期刊文献+
共找到648篇文章
< 1 2 33 >
每页显示 20 50 100
Preparation and Characterization of Microcapsules for Self-healing Materials 被引量:3
1
作者 LIAO Le-ping ZHANG Wei ZHAO Yang LI Wu-Jun 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2010年第3期496-500,共5页
The urea-formaldehyde(UF) capsules filled with a healing agent, a mixture of epoxy resins(epoxy 711 and E-51) as core material, were produced by means of one step in-situ polymerization. The characteristics of the... The urea-formaldehyde(UF) capsules filled with a healing agent, a mixture of epoxy resins(epoxy 711 and E-51) as core material, were produced by means of one step in-situ polymerization. The characteristics of these microcapsules were studied via scanning electron microscopy(SEM), particle size analysis, FTIR and DSC/TGA. The results show that the dispersed and integrated microcapsules of 5 μm in shell thickness were synthesized successfully. The capsules were produced with diameters ranging from 10 to 250 μm via controlling agitation rate. Young's modulus of the capsule was a little lower than those of the epoxy resins, but the microcapsules having such a shell thickness were robust enough to survive handling during manufacturing self-healing composites. When damage occurred in the epoxy matrix, the crack could rupture the microcapsule to make the repairing agent release. 展开更多
关键词 UREA-FORMALDEHYDE microcapsule Epoxy resin self-healing
下载PDF
Characteristics of Self-Healing Microcapsules for Cementitious Composites 被引量:1
2
作者 MAO Qianjin FENG Xiaojuan +4 位作者 LIANG Peng WANG Rui WANG Ziming CUI Suping LAN Mingzhang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第5期1108-1112,共5页
Urea formaldehyde/epoxy resin microcapsules were prepared by an in situ polymerization method and the effect of emulsifier on the syntheses process of the microcapsules was discussed. The surface morphology of the mic... Urea formaldehyde/epoxy resin microcapsules were prepared by an in situ polymerization method and the effect of emulsifier on the syntheses process of the microcapsules was discussed. The surface morphology of the microcapsules was observed by optical microscopy and scanning electron microscopy(SEM). Chemical structure was characterized by Fourier transform infrared spectroscopy(FTIR). Thermal stability was obtained using simultaneous thermal analysis(STA). The microcapsules were composed of urea-formaldehyde resin shell and epoxy resin core. Emulsifier played an important role in the polymerization process when the core material was packed by pre-polymer, so the effects of different emulsifiers(OP-10, SDS and SDBS) were discussed respectively. Results showed that the particle size of the microcapsules was uniform when SDBS as an emulsifier. Microcapsules showed good thermal stability below 240 ℃ and the initial decomposition temperature of the microcapsules was 265 ℃. The core materials released after microcapsules rupturing, which could be proven by the images of SEM. When implanted in cementitious composites, complete shape of microcapsules and good interface between microcapsules and cement specimen substrate could also be observed. 展开更多
关键词 cementitious composites self-healing materials microcapsule
下载PDF
Research on microcapsules of phase change materials 被引量:8
3
作者 DAI Xia SHEN Xiaodong 《Rare Metals》 SCIE EI CAS CSCD 2006年第z1期393-399,共7页
Microcapsule technology is a kind of technology wrapping the solid or liquid into minute-sized particles within the field of micrometer or millimeter with film forming materials. This thesis introduces microcapsule te... Microcapsule technology is a kind of technology wrapping the solid or liquid into minute-sized particles within the field of micrometer or millimeter with film forming materials. This thesis introduces microcapsule technology of phase change materials and its main functions and the structural composition, preparation methods and characterization technology of microcapsule of phase change materials. The microcapsule of phase change materials is small in size and its temperature remains unchanged during the process of heat absorption and heat release. It is of great value in research and application prospect due to these characteristics. 展开更多
关键词 phase change material microcapsule phase change material surface polymerization PREPARATION
下载PDF
The study on the mechanical properties of PU/MF double shell self-healing microcapsules 被引量:5
4
作者 Guohao Du Jianfeng Hu +7 位作者 Jianhui Zhou Guangwu Wang Shengli Guan Hailing Liu Man Geng Chuang Lv Yaoqiang Ming Jinqing Qu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第5期1459-1473,共15页
The self-healing microcapsules can be buried in the coating to improve the anticorrosive ability.In this paper,self-healing microcapsules of polyurea(PU)/melamine resin(MF)double shell were prepared by in-situ polymer... The self-healing microcapsules can be buried in the coating to improve the anticorrosive ability.In this paper,self-healing microcapsules of polyurea(PU)/melamine resin(MF)double shell were prepared by in-situ polymerization and interfacial polymerization with isocyanate as the core material.Scanning electron microscope was used to observe the microcapsule morphology.The structures of microcapsules prepared with different chain extenders were characterized by Fourier transform infrared spectroscopy.The micromanipulation system was used to loading–holding,loading–unloading and loading to rupture individual microcapsules,so as to explore the mechanical properties of microcapsules.The Young’s modulus corresponding to microcapsules was calculated by mathematical model fitting.The self-healing properties of microcapsule coating were characterized by optical microscope.The experimental results showed that the microcapsule shell prepared under optimized conditions had a complete morphology and good mechanical properties.The microcapsule was in the elastic deformation stage under small deformation,and the plastic deformation stage under large deformation.The Young’s modulus range of microcapsules was 9.29–14.51 MPa,and the corresponding Young’s modulus could be prepared by adjusting the process.The surface crack of the coating containing microcapsule could heal itself after48 h in a humid environment. 展开更多
关键词 microcapsuleS self-healing Double-layered Mechanical properties Young’s modulus
下载PDF
Self-healing Action of Permeable Crystalline Coating on Pores and Cracks in Cement-based Materials 被引量:4
5
作者 王桂明 余剑英 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2005年第1期89-91,97,共4页
The self-healing action of a permeable crystalline coating on the po rous mortar was investigated by two times impermeability test. Moreover, the sel f-healing mechanism of cement-based materials with the permeable cr... The self-healing action of a permeable crystalline coating on the po rous mortar was investigated by two times impermeability test. Moreover, the sel f-healing mechanism of cement-based materials with the permeable crystalline c oating was studied by SEM. The results indicate that the permeable crystalline c oating not only seals the pores and cracks in mortar during its curing process, but also heals the permeable pathway caused by first impermeability test or crac ks produced by freeze-thaw cycles. Therefore, cement-based materials can be im proved by the permeable crystalline coating for the self-healing function. SEM images prove that the self-healing function is realized by generating a great q uantity of non-soluble dendritic crystalline within the pores and cracks, which prevents the penetration of water and other liquids. 展开更多
关键词 cement-based materials self-healing IMPERMEABILITY CRYSTALLINE
下载PDF
Improving the Dispersibility of Poly(urea-formaldehyde) Microcapsules for Self-Healing Coatings Using Preparation Process 被引量:3
6
作者 Yuhao Jiang Jialan Yao Chengfei Zhu 《Journal of Renewable Materials》 SCIE EI 2022年第1期135-148,共14页
Poly(urea-formaldehyde)(PUF)microcapsules were prepared by in-situ polymerization with four different pro-cesses in this paper.The chemical composition,surface morphology,particle size distribution,and thermal sta-bil... Poly(urea-formaldehyde)(PUF)microcapsules were prepared by in-situ polymerization with four different pro-cesses in this paper.The chemical composition,surface morphology,particle size distribution,and thermal sta-bility were characterized by FTIR,SEM,particle size analyzer,and TGA,respectively.The results demonstrated that the agglomeration of the PUF microcapsules was related to the agglomeration of the emulsion particles caused by the changes of emulsion interface during the shell polymerization.Due to the slow deposition of the shell material,the PUF microcapsules with the core-shell structure prepared by the process with ammonium chloride as the last additive showed good dispersibility with an average diameter of 6.36μm,high core content of 71.3 wt%,and high yield of 61.3 wt%.The PUF microcapsules had good thermal stability below 216?C.The PUF microcapsules could be uniformly dispersed in the epoxy coating in a single form.The epoxy coating with 2 wt%PUF microcapsules showed good self-healing property,and the service life of the coating was about doubled. 展开更多
关键词 In-situ polymerization self-healing microcapsuleS ANTICORROSION DISPERSIBILITY COATINGS
下载PDF
Improvising the Self-Healing Capabilities of Concrete Using Different Pozzolanic Materials and Crystalline Admixtures 被引量:2
7
作者 A Ravitheja T Chandra Sekhara Reddy C Sashidhar 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第3期429-439,共11页
To analyse the self-healing capacities in terms of mechanical performance of the pozzolanic materials,such as,fly ash,metakaolin and silica fume and crystalline admixtures.Pre-cracked concrete cubes with about 0.05 mm... To analyse the self-healing capacities in terms of mechanical performance of the pozzolanic materials,such as,fly ash,metakaolin and silica fume and crystalline admixtures.Pre-cracked concrete cubes with about 0.05 mm width were exposed to four different environmental conditions at different exposure times in order to determine the effect of temperature and water availability on the self-healing potential.After the exposure,the control and tested concrete cubes were evaluated for regained strength,void reduction,corrosion inhibition,damp proofing,relative impermeability and durability.The samples with SF10CA have better cementitious filling and low percentage of voids and water absorption. 展开更多
关键词 crystalline admixtures pozzolanic materials self-healing
下载PDF
Application Research on Self-healing Technology with Microcapsules for Automobile Brake Pad 被引量:1
8
作者 张力 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第1期91-94,共4页
In order to improve the performance of non-asbestos composite auto brake pads that are composed of matrix resin, reinforced material and fillers, a novel method with new technology of self-heal microcapsules was propo... In order to improve the performance of non-asbestos composite auto brake pads that are composed of matrix resin, reinforced material and fillers, a novel method with new technology of self-heal microcapsules was proposed. Nano reinforced fillers' effects were also considered in the experiment project. Five recipe designs for new composite auto brake pads were carried out and cor-responding samples were prepared as well. The friction coefficient and wearing properties at certain temperature, impact intensity and hardness were comparatively studied. Investigations indicate that properties of such composite auto brake pads meet the requirements of the national standards while microcapsule's weight content varies from 5.5wt%-1.09wt% of matrix resin and microcapsule's loca-tion varies in the pads. Nano reinforced fillers have the effects of increasing composites' impact in-tensity and hardness. Application of self-healing microcapsules in auto brake pads is feasible. 展开更多
关键词 COMPOSITE automobile brake pad microcapsule self-heal
下载PDF
Evaluation of Self-Healing Efficiency of Microcapsule-Based Self-Healing Cementitious Composites Based on Acoustic Emission
9
作者 Wenfeng Hao Hao Hao +1 位作者 Humaira Kanwal Shiping Jiang 《Journal of Renewable Materials》 SCIE EI 2023年第4期1687-1697,共11页
Microcapsule self-healing technology is one of the effective methods to solve the durability problem of cementbased composites.The evaluation method of the self-healing efficiency of microcapsule self-healing cement-b... Microcapsule self-healing technology is one of the effective methods to solve the durability problem of cementbased composites.The evaluation method of the self-healing efficiency of microcapsule self-healing cement-based composites is one of the difficulties that limits the self-healing technology.This paper attempts to characterize the self-healing efficiency of microcapsule self-healing cement-based composites by acoustic emission(AE)parameters,which provides a reference for the evaluation of microcapsule self-healing technology.Firstly,a kind of self-healing microcapsules were prepared,and the microcapsules were added into the cement-based composites to prepare the compression samples.Then,the specimen with certain pre damage was obtained by compression test.Secondly,the damaged samples were divided into two groups.One group was directly used for compression tests to obtain the damage failure process.The other group was put into water for healing for 30 days,and then compression tests were carried out to study the influence of self-healing on the compression failure process.During the experiments,the AE signals were collected and the AE characteristics were extracted for the evaluation of self-healing efficiency.The results show that the compression pre damage test can trigger the microcapsule,and the compression strength of the self-healing sample is improved.The failure mechanism of microcapsule selfhealing cement-based composites can be revealed by the AE parameters during compression,and the self-healing efficiency can be quantitatively characterized by AE hits.The research results of this paper provide experimental reference and technical support for the mechanical property test and healing efficiency evaluation of microcapsule self-healing cement-based composites. 展开更多
关键词 self-healing efficiency cementitious composites microcapsuleS acoustic emission compressive property
下载PDF
Permeability modeling of self-healing due to calcium carbonate precipitation in cement-based materials with mineral additives
10
作者 YUAN Zheng-cheng JIANG Zheng-wu CHEN Qing 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第3期567-576,共10页
The permeability modeling of self-healing due to calcium carbonate precipitation in cement-based materials with mineral additives was studied in this work. The parameters of calcium carbonate precipitation during self... The permeability modeling of self-healing due to calcium carbonate precipitation in cement-based materials with mineral additives was studied in this work. The parameters of calcium carbonate precipitation during self-healing were simulated. A permeability modeling of self-healing, combined with numerical simulation of calcium carbonate formation, was proposed based on the modified Poiseuille flow model. Moreover, the percentage of calcium carbonate in healing products was measured by TG-DTA. The simulated results show that self-healing can be dramatically promoted with the increase of pH and Ca2+ concentration. The calculated result of permeability is consistent with that measured for cracks appearing in middle or later stages of self-healing, it indicates that this model can be used to predict the self-healing rate to some extent. In addition, TG-DTA results show that the percentage of calcium carbonate in healing products is higher for mortar with only chemical expansion additives or cracks appearing in the later stage, which can more accurately predict the self-healing rate for the model. 展开更多
关键词 cement-based material self-healing mineral additive calcium carbonate MODEL
下载PDF
Preparation of Microcapsules Containing Triple Core Materials with Interfacial Condensation Reaction
11
作者 Yoshinari Taguchi Mikihiko Aoki Masato Tanaka 《Journal of Cosmetics, Dermatological Sciences and Applications》 2014年第4期275-283,共9页
In this manuscript, we describe the novel method for preparing the microcapsules containing α-tocopherol oil droplets as the first core material, calcium chloride powder as the second core material and the fine water... In this manuscript, we describe the novel method for preparing the microcapsules containing α-tocopherol oil droplets as the first core material, calcium chloride powder as the second core material and the fine water droplets as the third core material by the interfacial condensation reaction between hydroxyl propyl methyl cellulose and tannic acid. The interfacial condensation reaction was performed between hydroxyl propyl methyl cellulose dissolved in the continuous water phase and tannic acid dissolved in the inner fine water droplets as the third core material. The calcium chloride powder as the second core material was dispersed in the α-tocopherol oil droplet as the first core material beforehand. The α-tocopherol oil containing the second and the third core materials was dispersed in the continuous water phase to form the [(S + W)/O/W] emulsion. The α-tocopherol oil as the first core material was microencapsulated satisfactorily and the contents of the second core material were increased with the concentration of stearic acid as the oil soluble stabilizer. The mechanical strength of microcapsules increased with the concentration of hydroxyl propyl methyl cellulose. Thermal energy could be released by breaking the microcapsules in water and by dissolving calcium chloride in the continuous water phase. 展开更多
关键词 TRIPLE Core materials-Containing-microcapsule Multiple Emulsions Α-TOCOPHEROL Calcium Chloride Dissolution Heat HYDROXY Propyl Methyl Cellulose Tannic Acid
下载PDF
Multifunctional phase change film with high recyclability, adjustable thermal responsiveness, and intrinsic self-healing ability for thermal energy storage
12
作者 Bo Yang Xuelai Zhang +2 位作者 Jun Ji Weisan Hua Miaomiao Jiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期216-227,I0005,共13页
Phase change materials(PCMs) present promising potential for guaranteeing safety in thermal management systems.However,most reported PCMs have a single application in energy storage for thermal management systems,whic... Phase change materials(PCMs) present promising potential for guaranteeing safety in thermal management systems.However,most reported PCMs have a single application in energy storage for thermal management systems,which does not meet the growing demand for multi-functional materials.In this paper,the flexible material and hydrogen-bonding function are innovatively combined to design and prepare a novel multi-functional flexible phase change film(PPL).The 0.2PPL-2 film exhibits solid-solid phase change behavior with energy storage density of 131.8 J/g at the transition temperature of42.1℃,thermal cycling stability(500 cycles),wide-temperature range flexibility(0-60℃) and selfhealing property.Notably,the PPL film can be recycled up to 98.5% by intrinsic remodeling.Moreover,the PPL film can be tailored to the desired colors and configurations and can be cleverly assembled on several thermal management systems at ambient temperature through its flexibility combined with shape-memory properties.More interestingly,the transmittance of PPL will be altered when the ambient temperature changes(60℃),conveying a clear thermal signal.Finally,the thermal energy storage performance of the PPL film is successfully tested by human thermotherapy and electronic device temperature control experiments.The proposed functional integration strategy provides innovative ideas to design PCMs for multifunctionality,and makes significant contributions in green chemistry,highefficiency thermal management,and energy sustainability. 展开更多
关键词 Phase change film Multifunctional material Energy storage self-healing RECYCLABILITY
下载PDF
Coupled thermo-hydro-mechanical process in buffer material and self-healing effects with joints 被引量:2
13
作者 YANG Gao-sheng LIU Yue-miao +2 位作者 GAO Yu-feng LI Jian CAI Guo-qing 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第9期2905-2918,共14页
Within the multi-barrier system for high-level waste disposal,the technological gap formed by combined buffer material block becomes the weak part of buffer layer.In this paper,Gaomiaozi bentonite buffer material with... Within the multi-barrier system for high-level waste disposal,the technological gap formed by combined buffer material block becomes the weak part of buffer layer.In this paper,Gaomiaozi bentonite buffer material with technological gap was studied,the heat transfer induced by liquid water flow and water vapor was embedded into the energy conservation equation.Based on the Barcelona basic model,the coupled thermo-hydro-mechanical model of unsaturated bentonite was established by analyzing the swelling process of bentonite block and the compression process of joint material.The China-Mock-up test was adopted to compare the numerical calculation results with the test results so as to verify the rationality of the proposed model.On this basis,the effect of joint self-healing on dry density,thermal conductivity and permeability coefficient of buffer material was further analyzed.The results show that,with bentonite hydrating and swelling,the joint material gradually increases in dry density,and exhibits comparatively uniform hydraulic and thermal conductivity properties as compacted bentonite block.As a result,the buffer material gradually shifts to homogenization due to the coordinated deformation. 展开更多
关键词 buffer material thermo-hydro-mechanical coupling JOINTS self-healing effect
下载PDF
Microencapsulation of UV-Curable Self-healing Agent for Smart Anticorrosive Coating 被引量:1
14
作者 赵东 汪谟贞 +2 位作者 吴启超 周晓 葛学武 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2014年第5期607-615,I0004,共10页
UV-curable polyurethane prepolymer and photoinitiator 1173 were facilely encapsulated in a poly(urea-formaldehyde) shell, which was in situ formed by the polymerization of formalde-hyde and urea in an oil-in-water e... UV-curable polyurethane prepolymer and photoinitiator 1173 were facilely encapsulated in a poly(urea-formaldehyde) shell, which was in situ formed by the polymerization of formalde-hyde and urea in an oil-in-water emulsion. The diameters of the microcapsules ranged from 118 μm to 663 μm depending on agitation speed, and were obtained via optical mi-croscopy and scanning electron microscopy analyses. The encapsulation percent and the yield of microcapsules prepared at the agitation speed of 600 r/min can reach 97.52wt% and 65.23wt%, respectively. When the water-borne polyurethane (WPU) coating embedded with the prepared microcapsules were scratched, the healing agent could be released from rup-tured microcapsules and lled the scribed region. The excellent anticorrosion properties of the WPU coating embedded with the prepared microcapsules were con rmed by the results obtained from both electrochemical impedance spectroscopy and Tafel curves. 展开更多
关键词 self-healing Water-borne polyurethane coating Corrosion resistance Poly(urea-formaldehyde) microcapsule UV-curable coating
下载PDF
Self-Healing MXene-and Graphene-Based Composites:Properties and Applications 被引量:8
15
作者 Atefeh Zarepour Sepideh Ahmadi +2 位作者 Navid Rabiee Ali Zarrabi Siavash Iravani 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第7期165-192,共28页
Today,self-healing graphene-and MXene-based composites have attracted researchers due to the increase in durability as well as the cost reduction in long-time applications.Different studies have focused on designing n... Today,self-healing graphene-and MXene-based composites have attracted researchers due to the increase in durability as well as the cost reduction in long-time applications.Different studies have focused on designing novel self-healing graphene-and MXenebased composites with enhanced sensitivity,stretchability,and flexibility as well as improved electrical conductivity,healing efficacy,mechanical properties,and energy conversion efficacy.These composites with self-healing properties can be employed in the field of wearable sensors,supercapacitors,anticorrosive coatings,electromagnetic interference shielding,electronic-skin,soft robotics,etc.However,it appears that more explorations are still needed to achieve composites with excellent arbitrary shape adaptability,suitable adhesiveness,ideal durability,high stretchability,immediate self-healing responsibility,and outstanding electromagnetic features.Besides,optimizing reaction/synthesis conditions and finding suitable strategies for functionalization/modification are crucial aspects that should be comprehensively investigated.MXenes and graphene exhibited superior electrochemical properties with abundant surface terminations and great surface area,which are important to evolve biomedical and sensing applications.However,flexibility and stretchability are important criteria that need to be improved for their future applications.Herein,the most recent advancements pertaining to the applications and properties of self-healing graphene-and MXene-based composites are deliberated,focusing on crucial challenges and future perspectives. 展开更多
关键词 MXenes GRAPHENE self-healing materials Electromagnetic interference shielding Wearable sensors
下载PDF
Preparation and Characterization of Poly(melamine-urea-formaldehyde) Tetradecanol Microcapsules Coated with Silver Particles 被引量:3
16
作者 WANG Haiping GUI Pengce +1 位作者 ZHU Yangqian HU Siqian 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第2期327-334,共8页
A novel type of microencapsulated phase change materials(microPCMs)based on 1-tetradecanol(TD)core and silver-coated poly(melamine-urea-formaldehyde)(MUF)shell was successfully synthesized by in situ polymerization me... A novel type of microencapsulated phase change materials(microPCMs)based on 1-tetradecanol(TD)core and silver-coated poly(melamine-urea-formaldehyde)(MUF)shell was successfully synthesized by in situ polymerization method followed by silver reduction.Fourier-transform infrared spectroscopy(FTIR),X-ray diffraction(XRD),scanning electron microscopy with energy dispersive X-ray spectrometry(SEM/EDS),thermogravimetric analysis(TGA)and differential scanning calorimetry(DSC)were used to characterize the chemical structure,morphology and thermal properties of the as-prepared silver-coated microPCMs.FTIR analysis confirmed the successful encapsulation of TD with MUF wall materials.The SEM and EDS results indicated that the prepared silver-coated MUF microPCMs exhibited uniform spherical shape with a perfect silver outer layer.From XRD analysis,the Ag metal dispersed on the surface of microcapsules presented the form of elementary substance.The deposition weight of silver particles on the microcapsule surface increased with increasing the amount of silver nitrate,as indicated by EDS tests.The DSC results indicated that the melting temperature and the melting latent heat of microPCMs modified with 0.7g of silver nitrate in 150mL aqueous solution were 39.2°C and 126.6J·g^-1,respectively.Supercooling of the microPCMs coated with silver particles was effectively suppressed,compared with that of microPCMs without Ag.Thus,the encapsulation of TD with silver-coated MUF shell developed by this work can be an effective method to prepare the microPCMs with enhanced thermal transfer performance and phase change properties. 展开更多
关键词 phase change materials microcapsule 1-tetradecanol SILVER metal coating
下载PDF
Electrochemical behavior of different shelled microcapsule composite copper coatings 被引量:1
17
作者 Xiu-qing Xu Yan-hong Guo Wei-ping Li Li-qun Zhu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2011年第3期377-384,共8页
Copper/liquid microcapsule composite coatings with polyvinyl alcohol (PVA), gelatin or methyl cellulose (MC) as shell materials were prepared by electrodeposition. The influence of shell materials on the corrosion... Copper/liquid microcapsule composite coatings with polyvinyl alcohol (PVA), gelatin or methyl cellulose (MC) as shell materials were prepared by electrodeposition. The influence of shell materials on the corrosion resistance of the composite coatings in 0.1 M H2SO4 was investigated by means of electrochemical techniques, scanning electron microscopy (SEM), and energy dispersion spectrometry (EDS). The results show that the participation of microcapsules can enhance the corrosion resistance of the composite coatings compared with the traditional copper layer. Based on the analysis of electrochemical test results, the release ways of microcapsules were deduced. Gelatin and MC as the shell materials of microcapsules are easy to release quickly in the composite coating. On the contrary, the releasing speed of PVA microcapsules is relatively slow due to their characteristics. 展开更多
关键词 composite coatings shell materials copper microcapsuleS electrochemical properties corrosion resistance ELECTRODEPOSITION
下载PDF
The Application of Microcapsule in the Infrared Stealth Camouflage 被引量:1
18
作者 ZHANG Juan LIU Bo-yu +1 位作者 LIU Bei WANG Yao 《青岛大学学报(自然科学版)》 CAS 2018年第B09期19-22,共4页
Infrared radiation is one of the main exposure symptoms of military targets. Infrared radiation differences between targets and backgrounds should be eliminated to the greatest extent to fight against all kinds of inf... Infrared radiation is one of the main exposure symptoms of military targets. Infrared radiation differences between targets and backgrounds should be eliminated to the greatest extent to fight against all kinds of infrared reconnaissance. In addition to the employment of the camouflage paint with low emissivity, reducing the surface temperature of targets is an urgent and difficult challenge. PCM (phase-change material) can be used to effectively solve this problem. The application of microcapsule in the infrared stealth materials greatly promotes the development of infrared stealth technology. 展开更多
关键词 PCM (phase-change material) microcapsule INFRARED STEALTH
下载PDF
Epoxy microcapsules for high-performance self-healing materials using a novel method via integrating electrospraying and interfacial polymerization 被引量:1
19
作者 He Zhang Kaibin Xiao +1 位作者 Zhilin Lin Shengyu Shi 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第17期59-67,共9页
The high-efficiency fabrication of high-quality microcapsules containing epoxy is crucial to the further development of the potential practical self-healing epoxy systems based on microencapsulated two-part epoxy-amin... The high-efficiency fabrication of high-quality microcapsules containing epoxy is crucial to the further development of the potential practical self-healing epoxy systems based on microencapsulated two-part epoxy-amine chemistry.Herein,a novel microencapsulation technique based on non-equilibrium droplets via integrating electrospraying and interfacial polymerization(ES-IP)was established to efficiently microencapsulate epoxy monomers.The ES-IP technique,consisting of three continuous steps,i.e.electrospraying to massively generate droplets,enwrapping every single droplet through instant interfacial polymerization,and thickening shell at an elevated temperature,has great flexibility to regulate the microencapsulation process and the microcapsule quality.The fabricated core-shell structured epoxy microcapsules(Ep-MCs)were comprehensively characterized for their properties,showing that they have high cleanness with rare impurities,controllable and tunable size,good thermal stability and tightness,and high effective core fraction.The high-quality Ep-MCs were adopted to formulate a self-healing epoxy based on the microencapsulated epoxy-amine chemistry.The highest healing efficiency,in terms of the recovered mode I fracture toughness,of 110±17%was achieved after being healed at room temperature(~25℃)for 48 h.While the developed ES-IP technique facilitates the microencapsulation technique based on non-equilibrium droplets,the fabricated high-quality Ep-MCs greatly promote the further developments of the practical self-healing materials. 展开更多
关键词 EPOXY microcapsule ELECTROSPRAYING Interfacial polymerization self-healing
原文传递
Novel PA encapsulated PCL hybrid coating for corrosion inhibition of biodegradable Mg alloys:A triple triggered self-healing response for synergistic multiple protection 被引量:1
20
作者 Navdeep Singh Grewal Uma Batra +1 位作者 Kamal Kumar Anil Mahapatro 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第4期1440-1460,共21页
Surface coatings have been extensively used to control the degradation rate of Mg alloys for bioimplant applications.However,these coatings only act as passive barriers.In corrosive media,structural damage impairs the... Surface coatings have been extensively used to control the degradation rate of Mg alloys for bioimplant applications.However,these coatings only act as passive barriers.In corrosive media,structural damage impairs their barrier properties,resulting in rapid degradation of Mg alloys.The present study incorporates phytic acid(PA)as a healing agent in polycaprolactone(PCL)microcapsules with a unique honeycomb core matrix to obtain a self-healing PA-PCLcaps coating.The contact between simulated body fluid(SBF)and PA-PCLcaps coated ZM21 exhibited Cassie-Baxter interfacial states,resulting in significant hydrophobicity with a contact angle(CA)of 116.3.The corrosion potential(Ecorr)and current density(Icorr)were found to be-0.28 V and 1.1×10^(-9)A/cm^(2),respectively,for PA-PCLcaps coating,resulting in biosafe corrosion rate of 2.5×10^(-4)mm/year.After mechanical scratching,rapid HA mineralization at scratched regions recovered the hydrogen evolution rate(HER,0.36 mL/cm^(2)/day)and pH change(pH 7.10)of scratched PA-PCLcaps coated ZM21 samples to corresponding unscratched samples within one day of immersion.The coating’s self-healing ability could be attributed to PA released from punctured microcapsules,which facilitates HA chelation.The pH-triggered(pH 10)and Mg(II)-triggered(5 mM)conditions enhanced PA release from PA-PCLcaps coating by 2.5 and 3.1 times,respectively.As a result,dense HA mineralization occurred,which protects the coating from structural defects and ensures its durability in stimulating conditions.The findings of present study provide new insight for design of multiple stimuli-feedback based self-healing coatings on biodegradable Mg alloys. 展开更多
关键词 self-healing coating Corrosion resistance Magnesium alloy Phytic acid Polycaprolactone microcapsules
下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部