Municipality(Project No.22YF1409500).
文摘To study the seismic resilience of a concrete-framed hospital building with viscous dampers,the elastoplastic time history analysis of a three-story concrete-framed hospital building under moderate and rare earthquakes was carried out by finite element analysis software.The structure’s overall response was studied,meanwhile,the seismic resilience of the building was evaluated from three aspects:repair cost,repair time,and casualties.The results show that viscous dampers can effectively reduce the repair cost,repair time,and casualties under earthquakes.Compared with the structure without dampers,the repair cost and repair time of the structure with dampers have been reduced by 67%and 69%respectively under moderate earthquakes,42%and 39%respectively under rare earthquakes,and the seismic resilience grade has been increased from zero to one star.
基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant Nos. 2019EEEVL0505,2019B02 and 2019A02Heilongjiang Touyan Innovation Team Program。
文摘The concept of seismic resilience has received significant attention from academia and industry during the last two decades. Different frameworks have been proposed for seismic resilience assessment of engineering systems at different scales(e.g., buildings, bridges, communities, and cities). Testbeds including Centerville virtual community(CVC), Memphis testbed(MTB), and the virtual city of Turin, Italy(VC-TI) have been developed during the last decade. However, the resilience assessment results of Chinese cities still require calibration based on a unified evaluation model. Therefore, a geographic information system(GIS)-based benchmark model of a medium-sized city located in the southeastern coastal region of China was developed. The benchmark city can be used to compare existing assessment frameworks and calibrate the assessment results. The demographics, site conditions, and potential hazard exposure of the benchmark city, as well as land use and building inventory are described in this paper. Data of lifeline systems are provided, including power, transportation, water, drainage, and natural gas distribution networks, as well as the locations of hospitals, emergency shelters, and schools. Data from past earthquakes and the literature were obtained to develop seismic fragility models, consequence models, and recovery models, which can be used as basic data or calibration data in the resilience assessment process. To demonstrate the completeness of the data included in the benchmark city, a case study on the accessibility of emergency rescue after earthquakes was conducted, and the preliminary results were discussed. The ultimate goal of this benchmark city is to provide a platform for calibrating resilience assessment results and to facilitate the development of resilient cities in China.
基金Supported by:National Natural Science Foundation of China under Grant Nos.52008092,U1934205,51908123the China Postdoctoral Science Foundation under Grant No.2021M690034+1 种基金the International Postdoctoral Exchange Fellowship Program of Chinathe Zhishan Postdoctoral Fellowship Program。
文摘Bridges designed following a conventional approach minimize the risk of collapse,but often require challenging,costly,and time-consuming restoration after an earthquake occurs.The new seismic design philosophy requires bridges to maintain functionality even after severe earthquakes.In this context,this paper proposes a controlled rocking pile foundation(CRPF)system and numerically evaluates bridges′degree of seismic resilience.The CRPF system allows a pile cap to rock on a pile foundation and dissipate seismic energy through inelastic deformations of replaceable bar fuses that connect a pile cap and piles.Following the conceptual design of the CRPF system,two analytical models were developed for a bridge pier utilizing the CRPF system and a pier designed to develop a plastic hinge in its column.The analytical results indicate that,after experiencing a severe earthquake,a conventionally designed bridge pier sustained substantial damage in its column and exhibited significant residual displacement.In contrast,a pier using the CRPF system showed negligible residual displacement and maintained elastic behavior except,as expected,for bar fuses.The damaged fuses can be rapidly replaced to recover bridge seismic resistance following an earthquake.Therefore,the CRPF system helps to achieve the desired postearthquake performance objectives.
基金National Natural Science Foundation of China under Grant No.51778198the Natural Science Foundation for Excellent Young Scientists of Heilongjiang Province under Grant No.YQ2020E023。
文摘The natural landscape in China exposes many existing RC buildings to aggressive environments.Such exposure can lead to deterioration in structural performance with regard to resisting events such as earthquakes.Corrosion of embedded reinforcement is one of the most common mechanisms by which such structural degradation occurs.There has been increasing attention in recent years toward seismic resilience in communities and their constituent construction;however,to date,studies have neglected the effect of natural aging.This study aims to examine the effect of reinforcement corrosion on the seismic resilience of RC frames that are designed according to Chinese seismic design codes.A total of twenty RC frames are used to represent design and construction that is typical of coastal China,with consideration given to various seismic fortification levels and elevation arrangements.Seismic fragility relationships are developed for case frames under varying levels of reinforcement corrosion,i.e.,corrosion rates are increased from 5%to 15%.Subsequently,the seismic resilience levels of uncorroded and corroded RC frames are compared using a normalized loss factor.It was found that the loss of resilience of the corroded frames is greater than that of their uncorroded counterparts.At the Rare Earthquake hazard level,the corrosioninduced increase in loss of resilience can be more than 200%,showing the significant effect of reinforcement corrosion on structural resilience under the influence of earthquakes.
文摘The objective of this paper is to demonstrate how assessment of seismic vulnerability can be effective in protection against earthquakes.Findings are reported from a case study in a densely populated urban area near an active fault,utilizing practical methods and exact engineering data.Vulnerability factors were determined due to technical considerations,and a field campaign was performed to collect the required data.Multi-criteria decision making was carried out by means of an analytical hierarchy process including a fuzzy standardization.Earthquake scenarios were applied through an implicit vulnerability model.GIS was utilized and the results were analyzed by classifying the state of vulnerability in levels as very low,low,moderate,high,and very high.Seismic resilience was evaluated as vulnerabilities below the moderate state,being about 40% in an intensity of 6 Mercalli and less than 10% in 10 Mercalli.It is concluded that seismic resilience in the area studied is not acceptable,the area is vulnerable in the expected scenarios,and due to the high seismicity of the region,proper crisis management planning is required in parallel with attempts toward retrofitting.In this regard,an emergency map was developed with reference to the assessed vulnerabilities.
基金supported by the Fulbright Laspau Pro-gram,which granted the first author a scholarship.Any opinions,find-ings,conclusions,or recommendations in this paper,however,are solely of the authors and do not necessarily reflect the views of the sponsors.
文摘Resilience of a community after an extreme event depends on the resilience of different infrastructure including buildings.There is no well-established approach to characterize and integrate building resilience for community-level applications.This paper investigates how different potential functionality measures can be used to quantify building resilience indexes,and how the results could be aggregated for a set of buildings to provide an indi-cator for the resilience of an entire community.The quantification of building resilience is based on different functionality measures including repair cost,occupancy level,and asset value.An archetype city block with four different buildings is defined.The individual results for each building are combined using a weight-based ap-proach to quantify the resilience index for the city block.The study then considers small-scale communities with different number of buildings to investigate the influence of contractor availability and collapse probability on the resilience indexes for the set of buildings.Both parameters are shown to be important when quantifying the resilience index.It is also demonstrated that the overall resilience of a community is directly influenced by the resilience of individual buildings.The findings presented here are useful both from the perspective of quantifying the resilience of a community on the basis of its building inventory,as well as for possible inclusion into a holistic framework that aims to quantify community resilience.
基金funded by National Key Research and Development Plan,China(2019YFE0112700)China Postdoctoral Science Foundation(2021M701937)+2 种基金National Science Foundation for Distinguished Young Scholars(52125806)National Natural Science Foundation of China(51908519)Shuimu Tsinghua Scholar Program(2021SM005)。
文摘Internet data center buildings have great importance for maintaining the post-earthquake functionality of telecommunication networks.It is essential to maintain the functionality of internet data center buildings during earthquakes or recover immediately after earthquakes,which is referred to as seismic resilience.In this study,a seismic resilience assessment framework based on the Chinese code GB/T 38591-2020 is introduced first.The seismic damage and post-earthquake repair of both structural components and non-structural components are considered in the resilience assessment framework.A method for post-earthquake functionality loss quantification is proposed based on damage state and functionality loss of component.The subsystem level and system level functionality loss can be obtained by an integration principle.The seismic resilience of a typical internet data center building was evaluated to demonstrate the effectiveness of the proposed method.To enhance the seismic resilience level,different disaster mitigation techniques including the energy dissipation technology using buckling restrained braces and the base-isolation technology using lead-rubber bearings are adopted.The seismic resilience is quantified and the corresponding seismic resilience curves under different earthquake intensities are developed based on evaluation results.
基金National Key Research and Development Program of China under Grant No.2022YFC3803004Postgraduate Research&Practice Innovation Program of Jiangsu Province under Grant No.SJCX20_0031Fundamental Research Funds for the Central Universities under Grant No.3205002108D。
文摘A resilience-incorporated risk assessment framework is proposed and demonstrated in this study to manifest the advantageous seismic resilience of precast concrete frame(PCF)structures with“dry”connections in terms of their low damage and rapid recovery.The framework integrates various uncertainties in the seismic hazard,fragility,capacity,demand,loss functions,and post-earthquake recovery.In this study,the PCF structures are distinguished from ordinary reinforced concrete frame(RCF)structures by characterizing multiple limit states for the PCF based on its unique damage mechanisms.Accordingly,probabilistic story-wise pushover analyses are performed to yield story-wise capacities for the predefined limit states.In the seismic resilience analysis,a step-wise recovery model is proposed to idealize the functionality recovery process,with separate considerations of the repair and non-repair events.The recovery model leverages the economic loss and downtime to delineate the stochastic post-earthquake recovery curves for the resilience loss estimation.As such,contingencies in the probabilistic post-earthquake repairs are incorporated and the empirical judgments on the recovery parameters are largely circumvented.The proposed framework is demonstrated through a comparative study between two“dry”connected PCFs and one RCF designed as alternative structural systems for a prototype building.The results from the risk quantification indicate that the PCFs show reduced loss hazards and lower expected losses relative to the RCF.Particularly,the PCF equipped with energy dissipation devices at the“dry”connections largely reduces the expected economic loss,downtime,and resilience loss by 29%,56%,and 60%,respectively,compared to the RCF.
基金Beijing Natural Science Foundation under Grant No. 8192008the Scientific Research Foundation of Graduate School of Southeast University under Grant No. YBPY2021+1 种基金the Science and Technology Project of Beijing Municipal Education Commission under Grant No. KM201910016014the Program for Changjiang Scholars and Innovative Research Team in University under Grant No. IRT_17R06。
文摘The improvement of the seismic resilience of existing reinforced-concrete(RC) frame buildings, which is essential for the seismic resilience of a city, has become a critical issue. Although seismic isolation is an effective method for improving the resilient performance of such buildings, target-oriented quantitative improvements of the resilient performance of these buildings have been reported rarely. To address this gap, the seismic resilience of two existing RC frame buildings located in a high seismic intensity region of China were assessed based on the Chinese Standard for Seismic Resilience Assessment of Buildings. The critical engineering demand parameters(EDPs) affecting the seismic resilience of such buildings were identified. Subsequently, the seismic resilience of buildings retrofitted with different isolation schemes(i.e., yield ratios) were evaluated and compared, with emphasis on the relationships among yield ratios, EDPs, and levels of seismic resilience. Accordingly, to achieve the highest level of seismic resilience with respect to the Chinese standard, a yield ratio of 3% was recommended and successfully applied to the target-oriented design for the seismic-resilience improvement of an existing RC frame building. The research outcome can provide an important reference for the resilience-based retrofitting of existing RC frame buildings using seismic isolation in urban cities.
基金jointly sponsored by the Institute of Engineering Mechanicsthe Natural Science Foundation of China(No.52122811)。
文摘The seismic performance of medical systems is crucial for the seismic resilience of communities.The report summarizes the observed damage to twelve hospital buildings in the area affected by the MW 7.8 and MW 7.5 earthquakes on February 6,2023 in Turkey.They include five base-isolated buildings and seven fixed-base buildings in southcentral Turkey's seven most heavily affected provinces.By relating the post-quake occupancy statuses of the hospitals with the estimated seismic demands during the earthquake doublet,the report offers the following observations:(1)the base-isolated hospital buildings on friction pendulum bearings generally exhibited superior performance of achieving the goal of immediate occupancy and provided better protection for nonstructural elements than fixed-base counterparts did;(2)the fixed-base hospital buildings of reinforced concrete structures constructed after 2001 successfully achieved the goal of collapse prevention even under very high seismic demands;(3)some fixed-base hospitals also remained operational even if they were very close to the fault rupture and were subjected to higher-than-design-level earthquake ground motions.
文摘Probabilistic seismic performance assessment method for buildings offers a valuable approach to simulate the broader regional impacts:economic losses,downtime,and casualties.A crucial aspect of this process entails ac-counting for the spatial correlation of building performances,aiming for an accurate estimation of the probability of extreme regional losses,such as the simultaneous collapse of buildings with similar structural characteristics.In this study,a correlation model based on a Gaussian random field is employed,and several key challenges associated with its application are addressed.In addition,efficiency of five different methods of selecting station records from the same earthquake scenario is compared.The minimum number of earthquake records necessary to achieve a stable correlation result is determined.Additionally,spatial correlations derived from different his-tory earthquake events are compared.By addressing these critical issues,this research contributes to refining the reliability of probabilistic methods for regional resilience assessment.
基金supported by a grant from the National Natural Science Foundation of China(52125804).
文摘A magnetorheological self-centering brace(MR–SCB)has been proposed to improve the energy dissipation capability of the brace.In this paper,a 15-story MR–SCB braced frame is numerically analyzed to examine its seismic performance and resilience.The MR–SCB provides higher lateral stiffness than the buckling restrained brace and greater energy dissipation capability than the existing self-centering brace.The brace also exhibits a reliable recentering capacity.Under rare earthquakes,the maximum average residual deformation ratio of the structure is less than the 0.5%limit.Under mega earthquakes,the maximum average interstory drift ratio of the structure does not exceed the 2.0%elastoplastic limit,and its maximum average floor acceleration ratio is 1.57.The effects of mainshock and aftershock on the structural behavior are also investigated.The interstory drift and residual deformation of the structure increase with the increase of the intensity of the aftershock.Under aftershocks with the same intensity as the mainshocks,the maximum increment of the residual deformation ratio of the structure is 81.8%,and the average interstory drift ratios of the 12^(th),7^(th),and 3^(rd)stories of the structure are increased by 13.4%,9.2%and 7.5%,respectively.The strong aftershock may significantly cause increased damage to the structure,and increase its collapse risk and residual deformation.
基金National Key Research and Development Program of China(No.2022YFC3803000).
文摘According to news reports on severe earthquakes since 2008,a total of 51 cases with magnitudes of 6.0 or above were analyzed,and 14 frequently occurring secondary disasters were identified.A disaster chain model was developed using principles from complex network theory.The vulnerability and risk level of each edge in this model were calculated,and high-risk edges and disaster chains were identified.The analysis reveals that the edge“floods→building collapses”has the highest vulnerability.Implementing measures to mitigate this edge is crucial for delaying the spread of secondary disasters.The highest risk is associated with the edge“building collapses→casualties,”and increased risks are also identified for chains such as“earthquake→building collapses→casualties,”“earthquake→landslides and debris flows→dammed lakes,”and“dammed lakes→floods→building collapses.”Following an earthquake,the prompt implementation of measures is crucial to effectively disrupt these chains and minimize the damage from secondary disasters.
基金supported by the Scientific Research Fund of Multi-Functional Shaking Tables Laboratory of Beijing University of Civil Engineering and Architecture(Grant No.2021MFSTL01)the National Natural Science Foundation of China(Grant No.52108440)+2 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20210253)the Project Funded by China Postdoctoral Science Foundation(Grant No.2021M690620)Jiangsu Planned Projects for Postdoctoral Research Funds(Grant No.2021K263B)。
文摘The ductile design principle has been widely adopted in seismic design of structures,so the main structural components are designed to have the dual functions of bearing and energy dissipation under the earthquake.In recent years,the intensity of major earthquakes occurred in China,Chile,New Zealand,and Japan had reached or exceeded the design level of the maximum credible earthquake.In most cases,the designed structures did not collapse and the casualties were small.However,many structures were seriously damaged and must be overhauled or rebuilt,resulting in huge economic losses.Therefore,researchers have paid more attention to the seismic resilient structures.The shear wall can provide an efficient lateral force resisting capacity and has a wide range of applications in building structures.This review firstly summarized the research advances of seismic resilient shear wall structures,mainly from three aspects:high-performance materials,replaceable components,and hybrid structural systems;then,the development of seismic performance analysis,design methods,and engineering applications of seismic resilient shear wall structures were presented;finally,the key issues that need to be explored in the future research were discussed,which was helpful for the wide application of seismic resilient shear wall structures.
基金the National Key R&D Program of China(No.2022YFC3803003)the Fundamental Research Funds for the Central Universities.
文摘To realize seismic-resilient reinforced concrete(RC)moment-resisting frame structures,a novel selfcentering RC column with a rubber layer placed at the bottom(SRRC column)is proposed herein.For the column,the longitudinal reinforcement dissipates seismic energy,the rubber layer allows the rocking of the column,and the unbonded prestressed tendon enables self-centering capacity.A refined finite element model of the SRRC column is developed,the effectiveness of which is validated based on experimental results.Results show that the SRRC column exhibits stable energy dissipation capacity and no strength degradation;additionally,it can significantly reduce permanent residual deformation and mitigate damage to concrete.Extensive parametric studies pertaining to SRRC columns have been conducted to investigate the critical factors affecting their seismic performance.
基金supported by the National Natural Science Foundation of China (Grant No.51708527)the R&D Project of China Railway Siyuan Survey and Design Institute Group Co.,Ltd. (Grant No.2020k172)。
文摘The increasing intensity of strong earthquakes has a large impact on the seismic safety of bridges worldwide.As the key component in the transportation network,the cable-stayed bridge should cope with the increasing future hazards to improve seismic safety.Seismic fragility analysis can assist the resilience assessment under different levels of seismic intensity.However,such an analysis is computationally intensive,especially when considering various random factors.The present paper implemented the deep learning neural networks that are integrated into the performance-based earthquake engineering framework to predict fragility functions and associated resilience index of cable-stayed bridges under seismic hazards to improve the computational efficiency while having sufficient accuracy.In the proposed framework,the Latin hypercube sampling was improved with additional uniformity to enhance the training process of the neural network.The well-trained neural network was then applied in a probabilistic simulation process to derive different component fragilities of the cable-stayed bridge.The estimated fragility functions were combined with the Monte Carlo simulations to predict system resilience.The proposed integrated framework in this study was demonstrated on an existing single-pylon cable-stayed bridge in China.Results reveal that this integrated framework yields accurate predictions of fragility functions for the cable-stayed bridge and has reasonable accuracy compared with the conventional methods.
基金the Distinguished Young Scientists Fund of National Natural Science Foundation of China(Grant No.52025083)the technical support of Shanghai CITI-RAISE Construction Group.
文摘Post-tensioning self-centering walls are a well-developed and resilient technology.However,despite extensive research,the application of this technology has previously been limited to low-rise buildings.A ten-story selfcentering wall building has now been designed and constructed using the state-of-art design methodologies and construction detailing,as described in this paper.The building is designed in accordance with direct displacement-based design methodology,with modification of seismic demand due to relevant issues including higher-mode effects,second order effects,torsional effects,and flexural deformation of wall panels.Wall sections are designed with external energydissipating devices of steel dampers,and seismic performance of such designed self-centering walls is evaluated through numerical simulation.It is the first engineering project that uses self-centering walls in a high-rise building.The seismic design procedure of such a high-rise building,using self-centering wall structures,is comprehensively reviewed in this work,and additional proposals are put forward.Description of construction detailing,including slotted beams,flexible wall-to-floor connections,embedded beams,and damper installation,is provided.The demonstration project promotes the concept of seismic resilient structures and contributes to the most appealing city planning strategy of resilient cities at present.The paper could be a reference for industry engineers to promote the self-centering wall systems worldwide.