NiO_(x)as a hole transport material for inverted perovskite solar cells has received great attention owing to its high transparency,low fabrication temperature,and superior stability.However,the mismatched energy leve...NiO_(x)as a hole transport material for inverted perovskite solar cells has received great attention owing to its high transparency,low fabrication temperature,and superior stability.However,the mismatched energy levels and possible redox reactions at the NiO_(x)/perovskite interface severely limit the performance of NiO_(x) based inverted perovskite solar cells.Herein,we introduce a p-type self-assembled monolayer between NiO_(x)and perovskite layers to modify the interface and block the undesirable redox reaction between perovskite and NiO_(x)The selfassembled monolayer molecules all contain phosphoric acid function groups,which can be anchored onto the NiOr surface and passivate the surface defect.Moreover,the introduction of self-assembled monolayers can regulate the energy level structure of NiO_(x),reduce the interfacial band energy offset,and hence promote the hole transport from perovskite to NiO_(x)layer.Consequently,the device performance is significantly enhanced in terms of both power conversion efficiency and stability.展开更多
In the application of polymer gels to profile control and water shutoff,the gelation time will directly determine whether the gel can"go further"in the formation,but the most of the methods for delaying gel ...In the application of polymer gels to profile control and water shutoff,the gelation time will directly determine whether the gel can"go further"in the formation,but the most of the methods for delaying gel gelation time are complicated or have low responsiveness.There is an urgent need for an effective method for delaying gel gelation time with intelligent response.Inspired by the slow-release effect of drug capsules,this paper uses the self-assembly effect of gas-phase hydrophobic SiO_(2) in aqueous solution as a capsule to prepare an intelligent responsive self-assembled micro-nanocapsules.The capsule slowly releases the cross-linking agent under the stimulation of external conditions such as temperature and pH value,thus delaying gel gelation time.When the pH value is 2 and the concentration of gas-phase hydrophobic SiO_(2) particles is 10%,the gelation time of the capsule gel system at 30,60,90,and 120℃is12.5,13.2,15.2,and 21.1 times longer than that of the gel system without containing capsule,respectively.Compared with other methods,the yield stress of the gel without containing capsules was 78 Pa,and the yield stress after the addition of capsules was 322 Pa.The intelligent responsive self-assembled micronanocapsules prepared by gas-phase hydrophobic silica nanoparticles can not only delay the gel gelation time,but also increase the gel strength.The slow release of cross-linking agent from capsule provides an effective method for prolongating the gelation time of polymer gels.展开更多
Inverted perovskite solar cells have gained prominence in industrial advancement due to their easy fabrication,low hysteresis effects,and high stability.Despite these advantages,their efficiency is currently limited b...Inverted perovskite solar cells have gained prominence in industrial advancement due to their easy fabrication,low hysteresis effects,and high stability.Despite these advantages,their efficiency is currently limited by excessive defects and poor carrier transport at the perovskite-electrode interface,particularly at the buried interface between the perovskite and transparent conductive oxide(TCO).Recent efforts in the perovskite community have focused on designing novel self-assembled molecules(SAMs)to improve the quality of the buried interface.However,a notable gap remains in understanding the regulation of atomic-scale interfacial properties of SAMs between the perovskite and TCO interfaces.This understanding is crucial,particularly in terms of identifying chemically active anchoring groups.In this study,we used the star SAM([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)as the base structure to investigate the defect passivation effects of eight common anchoring groups at the perovskite-TCO interface.Our findings indicate that the phosphonic and boric acid groups exhibit notable advantages.These groups fulfill three key criteria:they provide the greatest potential for defect passivation,exhibit stable adsorption with defects,and exert significant regulatory effects on interface dipoles.Ionized anchoring groups exhibit enhanced passivation capabilities for defect energy levels due to their superior Lewis base properties,which effectively neutralize local charges near defects.Among various defect types,iodine vacancies are the easiest to passivate,whereas iodine-substituted lead defects are the most challenging to passivate.Our study provides comprehensive theoretical insights and inspiration for the design of anchoring groups in SAMs,contributing to the ongoing development of more efficient inverted perovskite solar cells.展开更多
The hydroxyl-terminated self-assembled monolayer(OH-SAM),as a surface resistant to protein adsorption,exhibits substantial potential in applications such as ship navigation and medical implants,and the appropriate str...The hydroxyl-terminated self-assembled monolayer(OH-SAM),as a surface resistant to protein adsorption,exhibits substantial potential in applications such as ship navigation and medical implants,and the appropriate strategies for designing anti-fouling surfaces are crucial.Here,we employ molecular dynamics simulations and alchemical free energy calculations to systematically analyze the factors influencing resistance to protein adsorption on the SAMs terminated with single or double OH groups at three packing densities(∑=2.0 nm^(-2),4.5 nm^(-2),and 6.5 nm^(-2)),respectively.For the first time,we observed that the compactness and order of interfacial water enhance its physical barrier effect,subsequently enhancing the resistance of SAM to protein adsorption.Notably,the spatial hindrance effect of SAM leads to the embedding of protein into SAM,resulting in a lack of resistance of SAM towards protein.Furthermore,the number of hydroxyl groups per unit area of double OH-terminated SAM at ∑=6.5 nm^(-2) is approximately 2 to 3 times that of single OH-terminated SAM at ∑=6.5 nm^(-2) and 4.5 nm^(-2),consequently yielding a weaker resistance of double OH-terminated SAM towards protein.Meanwhile,due to the structure of SAM itself,i.e.,the formation of a nearly perfect ice-like hydrogen bond structure,the SAM exhibits the weakest resistance towards protein.This study will complement and improve the mechanism of OH-SAM resistance to protein adsorption,especially the traditional barrier effect of interfacial water.展开更多
Bio-based cyclodextrins(CDs)are a common research object in supramolecular chemistry.The special cavity structure of CDs can form supramolecular self-assemblies such as vesicles and microcrystals through weak interact...Bio-based cyclodextrins(CDs)are a common research object in supramolecular chemistry.The special cavity structure of CDs can form supramolecular self-assemblies such as vesicles and microcrystals through weak interaction with guest molecules.The different forms of supramolecular self-assemblies can be transformed into each other under certain conditions.The regulation of supramolecular self-assembly is not only helpful to understand the self-assembly principle,but also beneficial to its application.In the present study,the self-assembly behavior of epoxy-β-cyclodextrin(EP-β-CD)and mixed anionic and cationic surfactant system(sodium dodecyl sulfate/dodecyltrimethylammonium bromide,SDS/DTAB)in aqueous solution was studied.Morphological and particle size characterization found that the SDS/DTAB@EP-β-CD complex,as the basic building unit,self-assembled into worm-like micelles at lower temperatures and vesicles at higher temperatures.Nuclear magnetic resonance(NMR)and Fourier transform infrared spectroscopy(FT-IR)analysis revealed that the driving force for the formation of vesicles and worm-like micelles was the hydrogen bonds between EP-β-CD molecules,while water molecules played an important role in promoting vesicle formation between SDS/DTAB@EP-β-CD units.Herein,the mechanism of the morphologic transformation of SDS/DTAB@EP-β-CD supramolecular aggregates induced by temperature was elucidated by exploring the self-assembly process,which may provide an excellent basis for the development of delivery carriers.展开更多
Generating sufficient strains on metal surfaces are highly challenging owing to that most metals can deform plastically to relax the strains on the surfaces.In this work,we developed a facile but highly efficient stac...Generating sufficient strains on metal surfaces are highly challenging owing to that most metals can deform plastically to relax the strains on the surfaces.In this work,we developed a facile but highly efficient stacked deposition strategy to in situ activation and reconstruction of NiO/NiOOH on Ni matrix,following with the migration of Fe ions to NiOOH.The Fe sites on the Ni/NiO/NiOOH facilitate the formation of the stable*OH oxygenated intermediates,and the Ni matrix in the catalyst provides the catalyst excellent stability.The oxygen evolution reaction(OER)performance of the stacked NiFe-5 with compressive strain displays the strengthened binding to oxygenated intermediates and superior OER activity,the ultralow overpotentials of 162 versus reversible hydrogen electrode at 10 mA cm^(-2).On the other hand,the Ni-5 without the incorporation of Fe has shown an outstanding hydrogen evolution reaction(HER)activity,affording an overpotential of 47 mV at 10 mA cm^(-2).The NiFe-5‖Ni-5 enables the overall water splitting at a voltage of 1.508 V to achieve 20 mA cm^(-2) with remarkable durability.The stacked deposition strategy improves binding strength of Ni-based catalysts to oxygenated intermediates via generating compressive strain,causing high catalytic activities on OER and HER.展开更多
We demonstrated a chemical process in the fabrication of a SERS fiber probe with an ultrahigh sensitivity.The synthesis was carried out by preparing Au@Ag core-shell nanorods (Au@Ag-NRs) selfassembled on polyelectroly...We demonstrated a chemical process in the fabrication of a SERS fiber probe with an ultrahigh sensitivity.The synthesis was carried out by preparing Au@Ag core-shell nanorods (Au@Ag-NRs) selfassembled on polyelectrolyte (PE) multilayers,for which Au@Ag-NRs were controlled by adjusting the silver layer thickness.The effect of silver layer thickness of Au@Ag-NRs on the SERS performance of the fiber probe was investigated.The SERS fiber probe shows the best performance when the silver layer thickness is controlled at 8.57 nm.Under the condition of optimizing silver layer thickness,the fiber probe exhibits ultra-high sensitivity (i e,10^(-10) M crystalline violet,CV),good reproducibility (i e,RSD of 3.5%) and stability.Besides,electromagnetic field distribution of the SERS fiber probe was also investigated.The strongest enhancement is found within the core of fiber,whereas a weakened electromagnetic field exists in the fiber cladding layer.The SERS fiber probe can be a good candidate in ultra-trace detection for biomedical and environmental areas.展开更多
Self-assembled monolayers (SAMs) of (3-mercaptopropy) trimethoxysilane (3-MtrF) chemisorbed on silver surfaces were chemically "modified by 1-octadecanethiol to form self-assembled mixed-monolayers (SAMM) and...Self-assembled monolayers (SAMs) of (3-mercaptopropy) trimethoxysilane (3-MtrF) chemisorbed on silver surfaces were chemically "modified by 1-octadecanethiol to form self-assembled mixed-monolayers (SAMM) and the co-polymer of N-vinylcarbazole and methyl methacrylate ester (to form complex selfassembled film (CSAF)). The oxidation resistance of these barriers on silver surfaces and some influential factors concerned processes were analyzed by electrochemical impedance spectroscopy (EIS) in a 10% NaOH aqueous solution at oxidation potential. X-ray diffraction (XRD) spectroscopy shows that the oxidation occurring on the silver surface may be restrained effectively due to the coating barrier, and CSAF(Ⅱ) is the best one. Studies also reveal that oxide processes of bare silver and a series of modified silver electrodes in a 10% NaOH aqueous solution are of more than two relaxation time constants.展开更多
We demonstrate surface enhanced Raman scattering (SERS) detection of self-assembled nano silver film using a low-cost electrolysis strategy at a proper voltage and silver nitrate concentration in electrolyte. The co...We demonstrate surface enhanced Raman scattering (SERS) detection of self-assembled nano silver film using a low-cost electrolysis strategy at a proper voltage and silver nitrate concentration in electrolyte. The concentration dependence of SERS from crystal violet (CV) molecules adsorbed to silver film was systematically studied. Importantly, the SERS surface enhancement factor of such nano silver film was 603, which was measured by a portable Raman spectrometer. The minimum concentration of detectable CV molecules can be as low as 10^-11 mol/L. The nano silver film prepared by this electrolysis method is an active, stable, cost-effective, and reusable SERS substrate.展开更多
Self assembled monolayers (SAMs) of 1-tetradecylphosphonic acids (TDPA, CH3(CH2)13P(O)(OH)2 ) were formed on the 2024 aluminum alloy surface in TDPA-containing ethanol-water solutions with different water co...Self assembled monolayers (SAMs) of 1-tetradecylphosphonic acids (TDPA, CH3(CH2)13P(O)(OH)2 ) were formed on the 2024 aluminum alloy surface in TDPA-containing ethanol-water solutions with different water content. The adsorption and corrosion protection properties of the SAMs for 2024 alloy in 0.1 mol/L H2SO4 solution were examined and characterized by potentiodynamic polarization, electrochemical impedance spectrum (EIS), Fourier transformed infrared spectroscopy (FTIR), Auger electron spectra (AES) and atomic force microscopy (AFM). FTIR and AES results show that the TDPA molecules were successfully adsorbed on the 2024 aluminum alloy surface, and the density of the SAMs increased with the increasing water content in the assembly solution. The results of electrochemical studies and corrosion morphologies observed by AFM show that a 4 h modification resulted in maximal inhibition efficiency, and the higher the water content in the assembly solution is, the better the inhibition performance of the SAMs can be achieved. The effect of water content in TDPA solutions on the performance of the SAMs is related to the hydration reaction of the metal surface.展开更多
Dielectric properties of dithiol self-assemble monolayers (SAMs) under ac electric field were presented, Using a Hg-SAM/SAM-Ⅱg junction, the ac impedances of dithiol SAMs were measured using a sinusoidal perturbati...Dielectric properties of dithiol self-assemble monolayers (SAMs) under ac electric field were presented, Using a Hg-SAM/SAM-Ⅱg junction, the ac impedances of dithiol SAMs were measured using a sinusoidal perturbation of 30 mV (peak to-peak) with the frequency ranging from 1 Hz to 1 MHz at zero bias. The contributions from dithiol SAMs and solvent interlayers were separated due to their different behaviors at ac impedance. The peak position in the loss spectra (the plot; of tgδ vs. frequency) moves to low frequcney with the incrcase of chain length of dithiols. Using a correlation of peak position with the chain length, the active energies of 23-39 meV for dithiol SAMs of C6-C10 under an ac electric field were derived,展开更多
The authors have investigated the pH and ionic strength response of self-assembled layers formed by adsorption of amphiphilic weak polyelectrolytes. Using the SFA (Surface Forces Apparatus) the authors measured forc...The authors have investigated the pH and ionic strength response of self-assembled layers formed by adsorption of amphiphilic weak polyelectrolytes. Using the SFA (Surface Forces Apparatus) the authors measured force-distance profiles of poly (isoprene)-poly (acrylic acid) block copolymers adsorbed on mica. Also by Atomic Force Microscopy the authors captured single polyelectrolyte molecule adsorbed on a surface. The effect of salt concentration (Cs) and pH upon the height of the brush layers was explored mainly by measuring the forces between two adsorbed polyelectrolyte brushes. At pH = 4 our results are in good agreement with the scaling prediction L0 ∝Cs-1/3 Changing the pH from 4 to 10 causes a remarkable swelling of the polymer layer, but only a weak dependence on salt concentration was detected at the higher pH. This can be attributed to the degree of dissociation, which depends on the local pH value. At low pH the polyelectrolyte chains have a low charge density, while on increasing the pH the degree of dissociation rises, and the increased charge density is followed by swelling of the adsorbed layer. The local concentration of ions in the brush is now greater than that of pH = 4 and approximately equivalent to 0.3 M. So the swelling is only weakly dependent on salt concentration in the range 0.01-1.0 M. The results demonstrate the tunable nature of such self-assembled polyelectroiyte brushes whose height and range of interactions, can be systematically controlled by adjusting the pH and ionic strength of the medium.展开更多
We investigate tunneling electron induced luminescence from isolated single porphyrin molecules that are decoupled by striped-phase self-assembled monolayer of octanethiol from the underneath Au(111) substrate. Intr...We investigate tunneling electron induced luminescence from isolated single porphyrin molecules that are decoupled by striped-phase self-assembled monolayer of octanethiol from the underneath Au(111) substrate. Intrinsic single-molecule electroluminescence has been realized by such decoupling at both bias polarities. The photon emission intensity acquired from the molecular lobe is found stronger than that from the molecular center. These re- sults provide useful information on the understanding of electroluminescent behavior and mechanism in molecular tunnel junctions.展开更多
In order to improve the cancer-targeting and selective activity of antineoplastic agent [5-fluorouracil (5-FU)], a novel pH-responsive drug delivery system [pullulan acetate/sulfonamide (PA/SDM) conjugate] was syn...In order to improve the cancer-targeting and selective activity of antineoplastic agent [5-fluorouracil (5-FU)], a novel pH-responsive drug delivery system [pullulan acetate/sulfonamide (PA/SDM) conjugate] was synthesized by a diafiltration method. Sulfonamide was grafted to the hydrophobicaUy modified pullulan acetate to enhance the pH sensitivity for better cancer-targeting delivery. 5-FU was loaded into the self-assembled nanoparticles by the same method. The drug-loaded self-assembled nanoparticles were successfully obtained and characterized in terms of particle size, morphology and drug loading and release profile at various pHs. The results showed that the mean diameter of the self-assembled particles was approximately 100nm, with uniform size and good spherical morphology. The nanoparticles showed good stability at pH 7.4, which is equal to that of the normal body fluid, but shrank and aggregated below pH 6.8, which is close to the pH with tumors. The loading efficiency and concentration of released 5-FU was monitored at 269 nm on the UVNis spectrophotometer. The release profile was heavily pH-dependent around phvsiological pH, and the release rate was significantly enhanced under pH of 6.8.展开更多
Silane coupling reagent (3-aminopropyltriethoxysilane (APTES)) was prepared on single-crystal silicon substrates to form two-dimensional self-assembled monolayer (SAM). The terminal-NH2 groups in the film were in situ...Silane coupling reagent (3-aminopropyltriethoxysilane (APTES)) was prepared on single-crystal silicon substrates to form two-dimensional self-assembled monolayer (SAM). The terminal-NH2 groups in the film were in situ phosphorylated to -PO(OH)2 group to endow the film with good chemisorption ability. Then La-based thin films were deposited on phosphorylated APTES-SAM in order to make good use of the chemisorption ability of -PO(OH)2 groups. The thickness of the film was determined with ellipsometer, while phase transformation and surface morphology, surface energy, phase composition were analyzed by means of atomic force microscope (AFM), contact angle measurements and X-ray photoelectron spectroscopy (XPS). The results indicated that the terminal-NH2 groups could be completely transformed into desirable-PO(OH)2 groups after phosphorylation of APTES-SAM. Detailed XPS analysis of the La3+ peaks revealed that lanthanum element existed in the films in different states. As a result, conclusion could be made that lanthanum reacted with -PO(OH)2 groups on the surface of the substrate by chemical bond which would improve the bonding strength between the film and silicon substrate. Since the La-based thin films were well adhered to the silicon substrate, it might find promising application in the surface-modification of single-crystal Si and SiC in microelectromechanical systems (MEMS).展开更多
The development of natural biomaterials applied for hard tissue repair and regeneration is of great importance,especially in societies with a large elderly population.Self-assembled peptide hydrogels are a new generat...The development of natural biomaterials applied for hard tissue repair and regeneration is of great importance,especially in societies with a large elderly population.Self-assembled peptide hydrogels are a new generation of biomaterials that provide excellent biocompatibility,tunable mechanical stability,injectability,trigger capability,lack of immunogenic reactions,and the ability to load cells and active pharmaceutical agents for tissue regeneration.Peptide-based hydrogels are ideal templates for the deposition of hydroxyapatite crystals,which can mimic the extracellular matrix.Thus,peptide-based hydrogels enhance hard tissue repair and regeneration compared to conventional methods.This review presents three major self-assembled peptide hydrogels with potential application for bone and dental tissue regeneration,including ionic self-complementary peptides,amphiphilic(surfactant-like)peptides,and triple-helix(collagen-like)peptides.Special attention is given to the main bioactive peptides,the role and importance of self-assembled peptide hydrogels,and a brief overview on molecular simulation of self-assembled peptide hydrogels applied for bone and dental tissue engineering and regeneration.展开更多
Light confinement induced by spontaneous near-surface resonance is inherently determined by the location and geometry of metallic nanostructures(NSs),offering a facile and effective approach to break through the limit...Light confinement induced by spontaneous near-surface resonance is inherently determined by the location and geometry of metallic nanostructures(NSs),offering a facile and effective approach to break through the limitation of the light-mater interaction within the photoactive layers.Here,we demonstrate high-performance Al NS/ZnO quantum dots(Al/ZnO) heterostructure UV photodetectors with controllable morphologies of the self-assembled Al NSs.The Al/ZnO heterostructures exhibit a superior light utilization than the ZnO/Al heterostructures,and a strong morphological dependence of the Al NSs on the optical properties of the heterostructures.The inter-diffusion of Al atoms into ZnO matrixes is of a great benefit for the carrier transportation.Consequently,the optimal photocurrent of the Al/ZnO heterostructure photodetectors is significantly increased by 275 times to ~1.065 mA compared to that of the pristine ZnO device,and an outstanding photoresponsivity of 11.98 A W-1 is correspondingly achieved under 6.9 MW cm-2 UV light illumination at 10 V bias.In addition,a relatively fast response is similarly witnessed with the Al/ZnO devices,paving a path to fabricate the high-performance UV photodetectors for applications.展开更多
A mixed self-assembled monolayers (SAMs) of thioctic acid (T-COOH) and thioctic acid amide (T-NH2) were used to immobilize tyrosinase for fabricating biosensor. The results showed that the mixed SAMs prepared fr...A mixed self-assembled monolayers (SAMs) of thioctic acid (T-COOH) and thioctic acid amide (T-NH2) were used to immobilize tyrosinase for fabricating biosensor. The results showed that the mixed SAMs prepared from solution at the ratio of 1:4 provided an excellent microenvironment for enzymatic reaction between tyrosinase and substrate. The biosensor exhibited a fast response and high sensitivity for sensing substrate.展开更多
A thioester-functionalized triphenylamine hole-transporting molecule (TPD-SAc) was synthesized and self-assembled to form a monolayer on an ultra-thin Au film supported on indium-tin oxide glass. The modified surfac...A thioester-functionalized triphenylamine hole-transporting molecule (TPD-SAc) was synthesized and self-assembled to form a monolayer on an ultra-thin Au film supported on indium-tin oxide glass. The modified surface was characterized by aqueous contact angle, ellipsometer, atomic force microscopy, X-ray photoelectron spectroscopy, and ultraviolet pho- toelectron spectrometer to substantiate the formation of compact and pinhole-free monolayers. The modified organic light emitting diode device [indium-tin oxide/Au (5 nm)/self-assembled monolayers (SAM)/TPD (50 nm)/Alq3 (40 nm)/TPBI (15 nm)/LiF (1 nm)/A1 (100 nm)] showed a luminance of 7303.90 cd/m^2 and a current efficiency of 8.49 cd/A with 1.78 and 2.29-fold increase, respectively, compared to the control device without SAM. The improvements were attributed to the enhanced compatibility of the organic-inorganic interface, matched energy level by introduction of an energy mediating step and superior hole-injection property of SAM molecules.展开更多
In order to improve the cancer-targeting and selective activity of antineoplastic agent [5-fluorouracil (5-FU)], a novel pH-responsive drug delivery system [pullulan acetate/sulfonamide (PA/SDM) conjugate] was syn- th...In order to improve the cancer-targeting and selective activity of antineoplastic agent [5-fluorouracil (5-FU)], a novel pH-responsive drug delivery system [pullulan acetate/sulfonamide (PA/SDM) conjugate] was syn- thesized by a diafiltration method. Sulfonamide was grafted to the hydrophobically modified pullulan acetate to enhance the pH sensitivity for better cancer-targeting delivery. 5-FU was loaded into the self-assembled nanoparti- cles by the same method. The drug-loaded self-assembled nanoparticles were successfully obtained and character- ized in terms of particle size, morphology and drug loading and release profile at various pHs. The results showed that the mean diameter of the self-assembled particles was approximately 100nm, with uniform size and good spherical morphology. The nanoparticles showed good stability at pH 7.4, which is equal to that of the normal body fluid, but shrank and aggregated below pH 6.8, which is close to the pH with tumors. The loading efficiency and concentration of released 5-FU was monitored at 269 nm on the UV/Vis spectrophotometer. The release profile was heavily pH-dependent around physiological pH, and the release rate was significantly enhanced under pH of 6.8.展开更多
文摘NiO_(x)as a hole transport material for inverted perovskite solar cells has received great attention owing to its high transparency,low fabrication temperature,and superior stability.However,the mismatched energy levels and possible redox reactions at the NiO_(x)/perovskite interface severely limit the performance of NiO_(x) based inverted perovskite solar cells.Herein,we introduce a p-type self-assembled monolayer between NiO_(x)and perovskite layers to modify the interface and block the undesirable redox reaction between perovskite and NiO_(x)The selfassembled monolayer molecules all contain phosphoric acid function groups,which can be anchored onto the NiOr surface and passivate the surface defect.Moreover,the introduction of self-assembled monolayers can regulate the energy level structure of NiO_(x),reduce the interfacial band energy offset,and hence promote the hole transport from perovskite to NiO_(x)layer.Consequently,the device performance is significantly enhanced in terms of both power conversion efficiency and stability.
基金support and funding from the National Natural Science Foundation of China (No.52174047)Sinopec Project (No.P21063-3)。
文摘In the application of polymer gels to profile control and water shutoff,the gelation time will directly determine whether the gel can"go further"in the formation,but the most of the methods for delaying gel gelation time are complicated or have low responsiveness.There is an urgent need for an effective method for delaying gel gelation time with intelligent response.Inspired by the slow-release effect of drug capsules,this paper uses the self-assembly effect of gas-phase hydrophobic SiO_(2) in aqueous solution as a capsule to prepare an intelligent responsive self-assembled micro-nanocapsules.The capsule slowly releases the cross-linking agent under the stimulation of external conditions such as temperature and pH value,thus delaying gel gelation time.When the pH value is 2 and the concentration of gas-phase hydrophobic SiO_(2) particles is 10%,the gelation time of the capsule gel system at 30,60,90,and 120℃is12.5,13.2,15.2,and 21.1 times longer than that of the gel system without containing capsule,respectively.Compared with other methods,the yield stress of the gel without containing capsules was 78 Pa,and the yield stress after the addition of capsules was 322 Pa.The intelligent responsive self-assembled micronanocapsules prepared by gas-phase hydrophobic silica nanoparticles can not only delay the gel gelation time,but also increase the gel strength.The slow release of cross-linking agent from capsule provides an effective method for prolongating the gelation time of polymer gels.
基金supported by the National Natural Science Foundation of China(Grant Nos.62321166653,22090044,and 12350410372).Calculations were performed in part at the high-performance computing center of Jilin University.
文摘Inverted perovskite solar cells have gained prominence in industrial advancement due to their easy fabrication,low hysteresis effects,and high stability.Despite these advantages,their efficiency is currently limited by excessive defects and poor carrier transport at the perovskite-electrode interface,particularly at the buried interface between the perovskite and transparent conductive oxide(TCO).Recent efforts in the perovskite community have focused on designing novel self-assembled molecules(SAMs)to improve the quality of the buried interface.However,a notable gap remains in understanding the regulation of atomic-scale interfacial properties of SAMs between the perovskite and TCO interfaces.This understanding is crucial,particularly in terms of identifying chemically active anchoring groups.In this study,we used the star SAM([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)as the base structure to investigate the defect passivation effects of eight common anchoring groups at the perovskite-TCO interface.Our findings indicate that the phosphonic and boric acid groups exhibit notable advantages.These groups fulfill three key criteria:they provide the greatest potential for defect passivation,exhibit stable adsorption with defects,and exert significant regulatory effects on interface dipoles.Ionized anchoring groups exhibit enhanced passivation capabilities for defect energy levels due to their superior Lewis base properties,which effectively neutralize local charges near defects.Among various defect types,iodine vacancies are the easiest to passivate,whereas iodine-substituted lead defects are the most challenging to passivate.Our study provides comprehensive theoretical insights and inspiration for the design of anchoring groups in SAMs,contributing to the ongoing development of more efficient inverted perovskite solar cells.
基金Project supported by the National Natural Science Foundation of China (Grants No. 12075201)the Science and Technology Planning Project of Jiangsu Province, China (Grant No. BK20201428)+1 种基金the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX21 3193)the Special Program for Applied Research on Supercomputation of the NSFC–Guangdong Joint Fund (the second phase)。
文摘The hydroxyl-terminated self-assembled monolayer(OH-SAM),as a surface resistant to protein adsorption,exhibits substantial potential in applications such as ship navigation and medical implants,and the appropriate strategies for designing anti-fouling surfaces are crucial.Here,we employ molecular dynamics simulations and alchemical free energy calculations to systematically analyze the factors influencing resistance to protein adsorption on the SAMs terminated with single or double OH groups at three packing densities(∑=2.0 nm^(-2),4.5 nm^(-2),and 6.5 nm^(-2)),respectively.For the first time,we observed that the compactness and order of interfacial water enhance its physical barrier effect,subsequently enhancing the resistance of SAM to protein adsorption.Notably,the spatial hindrance effect of SAM leads to the embedding of protein into SAM,resulting in a lack of resistance of SAM towards protein.Furthermore,the number of hydroxyl groups per unit area of double OH-terminated SAM at ∑=6.5 nm^(-2) is approximately 2 to 3 times that of single OH-terminated SAM at ∑=6.5 nm^(-2) and 4.5 nm^(-2),consequently yielding a weaker resistance of double OH-terminated SAM towards protein.Meanwhile,due to the structure of SAM itself,i.e.,the formation of a nearly perfect ice-like hydrogen bond structure,the SAM exhibits the weakest resistance towards protein.This study will complement and improve the mechanism of OH-SAM resistance to protein adsorption,especially the traditional barrier effect of interfacial water.
基金China Postdoctoral Science Foundation(2020M681125)National Natural Science Foundation of China(32272254,31901618)Collaborative Innovation Center of Fragrance Flavour and Cosmetics.
文摘Bio-based cyclodextrins(CDs)are a common research object in supramolecular chemistry.The special cavity structure of CDs can form supramolecular self-assemblies such as vesicles and microcrystals through weak interaction with guest molecules.The different forms of supramolecular self-assemblies can be transformed into each other under certain conditions.The regulation of supramolecular self-assembly is not only helpful to understand the self-assembly principle,but also beneficial to its application.In the present study,the self-assembly behavior of epoxy-β-cyclodextrin(EP-β-CD)and mixed anionic and cationic surfactant system(sodium dodecyl sulfate/dodecyltrimethylammonium bromide,SDS/DTAB)in aqueous solution was studied.Morphological and particle size characterization found that the SDS/DTAB@EP-β-CD complex,as the basic building unit,self-assembled into worm-like micelles at lower temperatures and vesicles at higher temperatures.Nuclear magnetic resonance(NMR)and Fourier transform infrared spectroscopy(FT-IR)analysis revealed that the driving force for the formation of vesicles and worm-like micelles was the hydrogen bonds between EP-β-CD molecules,while water molecules played an important role in promoting vesicle formation between SDS/DTAB@EP-β-CD units.Herein,the mechanism of the morphologic transformation of SDS/DTAB@EP-β-CD supramolecular aggregates induced by temperature was elucidated by exploring the self-assembly process,which may provide an excellent basis for the development of delivery carriers.
基金supported by the National Natural Science Foundations of China(21965024,22269016,51721002)the Inner Mongolia funding(2020JQ01,21300-5223601)the funding of Inner Mongolia University(10000-21311201/137,213005223601/003,21300-5223707)。
文摘Generating sufficient strains on metal surfaces are highly challenging owing to that most metals can deform plastically to relax the strains on the surfaces.In this work,we developed a facile but highly efficient stacked deposition strategy to in situ activation and reconstruction of NiO/NiOOH on Ni matrix,following with the migration of Fe ions to NiOOH.The Fe sites on the Ni/NiO/NiOOH facilitate the formation of the stable*OH oxygenated intermediates,and the Ni matrix in the catalyst provides the catalyst excellent stability.The oxygen evolution reaction(OER)performance of the stacked NiFe-5 with compressive strain displays the strengthened binding to oxygenated intermediates and superior OER activity,the ultralow overpotentials of 162 versus reversible hydrogen electrode at 10 mA cm^(-2).On the other hand,the Ni-5 without the incorporation of Fe has shown an outstanding hydrogen evolution reaction(HER)activity,affording an overpotential of 47 mV at 10 mA cm^(-2).The NiFe-5‖Ni-5 enables the overall water splitting at a voltage of 1.508 V to achieve 20 mA cm^(-2) with remarkable durability.The stacked deposition strategy improves binding strength of Ni-based catalysts to oxygenated intermediates via generating compressive strain,causing high catalytic activities on OER and HER.
基金Funded by National Natural Science Foundation of China (Nos.51372179, 51772224)the Open Projects Foundation of Yangtze Optical Fiber and Cable Joint Stock Limited Company (YOFC)(No.SKLD1705)。
文摘We demonstrated a chemical process in the fabrication of a SERS fiber probe with an ultrahigh sensitivity.The synthesis was carried out by preparing Au@Ag core-shell nanorods (Au@Ag-NRs) selfassembled on polyelectrolyte (PE) multilayers,for which Au@Ag-NRs were controlled by adjusting the silver layer thickness.The effect of silver layer thickness of Au@Ag-NRs on the SERS performance of the fiber probe was investigated.The SERS fiber probe shows the best performance when the silver layer thickness is controlled at 8.57 nm.Under the condition of optimizing silver layer thickness,the fiber probe exhibits ultra-high sensitivity (i e,10^(-10) M crystalline violet,CV),good reproducibility (i e,RSD of 3.5%) and stability.Besides,electromagnetic field distribution of the SERS fiber probe was also investigated.The strongest enhancement is found within the core of fiber,whereas a weakened electromagnetic field exists in the fiber cladding layer.The SERS fiber probe can be a good candidate in ultra-trace detection for biomedical and environmental areas.
基金The National Natural Science Foundation of China(Nos.60371027,60171005).
文摘Self-assembled monolayers (SAMs) of (3-mercaptopropy) trimethoxysilane (3-MtrF) chemisorbed on silver surfaces were chemically "modified by 1-octadecanethiol to form self-assembled mixed-monolayers (SAMM) and the co-polymer of N-vinylcarbazole and methyl methacrylate ester (to form complex selfassembled film (CSAF)). The oxidation resistance of these barriers on silver surfaces and some influential factors concerned processes were analyzed by electrochemical impedance spectroscopy (EIS) in a 10% NaOH aqueous solution at oxidation potential. X-ray diffraction (XRD) spectroscopy shows that the oxidation occurring on the silver surface may be restrained effectively due to the coating barrier, and CSAF(Ⅱ) is the best one. Studies also reveal that oxide processes of bare silver and a series of modified silver electrodes in a 10% NaOH aqueous solution are of more than two relaxation time constants.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.10864001), the Natural Science Foundation of Yunnan Province (No.2008ZC159M), and No.8 Middle-Aged and Young Academic Talent Reserve Project of Yunnan Province (No.2005PY01-51).
文摘We demonstrate surface enhanced Raman scattering (SERS) detection of self-assembled nano silver film using a low-cost electrolysis strategy at a proper voltage and silver nitrate concentration in electrolyte. The concentration dependence of SERS from crystal violet (CV) molecules adsorbed to silver film was systematically studied. Importantly, the SERS surface enhancement factor of such nano silver film was 603, which was measured by a portable Raman spectrometer. The minimum concentration of detectable CV molecules can be as low as 10^-11 mol/L. The nano silver film prepared by this electrolysis method is an active, stable, cost-effective, and reusable SERS substrate.
基金Project(Q20120110)supported by Youth Foundation of Hubei Provincial Education Bureau,ChinaProject(2009CDB347)supported by the Hubei Provincial Natural Science Foundation,ChinaProject(51001045)supported by the National Natural Science Foundation of China
文摘Self assembled monolayers (SAMs) of 1-tetradecylphosphonic acids (TDPA, CH3(CH2)13P(O)(OH)2 ) were formed on the 2024 aluminum alloy surface in TDPA-containing ethanol-water solutions with different water content. The adsorption and corrosion protection properties of the SAMs for 2024 alloy in 0.1 mol/L H2SO4 solution were examined and characterized by potentiodynamic polarization, electrochemical impedance spectrum (EIS), Fourier transformed infrared spectroscopy (FTIR), Auger electron spectra (AES) and atomic force microscopy (AFM). FTIR and AES results show that the TDPA molecules were successfully adsorbed on the 2024 aluminum alloy surface, and the density of the SAMs increased with the increasing water content in the assembly solution. The results of electrochemical studies and corrosion morphologies observed by AFM show that a 4 h modification resulted in maximal inhibition efficiency, and the higher the water content in the assembly solution is, the better the inhibition performance of the SAMs can be achieved. The effect of water content in TDPA solutions on the performance of the SAMs is related to the hydration reaction of the metal surface.
文摘Dielectric properties of dithiol self-assemble monolayers (SAMs) under ac electric field were presented, Using a Hg-SAM/SAM-Ⅱg junction, the ac impedances of dithiol SAMs were measured using a sinusoidal perturbation of 30 mV (peak to-peak) with the frequency ranging from 1 Hz to 1 MHz at zero bias. The contributions from dithiol SAMs and solvent interlayers were separated due to their different behaviors at ac impedance. The peak position in the loss spectra (the plot; of tgδ vs. frequency) moves to low frequcney with the incrcase of chain length of dithiols. Using a correlation of peak position with the chain length, the active energies of 23-39 meV for dithiol SAMs of C6-C10 under an ac electric field were derived,
文摘The authors have investigated the pH and ionic strength response of self-assembled layers formed by adsorption of amphiphilic weak polyelectrolytes. Using the SFA (Surface Forces Apparatus) the authors measured force-distance profiles of poly (isoprene)-poly (acrylic acid) block copolymers adsorbed on mica. Also by Atomic Force Microscopy the authors captured single polyelectrolyte molecule adsorbed on a surface. The effect of salt concentration (Cs) and pH upon the height of the brush layers was explored mainly by measuring the forces between two adsorbed polyelectrolyte brushes. At pH = 4 our results are in good agreement with the scaling prediction L0 ∝Cs-1/3 Changing the pH from 4 to 10 causes a remarkable swelling of the polymer layer, but only a weak dependence on salt concentration was detected at the higher pH. This can be attributed to the degree of dissociation, which depends on the local pH value. At low pH the polyelectrolyte chains have a low charge density, while on increasing the pH the degree of dissociation rises, and the increased charge density is followed by swelling of the adsorbed layer. The local concentration of ions in the brush is now greater than that of pH = 4 and approximately equivalent to 0.3 M. So the swelling is only weakly dependent on salt concentration in the range 0.01-1.0 M. The results demonstrate the tunable nature of such self-assembled polyelectroiyte brushes whose height and range of interactions, can be systematically controlled by adjusting the pH and ionic strength of the medium.
文摘We investigate tunneling electron induced luminescence from isolated single porphyrin molecules that are decoupled by striped-phase self-assembled monolayer of octanethiol from the underneath Au(111) substrate. Intrinsic single-molecule electroluminescence has been realized by such decoupling at both bias polarities. The photon emission intensity acquired from the molecular lobe is found stronger than that from the molecular center. These re- sults provide useful information on the understanding of electroluminescent behavior and mechanism in molecular tunnel junctions.
文摘In order to improve the cancer-targeting and selective activity of antineoplastic agent [5-fluorouracil (5-FU)], a novel pH-responsive drug delivery system [pullulan acetate/sulfonamide (PA/SDM) conjugate] was synthesized by a diafiltration method. Sulfonamide was grafted to the hydrophobicaUy modified pullulan acetate to enhance the pH sensitivity for better cancer-targeting delivery. 5-FU was loaded into the self-assembled nanoparticles by the same method. The drug-loaded self-assembled nanoparticles were successfully obtained and characterized in terms of particle size, morphology and drug loading and release profile at various pHs. The results showed that the mean diameter of the self-assembled particles was approximately 100nm, with uniform size and good spherical morphology. The nanoparticles showed good stability at pH 7.4, which is equal to that of the normal body fluid, but shrank and aggregated below pH 6.8, which is close to the pH with tumors. The loading efficiency and concentration of released 5-FU was monitored at 269 nm on the UVNis spectrophotometer. The release profile was heavily pH-dependent around phvsiological pH, and the release rate was significantly enhanced under pH of 6.8.
基金Project supported by the National Natural Science Foundation of China (50475023)
文摘Silane coupling reagent (3-aminopropyltriethoxysilane (APTES)) was prepared on single-crystal silicon substrates to form two-dimensional self-assembled monolayer (SAM). The terminal-NH2 groups in the film were in situ phosphorylated to -PO(OH)2 group to endow the film with good chemisorption ability. Then La-based thin films were deposited on phosphorylated APTES-SAM in order to make good use of the chemisorption ability of -PO(OH)2 groups. The thickness of the film was determined with ellipsometer, while phase transformation and surface morphology, surface energy, phase composition were analyzed by means of atomic force microscope (AFM), contact angle measurements and X-ray photoelectron spectroscopy (XPS). The results indicated that the terminal-NH2 groups could be completely transformed into desirable-PO(OH)2 groups after phosphorylation of APTES-SAM. Detailed XPS analysis of the La3+ peaks revealed that lanthanum element existed in the films in different states. As a result, conclusion could be made that lanthanum reacted with -PO(OH)2 groups on the surface of the substrate by chemical bond which would improve the bonding strength between the film and silicon substrate. Since the La-based thin films were well adhered to the silicon substrate, it might find promising application in the surface-modification of single-crystal Si and SiC in microelectromechanical systems (MEMS).
文摘The development of natural biomaterials applied for hard tissue repair and regeneration is of great importance,especially in societies with a large elderly population.Self-assembled peptide hydrogels are a new generation of biomaterials that provide excellent biocompatibility,tunable mechanical stability,injectability,trigger capability,lack of immunogenic reactions,and the ability to load cells and active pharmaceutical agents for tissue regeneration.Peptide-based hydrogels are ideal templates for the deposition of hydroxyapatite crystals,which can mimic the extracellular matrix.Thus,peptide-based hydrogels enhance hard tissue repair and regeneration compared to conventional methods.This review presents three major self-assembled peptide hydrogels with potential application for bone and dental tissue regeneration,including ionic self-complementary peptides,amphiphilic(surfactant-like)peptides,and triple-helix(collagen-like)peptides.Special attention is given to the main bioactive peptides,the role and importance of self-assembled peptide hydrogels,and a brief overview on molecular simulation of self-assembled peptide hydrogels applied for bone and dental tissue engineering and regeneration.
基金the National Natural Science Foundation of China(Grant Nos.61705070 and 61974052)China Postdoctoral Science Foundation(Grant Nos.2019M662594)National Research Foundation of Korea(NRF)Grant funded by the Korean Government(MSIP)(Nos.NRF2019R1A2C4069438 and NRF2018R1A6A1A03025242)。
文摘Light confinement induced by spontaneous near-surface resonance is inherently determined by the location and geometry of metallic nanostructures(NSs),offering a facile and effective approach to break through the limitation of the light-mater interaction within the photoactive layers.Here,we demonstrate high-performance Al NS/ZnO quantum dots(Al/ZnO) heterostructure UV photodetectors with controllable morphologies of the self-assembled Al NSs.The Al/ZnO heterostructures exhibit a superior light utilization than the ZnO/Al heterostructures,and a strong morphological dependence of the Al NSs on the optical properties of the heterostructures.The inter-diffusion of Al atoms into ZnO matrixes is of a great benefit for the carrier transportation.Consequently,the optimal photocurrent of the Al/ZnO heterostructure photodetectors is significantly increased by 275 times to ~1.065 mA compared to that of the pristine ZnO device,and an outstanding photoresponsivity of 11.98 A W-1 is correspondingly achieved under 6.9 MW cm-2 UV light illumination at 10 V bias.In addition,a relatively fast response is similarly witnessed with the Al/ZnO devices,paving a path to fabricate the high-performance UV photodetectors for applications.
基金financially supported by the Scientific Research Foundation of State Education Ministry of China (Jiaowaisiliu[2008]890)Research Foundation of Education Department of Hebei Province of China(No. 2007132)
文摘A mixed self-assembled monolayers (SAMs) of thioctic acid (T-COOH) and thioctic acid amide (T-NH2) were used to immobilize tyrosinase for fabricating biosensor. The results showed that the mixed SAMs prepared from solution at the ratio of 1:4 provided an excellent microenvironment for enzymatic reaction between tyrosinase and substrate. The biosensor exhibited a fast response and high sensitivity for sensing substrate.
基金supported by the National Natural Science Foundation of China(Nos.21506151,21576195 and 21776207)
文摘A thioester-functionalized triphenylamine hole-transporting molecule (TPD-SAc) was synthesized and self-assembled to form a monolayer on an ultra-thin Au film supported on indium-tin oxide glass. The modified surface was characterized by aqueous contact angle, ellipsometer, atomic force microscopy, X-ray photoelectron spectroscopy, and ultraviolet pho- toelectron spectrometer to substantiate the formation of compact and pinhole-free monolayers. The modified organic light emitting diode device [indium-tin oxide/Au (5 nm)/self-assembled monolayers (SAM)/TPD (50 nm)/Alq3 (40 nm)/TPBI (15 nm)/LiF (1 nm)/A1 (100 nm)] showed a luminance of 7303.90 cd/m^2 and a current efficiency of 8.49 cd/A with 1.78 and 2.29-fold increase, respectively, compared to the control device without SAM. The improvements were attributed to the enhanced compatibility of the organic-inorganic interface, matched energy level by introduction of an energy mediating step and superior hole-injection property of SAM molecules.
文摘In order to improve the cancer-targeting and selective activity of antineoplastic agent [5-fluorouracil (5-FU)], a novel pH-responsive drug delivery system [pullulan acetate/sulfonamide (PA/SDM) conjugate] was syn- thesized by a diafiltration method. Sulfonamide was grafted to the hydrophobically modified pullulan acetate to enhance the pH sensitivity for better cancer-targeting delivery. 5-FU was loaded into the self-assembled nanoparti- cles by the same method. The drug-loaded self-assembled nanoparticles were successfully obtained and character- ized in terms of particle size, morphology and drug loading and release profile at various pHs. The results showed that the mean diameter of the self-assembled particles was approximately 100nm, with uniform size and good spherical morphology. The nanoparticles showed good stability at pH 7.4, which is equal to that of the normal body fluid, but shrank and aggregated below pH 6.8, which is close to the pH with tumors. The loading efficiency and concentration of released 5-FU was monitored at 269 nm on the UV/Vis spectrophotometer. The release profile was heavily pH-dependent around physiological pH, and the release rate was significantly enhanced under pH of 6.8.