The urea-formaldehyde(UF) capsules filled with a healing agent, a mixture of epoxy resins(epoxy 711 and E-51) as core material, were produced by means of one step in-situ polymerization. The characteristics of the...The urea-formaldehyde(UF) capsules filled with a healing agent, a mixture of epoxy resins(epoxy 711 and E-51) as core material, were produced by means of one step in-situ polymerization. The characteristics of these microcapsules were studied via scanning electron microscopy(SEM), particle size analysis, FTIR and DSC/TGA. The results show that the dispersed and integrated microcapsules of 5 μm in shell thickness were synthesized successfully. The capsules were produced with diameters ranging from 10 to 250 μm via controlling agitation rate. Young's modulus of the capsule was a little lower than those of the epoxy resins, but the microcapsules having such a shell thickness were robust enough to survive handling during manufacturing self-healing composites. When damage occurred in the epoxy matrix, the crack could rupture the microcapsule to make the repairing agent release.展开更多
Urea formaldehyde/epoxy resin microcapsules were prepared by an in situ polymerization method and the effect of emulsifier on the syntheses process of the microcapsules was discussed. The surface morphology of the mic...Urea formaldehyde/epoxy resin microcapsules were prepared by an in situ polymerization method and the effect of emulsifier on the syntheses process of the microcapsules was discussed. The surface morphology of the microcapsules was observed by optical microscopy and scanning electron microscopy(SEM). Chemical structure was characterized by Fourier transform infrared spectroscopy(FTIR). Thermal stability was obtained using simultaneous thermal analysis(STA). The microcapsules were composed of urea-formaldehyde resin shell and epoxy resin core. Emulsifier played an important role in the polymerization process when the core material was packed by pre-polymer, so the effects of different emulsifiers(OP-10, SDS and SDBS) were discussed respectively. Results showed that the particle size of the microcapsules was uniform when SDBS as an emulsifier. Microcapsules showed good thermal stability below 240 ℃ and the initial decomposition temperature of the microcapsules was 265 ℃. The core materials released after microcapsules rupturing, which could be proven by the images of SEM. When implanted in cementitious composites, complete shape of microcapsules and good interface between microcapsules and cement specimen substrate could also be observed.展开更多
Microcapsule technology is a kind of technology wrapping the solid or liquid into minute-sized particles within the field of micrometer or millimeter with film forming materials. This thesis introduces microcapsule te...Microcapsule technology is a kind of technology wrapping the solid or liquid into minute-sized particles within the field of micrometer or millimeter with film forming materials. This thesis introduces microcapsule technology of phase change materials and its main functions and the structural composition, preparation methods and characterization technology of microcapsule of phase change materials. The microcapsule of phase change materials is small in size and its temperature remains unchanged during the process of heat absorption and heat release. It is of great value in research and application prospect due to these characteristics.展开更多
The self-healing microcapsules can be buried in the coating to improve the anticorrosive ability.In this paper,self-healing microcapsules of polyurea(PU)/melamine resin(MF)double shell were prepared by in-situ polymer...The self-healing microcapsules can be buried in the coating to improve the anticorrosive ability.In this paper,self-healing microcapsules of polyurea(PU)/melamine resin(MF)double shell were prepared by in-situ polymerization and interfacial polymerization with isocyanate as the core material.Scanning electron microscope was used to observe the microcapsule morphology.The structures of microcapsules prepared with different chain extenders were characterized by Fourier transform infrared spectroscopy.The micromanipulation system was used to loading–holding,loading–unloading and loading to rupture individual microcapsules,so as to explore the mechanical properties of microcapsules.The Young’s modulus corresponding to microcapsules was calculated by mathematical model fitting.The self-healing properties of microcapsule coating were characterized by optical microscope.The experimental results showed that the microcapsule shell prepared under optimized conditions had a complete morphology and good mechanical properties.The microcapsule was in the elastic deformation stage under small deformation,and the plastic deformation stage under large deformation.The Young’s modulus range of microcapsules was 9.29–14.51 MPa,and the corresponding Young’s modulus could be prepared by adjusting the process.The surface crack of the coating containing microcapsule could heal itself after48 h in a humid environment.展开更多
The self-healing action of a permeable crystalline coating on the po rous mortar was investigated by two times impermeability test. Moreover, the sel f-healing mechanism of cement-based materials with the permeable cr...The self-healing action of a permeable crystalline coating on the po rous mortar was investigated by two times impermeability test. Moreover, the sel f-healing mechanism of cement-based materials with the permeable crystalline c oating was studied by SEM. The results indicate that the permeable crystalline c oating not only seals the pores and cracks in mortar during its curing process, but also heals the permeable pathway caused by first impermeability test or crac ks produced by freeze-thaw cycles. Therefore, cement-based materials can be im proved by the permeable crystalline coating for the self-healing function. SEM images prove that the self-healing function is realized by generating a great q uantity of non-soluble dendritic crystalline within the pores and cracks, which prevents the penetration of water and other liquids.展开更多
Poly(urea-formaldehyde)(PUF)microcapsules were prepared by in-situ polymerization with four different pro-cesses in this paper.The chemical composition,surface morphology,particle size distribution,and thermal sta-bil...Poly(urea-formaldehyde)(PUF)microcapsules were prepared by in-situ polymerization with four different pro-cesses in this paper.The chemical composition,surface morphology,particle size distribution,and thermal sta-bility were characterized by FTIR,SEM,particle size analyzer,and TGA,respectively.The results demonstrated that the agglomeration of the PUF microcapsules was related to the agglomeration of the emulsion particles caused by the changes of emulsion interface during the shell polymerization.Due to the slow deposition of the shell material,the PUF microcapsules with the core-shell structure prepared by the process with ammonium chloride as the last additive showed good dispersibility with an average diameter of 6.36μm,high core content of 71.3 wt%,and high yield of 61.3 wt%.The PUF microcapsules had good thermal stability below 216?C.The PUF microcapsules could be uniformly dispersed in the epoxy coating in a single form.The epoxy coating with 2 wt%PUF microcapsules showed good self-healing property,and the service life of the coating was about doubled.展开更多
To analyse the self-healing capacities in terms of mechanical performance of the pozzolanic materials,such as,fly ash,metakaolin and silica fume and crystalline admixtures.Pre-cracked concrete cubes with about 0.05 mm...To analyse the self-healing capacities in terms of mechanical performance of the pozzolanic materials,such as,fly ash,metakaolin and silica fume and crystalline admixtures.Pre-cracked concrete cubes with about 0.05 mm width were exposed to four different environmental conditions at different exposure times in order to determine the effect of temperature and water availability on the self-healing potential.After the exposure,the control and tested concrete cubes were evaluated for regained strength,void reduction,corrosion inhibition,damp proofing,relative impermeability and durability.The samples with SF10CA have better cementitious filling and low percentage of voids and water absorption.展开更多
In order to improve the performance of non-asbestos composite auto brake pads that are composed of matrix resin, reinforced material and fillers, a novel method with new technology of self-heal microcapsules was propo...In order to improve the performance of non-asbestos composite auto brake pads that are composed of matrix resin, reinforced material and fillers, a novel method with new technology of self-heal microcapsules was proposed. Nano reinforced fillers' effects were also considered in the experiment project. Five recipe designs for new composite auto brake pads were carried out and cor-responding samples were prepared as well. The friction coefficient and wearing properties at certain temperature, impact intensity and hardness were comparatively studied. Investigations indicate that properties of such composite auto brake pads meet the requirements of the national standards while microcapsule's weight content varies from 5.5wt%-1.09wt% of matrix resin and microcapsule's loca-tion varies in the pads. Nano reinforced fillers have the effects of increasing composites' impact in-tensity and hardness. Application of self-healing microcapsules in auto brake pads is feasible.展开更多
Microcapsule self-healing technology is one of the effective methods to solve the durability problem of cementbased composites.The evaluation method of the self-healing efficiency of microcapsule self-healing cement-b...Microcapsule self-healing technology is one of the effective methods to solve the durability problem of cementbased composites.The evaluation method of the self-healing efficiency of microcapsule self-healing cement-based composites is one of the difficulties that limits the self-healing technology.This paper attempts to characterize the self-healing efficiency of microcapsule self-healing cement-based composites by acoustic emission(AE)parameters,which provides a reference for the evaluation of microcapsule self-healing technology.Firstly,a kind of self-healing microcapsules were prepared,and the microcapsules were added into the cement-based composites to prepare the compression samples.Then,the specimen with certain pre damage was obtained by compression test.Secondly,the damaged samples were divided into two groups.One group was directly used for compression tests to obtain the damage failure process.The other group was put into water for healing for 30 days,and then compression tests were carried out to study the influence of self-healing on the compression failure process.During the experiments,the AE signals were collected and the AE characteristics were extracted for the evaluation of self-healing efficiency.The results show that the compression pre damage test can trigger the microcapsule,and the compression strength of the self-healing sample is improved.The failure mechanism of microcapsule selfhealing cement-based composites can be revealed by the AE parameters during compression,and the self-healing efficiency can be quantitatively characterized by AE hits.The research results of this paper provide experimental reference and technical support for the mechanical property test and healing efficiency evaluation of microcapsule self-healing cement-based composites.展开更多
The permeability modeling of self-healing due to calcium carbonate precipitation in cement-based materials with mineral additives was studied in this work. The parameters of calcium carbonate precipitation during self...The permeability modeling of self-healing due to calcium carbonate precipitation in cement-based materials with mineral additives was studied in this work. The parameters of calcium carbonate precipitation during self-healing were simulated. A permeability modeling of self-healing, combined with numerical simulation of calcium carbonate formation, was proposed based on the modified Poiseuille flow model. Moreover, the percentage of calcium carbonate in healing products was measured by TG-DTA. The simulated results show that self-healing can be dramatically promoted with the increase of pH and Ca2+ concentration. The calculated result of permeability is consistent with that measured for cracks appearing in middle or later stages of self-healing, it indicates that this model can be used to predict the self-healing rate to some extent. In addition, TG-DTA results show that the percentage of calcium carbonate in healing products is higher for mortar with only chemical expansion additives or cracks appearing in the later stage, which can more accurately predict the self-healing rate for the model.展开更多
In this manuscript, we describe the novel method for preparing the microcapsules containing α-tocopherol oil droplets as the first core material, calcium chloride powder as the second core material and the fine water...In this manuscript, we describe the novel method for preparing the microcapsules containing α-tocopherol oil droplets as the first core material, calcium chloride powder as the second core material and the fine water droplets as the third core material by the interfacial condensation reaction between hydroxyl propyl methyl cellulose and tannic acid. The interfacial condensation reaction was performed between hydroxyl propyl methyl cellulose dissolved in the continuous water phase and tannic acid dissolved in the inner fine water droplets as the third core material. The calcium chloride powder as the second core material was dispersed in the α-tocopherol oil droplet as the first core material beforehand. The α-tocopherol oil containing the second and the third core materials was dispersed in the continuous water phase to form the [(S + W)/O/W] emulsion. The α-tocopherol oil as the first core material was microencapsulated satisfactorily and the contents of the second core material were increased with the concentration of stearic acid as the oil soluble stabilizer. The mechanical strength of microcapsules increased with the concentration of hydroxyl propyl methyl cellulose. Thermal energy could be released by breaking the microcapsules in water and by dissolving calcium chloride in the continuous water phase.展开更多
Phase change materials(PCMs) present promising potential for guaranteeing safety in thermal management systems.However,most reported PCMs have a single application in energy storage for thermal management systems,whic...Phase change materials(PCMs) present promising potential for guaranteeing safety in thermal management systems.However,most reported PCMs have a single application in energy storage for thermal management systems,which does not meet the growing demand for multi-functional materials.In this paper,the flexible material and hydrogen-bonding function are innovatively combined to design and prepare a novel multi-functional flexible phase change film(PPL).The 0.2PPL-2 film exhibits solid-solid phase change behavior with energy storage density of 131.8 J/g at the transition temperature of42.1℃,thermal cycling stability(500 cycles),wide-temperature range flexibility(0-60℃) and selfhealing property.Notably,the PPL film can be recycled up to 98.5% by intrinsic remodeling.Moreover,the PPL film can be tailored to the desired colors and configurations and can be cleverly assembled on several thermal management systems at ambient temperature through its flexibility combined with shape-memory properties.More interestingly,the transmittance of PPL will be altered when the ambient temperature changes(60℃),conveying a clear thermal signal.Finally,the thermal energy storage performance of the PPL film is successfully tested by human thermotherapy and electronic device temperature control experiments.The proposed functional integration strategy provides innovative ideas to design PCMs for multifunctionality,and makes significant contributions in green chemistry,highefficiency thermal management,and energy sustainability.展开更多
Within the multi-barrier system for high-level waste disposal,the technological gap formed by combined buffer material block becomes the weak part of buffer layer.In this paper,Gaomiaozi bentonite buffer material with...Within the multi-barrier system for high-level waste disposal,the technological gap formed by combined buffer material block becomes the weak part of buffer layer.In this paper,Gaomiaozi bentonite buffer material with technological gap was studied,the heat transfer induced by liquid water flow and water vapor was embedded into the energy conservation equation.Based on the Barcelona basic model,the coupled thermo-hydro-mechanical model of unsaturated bentonite was established by analyzing the swelling process of bentonite block and the compression process of joint material.The China-Mock-up test was adopted to compare the numerical calculation results with the test results so as to verify the rationality of the proposed model.On this basis,the effect of joint self-healing on dry density,thermal conductivity and permeability coefficient of buffer material was further analyzed.The results show that,with bentonite hydrating and swelling,the joint material gradually increases in dry density,and exhibits comparatively uniform hydraulic and thermal conductivity properties as compacted bentonite block.As a result,the buffer material gradually shifts to homogenization due to the coordinated deformation.展开更多
UV-curable polyurethane prepolymer and photoinitiator 1173 were facilely encapsulated in a poly(urea-formaldehyde) shell, which was in situ formed by the polymerization of formalde-hyde and urea in an oil-in-water e...UV-curable polyurethane prepolymer and photoinitiator 1173 were facilely encapsulated in a poly(urea-formaldehyde) shell, which was in situ formed by the polymerization of formalde-hyde and urea in an oil-in-water emulsion. The diameters of the microcapsules ranged from 118 μm to 663 μm depending on agitation speed, and were obtained via optical mi-croscopy and scanning electron microscopy analyses. The encapsulation percent and the yield of microcapsules prepared at the agitation speed of 600 r/min can reach 97.52wt% and 65.23wt%, respectively. When the water-borne polyurethane (WPU) coating embedded with the prepared microcapsules were scratched, the healing agent could be released from rup-tured microcapsules and lled the scribed region. The excellent anticorrosion properties of the WPU coating embedded with the prepared microcapsules were con rmed by the results obtained from both electrochemical impedance spectroscopy and Tafel curves.展开更多
Today,self-healing graphene-and MXene-based composites have attracted researchers due to the increase in durability as well as the cost reduction in long-time applications.Different studies have focused on designing n...Today,self-healing graphene-and MXene-based composites have attracted researchers due to the increase in durability as well as the cost reduction in long-time applications.Different studies have focused on designing novel self-healing graphene-and MXenebased composites with enhanced sensitivity,stretchability,and flexibility as well as improved electrical conductivity,healing efficacy,mechanical properties,and energy conversion efficacy.These composites with self-healing properties can be employed in the field of wearable sensors,supercapacitors,anticorrosive coatings,electromagnetic interference shielding,electronic-skin,soft robotics,etc.However,it appears that more explorations are still needed to achieve composites with excellent arbitrary shape adaptability,suitable adhesiveness,ideal durability,high stretchability,immediate self-healing responsibility,and outstanding electromagnetic features.Besides,optimizing reaction/synthesis conditions and finding suitable strategies for functionalization/modification are crucial aspects that should be comprehensively investigated.MXenes and graphene exhibited superior electrochemical properties with abundant surface terminations and great surface area,which are important to evolve biomedical and sensing applications.However,flexibility and stretchability are important criteria that need to be improved for their future applications.Herein,the most recent advancements pertaining to the applications and properties of self-healing graphene-and MXene-based composites are deliberated,focusing on crucial challenges and future perspectives.展开更多
A novel type of microencapsulated phase change materials(microPCMs)based on 1-tetradecanol(TD)core and silver-coated poly(melamine-urea-formaldehyde)(MUF)shell was successfully synthesized by in situ polymerization me...A novel type of microencapsulated phase change materials(microPCMs)based on 1-tetradecanol(TD)core and silver-coated poly(melamine-urea-formaldehyde)(MUF)shell was successfully synthesized by in situ polymerization method followed by silver reduction.Fourier-transform infrared spectroscopy(FTIR),X-ray diffraction(XRD),scanning electron microscopy with energy dispersive X-ray spectrometry(SEM/EDS),thermogravimetric analysis(TGA)and differential scanning calorimetry(DSC)were used to characterize the chemical structure,morphology and thermal properties of the as-prepared silver-coated microPCMs.FTIR analysis confirmed the successful encapsulation of TD with MUF wall materials.The SEM and EDS results indicated that the prepared silver-coated MUF microPCMs exhibited uniform spherical shape with a perfect silver outer layer.From XRD analysis,the Ag metal dispersed on the surface of microcapsules presented the form of elementary substance.The deposition weight of silver particles on the microcapsule surface increased with increasing the amount of silver nitrate,as indicated by EDS tests.The DSC results indicated that the melting temperature and the melting latent heat of microPCMs modified with 0.7g of silver nitrate in 150mL aqueous solution were 39.2°C and 126.6J·g^-1,respectively.Supercooling of the microPCMs coated with silver particles was effectively suppressed,compared with that of microPCMs without Ag.Thus,the encapsulation of TD with silver-coated MUF shell developed by this work can be an effective method to prepare the microPCMs with enhanced thermal transfer performance and phase change properties.展开更多
Copper/liquid microcapsule composite coatings with polyvinyl alcohol (PVA), gelatin or methyl cellulose (MC) as shell materials were prepared by electrodeposition. The influence of shell materials on the corrosion...Copper/liquid microcapsule composite coatings with polyvinyl alcohol (PVA), gelatin or methyl cellulose (MC) as shell materials were prepared by electrodeposition. The influence of shell materials on the corrosion resistance of the composite coatings in 0.1 M H2SO4 was investigated by means of electrochemical techniques, scanning electron microscopy (SEM), and energy dispersion spectrometry (EDS). The results show that the participation of microcapsules can enhance the corrosion resistance of the composite coatings compared with the traditional copper layer. Based on the analysis of electrochemical test results, the release ways of microcapsules were deduced. Gelatin and MC as the shell materials of microcapsules are easy to release quickly in the composite coating. On the contrary, the releasing speed of PVA microcapsules is relatively slow due to their characteristics.展开更多
Infrared radiation is one of the main exposure symptoms of military targets. Infrared radiation differences between targets and backgrounds should be eliminated to the greatest extent to fight against all kinds of inf...Infrared radiation is one of the main exposure symptoms of military targets. Infrared radiation differences between targets and backgrounds should be eliminated to the greatest extent to fight against all kinds of infrared reconnaissance. In addition to the employment of the camouflage paint with low emissivity, reducing the surface temperature of targets is an urgent and difficult challenge. PCM (phase-change material) can be used to effectively solve this problem. The application of microcapsule in the infrared stealth materials greatly promotes the development of infrared stealth technology.展开更多
The high-efficiency fabrication of high-quality microcapsules containing epoxy is crucial to the further development of the potential practical self-healing epoxy systems based on microencapsulated two-part epoxy-amin...The high-efficiency fabrication of high-quality microcapsules containing epoxy is crucial to the further development of the potential practical self-healing epoxy systems based on microencapsulated two-part epoxy-amine chemistry.Herein,a novel microencapsulation technique based on non-equilibrium droplets via integrating electrospraying and interfacial polymerization(ES-IP)was established to efficiently microencapsulate epoxy monomers.The ES-IP technique,consisting of three continuous steps,i.e.electrospraying to massively generate droplets,enwrapping every single droplet through instant interfacial polymerization,and thickening shell at an elevated temperature,has great flexibility to regulate the microencapsulation process and the microcapsule quality.The fabricated core-shell structured epoxy microcapsules(Ep-MCs)were comprehensively characterized for their properties,showing that they have high cleanness with rare impurities,controllable and tunable size,good thermal stability and tightness,and high effective core fraction.The high-quality Ep-MCs were adopted to formulate a self-healing epoxy based on the microencapsulated epoxy-amine chemistry.The highest healing efficiency,in terms of the recovered mode I fracture toughness,of 110±17%was achieved after being healed at room temperature(~25℃)for 48 h.While the developed ES-IP technique facilitates the microencapsulation technique based on non-equilibrium droplets,the fabricated high-quality Ep-MCs greatly promote the further developments of the practical self-healing materials.展开更多
Surface coatings have been extensively used to control the degradation rate of Mg alloys for bioimplant applications.However,these coatings only act as passive barriers.In corrosive media,structural damage impairs the...Surface coatings have been extensively used to control the degradation rate of Mg alloys for bioimplant applications.However,these coatings only act as passive barriers.In corrosive media,structural damage impairs their barrier properties,resulting in rapid degradation of Mg alloys.The present study incorporates phytic acid(PA)as a healing agent in polycaprolactone(PCL)microcapsules with a unique honeycomb core matrix to obtain a self-healing PA-PCLcaps coating.The contact between simulated body fluid(SBF)and PA-PCLcaps coated ZM21 exhibited Cassie-Baxter interfacial states,resulting in significant hydrophobicity with a contact angle(CA)of 116.3.The corrosion potential(Ecorr)and current density(Icorr)were found to be-0.28 V and 1.1×10^(-9)A/cm^(2),respectively,for PA-PCLcaps coating,resulting in biosafe corrosion rate of 2.5×10^(-4)mm/year.After mechanical scratching,rapid HA mineralization at scratched regions recovered the hydrogen evolution rate(HER,0.36 mL/cm^(2)/day)and pH change(pH 7.10)of scratched PA-PCLcaps coated ZM21 samples to corresponding unscratched samples within one day of immersion.The coating’s self-healing ability could be attributed to PA released from punctured microcapsules,which facilitates HA chelation.The pH-triggered(pH 10)and Mg(II)-triggered(5 mM)conditions enhanced PA release from PA-PCLcaps coating by 2.5 and 3.1 times,respectively.As a result,dense HA mineralization occurred,which protects the coating from structural defects and ensures its durability in stimulating conditions.The findings of present study provide new insight for design of multiple stimuli-feedback based self-healing coatings on biodegradable Mg alloys.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.50775222 and 50735006)
文摘The urea-formaldehyde(UF) capsules filled with a healing agent, a mixture of epoxy resins(epoxy 711 and E-51) as core material, were produced by means of one step in-situ polymerization. The characteristics of these microcapsules were studied via scanning electron microscopy(SEM), particle size analysis, FTIR and DSC/TGA. The results show that the dispersed and integrated microcapsules of 5 μm in shell thickness were synthesized successfully. The capsules were produced with diameters ranging from 10 to 250 μm via controlling agitation rate. Young's modulus of the capsule was a little lower than those of the epoxy resins, but the microcapsules having such a shell thickness were robust enough to survive handling during manufacturing self-healing composites. When damage occurred in the epoxy matrix, the crack could rupture the microcapsule to make the repairing agent release.
基金Funded by State Key Laboratory of Silicate Materials for Architectures(No.SYSJJ2016-07),Wuhan University of Technology
文摘Urea formaldehyde/epoxy resin microcapsules were prepared by an in situ polymerization method and the effect of emulsifier on the syntheses process of the microcapsules was discussed. The surface morphology of the microcapsules was observed by optical microscopy and scanning electron microscopy(SEM). Chemical structure was characterized by Fourier transform infrared spectroscopy(FTIR). Thermal stability was obtained using simultaneous thermal analysis(STA). The microcapsules were composed of urea-formaldehyde resin shell and epoxy resin core. Emulsifier played an important role in the polymerization process when the core material was packed by pre-polymer, so the effects of different emulsifiers(OP-10, SDS and SDBS) were discussed respectively. Results showed that the particle size of the microcapsules was uniform when SDBS as an emulsifier. Microcapsules showed good thermal stability below 240 ℃ and the initial decomposition temperature of the microcapsules was 265 ℃. The core materials released after microcapsules rupturing, which could be proven by the images of SEM. When implanted in cementitious composites, complete shape of microcapsules and good interface between microcapsules and cement specimen substrate could also be observed.
文摘Microcapsule technology is a kind of technology wrapping the solid or liquid into minute-sized particles within the field of micrometer or millimeter with film forming materials. This thesis introduces microcapsule technology of phase change materials and its main functions and the structural composition, preparation methods and characterization technology of microcapsule of phase change materials. The microcapsule of phase change materials is small in size and its temperature remains unchanged during the process of heat absorption and heat release. It is of great value in research and application prospect due to these characteristics.
基金Supported by State Key Laboratory of Advanced Power Transmission Technology(GEIRI-SKL-2018-005)Guangzhou Major Industrial Technology Research Plan(201802010022)Guangzhou Science and Technology Project(201710010186)。
文摘The self-healing microcapsules can be buried in the coating to improve the anticorrosive ability.In this paper,self-healing microcapsules of polyurea(PU)/melamine resin(MF)double shell were prepared by in-situ polymerization and interfacial polymerization with isocyanate as the core material.Scanning electron microscope was used to observe the microcapsule morphology.The structures of microcapsules prepared with different chain extenders were characterized by Fourier transform infrared spectroscopy.The micromanipulation system was used to loading–holding,loading–unloading and loading to rupture individual microcapsules,so as to explore the mechanical properties of microcapsules.The Young’s modulus corresponding to microcapsules was calculated by mathematical model fitting.The self-healing properties of microcapsule coating were characterized by optical microscope.The experimental results showed that the microcapsule shell prepared under optimized conditions had a complete morphology and good mechanical properties.The microcapsule was in the elastic deformation stage under small deformation,and the plastic deformation stage under large deformation.The Young’s modulus range of microcapsules was 9.29–14.51 MPa,and the corresponding Young’s modulus could be prepared by adjusting the process.The surface crack of the coating containing microcapsule could heal itself after48 h in a humid environment.
基金Funded by the Scientific and Technological Project of Hubei Province(2004BCS005)
文摘The self-healing action of a permeable crystalline coating on the po rous mortar was investigated by two times impermeability test. Moreover, the sel f-healing mechanism of cement-based materials with the permeable crystalline c oating was studied by SEM. The results indicate that the permeable crystalline c oating not only seals the pores and cracks in mortar during its curing process, but also heals the permeable pathway caused by first impermeability test or crac ks produced by freeze-thaw cycles. Therefore, cement-based materials can be im proved by the permeable crystalline coating for the self-healing function. SEM images prove that the self-healing function is realized by generating a great q uantity of non-soluble dendritic crystalline within the pores and cracks, which prevents the penetration of water and other liquids.
基金This work was supported by the Jiangsu National Synergetic Innovation Center for Advanced Materials and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Poly(urea-formaldehyde)(PUF)microcapsules were prepared by in-situ polymerization with four different pro-cesses in this paper.The chemical composition,surface morphology,particle size distribution,and thermal sta-bility were characterized by FTIR,SEM,particle size analyzer,and TGA,respectively.The results demonstrated that the agglomeration of the PUF microcapsules was related to the agglomeration of the emulsion particles caused by the changes of emulsion interface during the shell polymerization.Due to the slow deposition of the shell material,the PUF microcapsules with the core-shell structure prepared by the process with ammonium chloride as the last additive showed good dispersibility with an average diameter of 6.36μm,high core content of 71.3 wt%,and high yield of 61.3 wt%.The PUF microcapsules had good thermal stability below 216?C.The PUF microcapsules could be uniformly dispersed in the epoxy coating in a single form.The epoxy coating with 2 wt%PUF microcapsules showed good self-healing property,and the service life of the coating was about doubled.
文摘To analyse the self-healing capacities in terms of mechanical performance of the pozzolanic materials,such as,fly ash,metakaolin and silica fume and crystalline admixtures.Pre-cracked concrete cubes with about 0.05 mm width were exposed to four different environmental conditions at different exposure times in order to determine the effect of temperature and water availability on the self-healing potential.After the exposure,the control and tested concrete cubes were evaluated for regained strength,void reduction,corrosion inhibition,damp proofing,relative impermeability and durability.The samples with SF10CA have better cementitious filling and low percentage of voids and water absorption.
基金Funded by the Beijing Talent and Innovation Project (No. 2006)
文摘In order to improve the performance of non-asbestos composite auto brake pads that are composed of matrix resin, reinforced material and fillers, a novel method with new technology of self-heal microcapsules was proposed. Nano reinforced fillers' effects were also considered in the experiment project. Five recipe designs for new composite auto brake pads were carried out and cor-responding samples were prepared as well. The friction coefficient and wearing properties at certain temperature, impact intensity and hardness were comparatively studied. Investigations indicate that properties of such composite auto brake pads meet the requirements of the national standards while microcapsule's weight content varies from 5.5wt%-1.09wt% of matrix resin and microcapsule's loca-tion varies in the pads. Nano reinforced fillers have the effects of increasing composites' impact in-tensity and hardness. Application of self-healing microcapsules in auto brake pads is feasible.
基金support provided by the National Natural Science Foundation of China(Grant No.11872025)and the Six Talent Peaks Project in Jiangsu Province(Grant No.2019-KTHY-059).
文摘Microcapsule self-healing technology is one of the effective methods to solve the durability problem of cementbased composites.The evaluation method of the self-healing efficiency of microcapsule self-healing cement-based composites is one of the difficulties that limits the self-healing technology.This paper attempts to characterize the self-healing efficiency of microcapsule self-healing cement-based composites by acoustic emission(AE)parameters,which provides a reference for the evaluation of microcapsule self-healing technology.Firstly,a kind of self-healing microcapsules were prepared,and the microcapsules were added into the cement-based composites to prepare the compression samples.Then,the specimen with certain pre damage was obtained by compression test.Secondly,the damaged samples were divided into two groups.One group was directly used for compression tests to obtain the damage failure process.The other group was put into water for healing for 30 days,and then compression tests were carried out to study the influence of self-healing on the compression failure process.During the experiments,the AE signals were collected and the AE characteristics were extracted for the evaluation of self-healing efficiency.The results show that the compression pre damage test can trigger the microcapsule,and the compression strength of the self-healing sample is improved.The failure mechanism of microcapsule selfhealing cement-based composites can be revealed by the AE parameters during compression,and the self-healing efficiency can be quantitatively characterized by AE hits.The research results of this paper provide experimental reference and technical support for the mechanical property test and healing efficiency evaluation of microcapsule self-healing cement-based composites.
基金Project(2018YFC0705404)supported by the National Key Technology Research and Development of ChinaProjects(51878480,51678442,51878481,51878496)supported by the National Natural Science Foundation of China+1 种基金Project(U1534207)supported by the National High-speed Train Union Fund,ChinaProject supported by the Fundamental Research Funds for the Central Universities,China
文摘The permeability modeling of self-healing due to calcium carbonate precipitation in cement-based materials with mineral additives was studied in this work. The parameters of calcium carbonate precipitation during self-healing were simulated. A permeability modeling of self-healing, combined with numerical simulation of calcium carbonate formation, was proposed based on the modified Poiseuille flow model. Moreover, the percentage of calcium carbonate in healing products was measured by TG-DTA. The simulated results show that self-healing can be dramatically promoted with the increase of pH and Ca2+ concentration. The calculated result of permeability is consistent with that measured for cracks appearing in middle or later stages of self-healing, it indicates that this model can be used to predict the self-healing rate to some extent. In addition, TG-DTA results show that the percentage of calcium carbonate in healing products is higher for mortar with only chemical expansion additives or cracks appearing in the later stage, which can more accurately predict the self-healing rate for the model.
文摘In this manuscript, we describe the novel method for preparing the microcapsules containing α-tocopherol oil droplets as the first core material, calcium chloride powder as the second core material and the fine water droplets as the third core material by the interfacial condensation reaction between hydroxyl propyl methyl cellulose and tannic acid. The interfacial condensation reaction was performed between hydroxyl propyl methyl cellulose dissolved in the continuous water phase and tannic acid dissolved in the inner fine water droplets as the third core material. The calcium chloride powder as the second core material was dispersed in the α-tocopherol oil droplet as the first core material beforehand. The α-tocopherol oil containing the second and the third core materials was dispersed in the continuous water phase to form the [(S + W)/O/W] emulsion. The α-tocopherol oil as the first core material was microencapsulated satisfactorily and the contents of the second core material were increased with the concentration of stearic acid as the oil soluble stabilizer. The mechanical strength of microcapsules increased with the concentration of hydroxyl propyl methyl cellulose. Thermal energy could be released by breaking the microcapsules in water and by dissolving calcium chloride in the continuous water phase.
基金supported by the Project of Shanghai Science and Technology Commission (Grant No. 19DZ1203102)National Key Research and Development Project (2018YFD0401300)Shanghai Municipal Science and Technology Project (16040501600)。
文摘Phase change materials(PCMs) present promising potential for guaranteeing safety in thermal management systems.However,most reported PCMs have a single application in energy storage for thermal management systems,which does not meet the growing demand for multi-functional materials.In this paper,the flexible material and hydrogen-bonding function are innovatively combined to design and prepare a novel multi-functional flexible phase change film(PPL).The 0.2PPL-2 film exhibits solid-solid phase change behavior with energy storage density of 131.8 J/g at the transition temperature of42.1℃,thermal cycling stability(500 cycles),wide-temperature range flexibility(0-60℃) and selfhealing property.Notably,the PPL film can be recycled up to 98.5% by intrinsic remodeling.Moreover,the PPL film can be tailored to the desired colors and configurations and can be cleverly assembled on several thermal management systems at ambient temperature through its flexibility combined with shape-memory properties.More interestingly,the transmittance of PPL will be altered when the ambient temperature changes(60℃),conveying a clear thermal signal.Finally,the thermal energy storage performance of the PPL film is successfully tested by human thermotherapy and electronic device temperature control experiments.The proposed functional integration strategy provides innovative ideas to design PCMs for multifunctionality,and makes significant contributions in green chemistry,highefficiency thermal management,and energy sustainability.
基金Projects(52078031,U 2034204)supported by the National Natural Science Foundation of China。
文摘Within the multi-barrier system for high-level waste disposal,the technological gap formed by combined buffer material block becomes the weak part of buffer layer.In this paper,Gaomiaozi bentonite buffer material with technological gap was studied,the heat transfer induced by liquid water flow and water vapor was embedded into the energy conservation equation.Based on the Barcelona basic model,the coupled thermo-hydro-mechanical model of unsaturated bentonite was established by analyzing the swelling process of bentonite block and the compression process of joint material.The China-Mock-up test was adopted to compare the numerical calculation results with the test results so as to verify the rationality of the proposed model.On this basis,the effect of joint self-healing on dry density,thermal conductivity and permeability coefficient of buffer material was further analyzed.The results show that,with bentonite hydrating and swelling,the joint material gradually increases in dry density,and exhibits comparatively uniform hydraulic and thermal conductivity properties as compacted bentonite block.As a result,the buffer material gradually shifts to homogenization due to the coordinated deformation.
文摘UV-curable polyurethane prepolymer and photoinitiator 1173 were facilely encapsulated in a poly(urea-formaldehyde) shell, which was in situ formed by the polymerization of formalde-hyde and urea in an oil-in-water emulsion. The diameters of the microcapsules ranged from 118 μm to 663 μm depending on agitation speed, and were obtained via optical mi-croscopy and scanning electron microscopy analyses. The encapsulation percent and the yield of microcapsules prepared at the agitation speed of 600 r/min can reach 97.52wt% and 65.23wt%, respectively. When the water-borne polyurethane (WPU) coating embedded with the prepared microcapsules were scratched, the healing agent could be released from rup-tured microcapsules and lled the scribed region. The excellent anticorrosion properties of the WPU coating embedded with the prepared microcapsules were con rmed by the results obtained from both electrochemical impedance spectroscopy and Tafel curves.
文摘Today,self-healing graphene-and MXene-based composites have attracted researchers due to the increase in durability as well as the cost reduction in long-time applications.Different studies have focused on designing novel self-healing graphene-and MXenebased composites with enhanced sensitivity,stretchability,and flexibility as well as improved electrical conductivity,healing efficacy,mechanical properties,and energy conversion efficacy.These composites with self-healing properties can be employed in the field of wearable sensors,supercapacitors,anticorrosive coatings,electromagnetic interference shielding,electronic-skin,soft robotics,etc.However,it appears that more explorations are still needed to achieve composites with excellent arbitrary shape adaptability,suitable adhesiveness,ideal durability,high stretchability,immediate self-healing responsibility,and outstanding electromagnetic features.Besides,optimizing reaction/synthesis conditions and finding suitable strategies for functionalization/modification are crucial aspects that should be comprehensively investigated.MXenes and graphene exhibited superior electrochemical properties with abundant surface terminations and great surface area,which are important to evolve biomedical and sensing applications.However,flexibility and stretchability are important criteria that need to be improved for their future applications.Herein,the most recent advancements pertaining to the applications and properties of self-healing graphene-and MXene-based composites are deliberated,focusing on crucial challenges and future perspectives.
基金the Opening Project of Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education(Jianghan University)(No.JDGD-201604)。
文摘A novel type of microencapsulated phase change materials(microPCMs)based on 1-tetradecanol(TD)core and silver-coated poly(melamine-urea-formaldehyde)(MUF)shell was successfully synthesized by in situ polymerization method followed by silver reduction.Fourier-transform infrared spectroscopy(FTIR),X-ray diffraction(XRD),scanning electron microscopy with energy dispersive X-ray spectrometry(SEM/EDS),thermogravimetric analysis(TGA)and differential scanning calorimetry(DSC)were used to characterize the chemical structure,morphology and thermal properties of the as-prepared silver-coated microPCMs.FTIR analysis confirmed the successful encapsulation of TD with MUF wall materials.The SEM and EDS results indicated that the prepared silver-coated MUF microPCMs exhibited uniform spherical shape with a perfect silver outer layer.From XRD analysis,the Ag metal dispersed on the surface of microcapsules presented the form of elementary substance.The deposition weight of silver particles on the microcapsule surface increased with increasing the amount of silver nitrate,as indicated by EDS tests.The DSC results indicated that the melting temperature and the melting latent heat of microPCMs modified with 0.7g of silver nitrate in 150mL aqueous solution were 39.2°C and 126.6J·g^-1,respectively.Supercooling of the microPCMs coated with silver particles was effectively suppressed,compared with that of microPCMs without Ag.Thus,the encapsulation of TD with silver-coated MUF shell developed by this work can be an effective method to prepare the microPCMs with enhanced thermal transfer performance and phase change properties.
基金supported by the National Natural Science Foundation of China (No. 50771010)
文摘Copper/liquid microcapsule composite coatings with polyvinyl alcohol (PVA), gelatin or methyl cellulose (MC) as shell materials were prepared by electrodeposition. The influence of shell materials on the corrosion resistance of the composite coatings in 0.1 M H2SO4 was investigated by means of electrochemical techniques, scanning electron microscopy (SEM), and energy dispersion spectrometry (EDS). The results show that the participation of microcapsules can enhance the corrosion resistance of the composite coatings compared with the traditional copper layer. Based on the analysis of electrochemical test results, the release ways of microcapsules were deduced. Gelatin and MC as the shell materials of microcapsules are easy to release quickly in the composite coating. On the contrary, the releasing speed of PVA microcapsules is relatively slow due to their characteristics.
文摘Infrared radiation is one of the main exposure symptoms of military targets. Infrared radiation differences between targets and backgrounds should be eliminated to the greatest extent to fight against all kinds of infrared reconnaissance. In addition to the employment of the camouflage paint with low emissivity, reducing the surface temperature of targets is an urgent and difficult challenge. PCM (phase-change material) can be used to effectively solve this problem. The application of microcapsule in the infrared stealth materials greatly promotes the development of infrared stealth technology.
基金financially supported by the National Natural Science Foundation of China(No.51903090)the Science and Technology Program of Guangzhou(No.202102020632)Fundamental Research Funds for the Central Universities(No.2020ZYGXZR046)。
文摘The high-efficiency fabrication of high-quality microcapsules containing epoxy is crucial to the further development of the potential practical self-healing epoxy systems based on microencapsulated two-part epoxy-amine chemistry.Herein,a novel microencapsulation technique based on non-equilibrium droplets via integrating electrospraying and interfacial polymerization(ES-IP)was established to efficiently microencapsulate epoxy monomers.The ES-IP technique,consisting of three continuous steps,i.e.electrospraying to massively generate droplets,enwrapping every single droplet through instant interfacial polymerization,and thickening shell at an elevated temperature,has great flexibility to regulate the microencapsulation process and the microcapsule quality.The fabricated core-shell structured epoxy microcapsules(Ep-MCs)were comprehensively characterized for their properties,showing that they have high cleanness with rare impurities,controllable and tunable size,good thermal stability and tightness,and high effective core fraction.The high-quality Ep-MCs were adopted to formulate a self-healing epoxy based on the microencapsulated epoxy-amine chemistry.The highest healing efficiency,in terms of the recovered mode I fracture toughness,of 110±17%was achieved after being healed at room temperature(~25℃)for 48 h.While the developed ES-IP technique facilitates the microencapsulation technique based on non-equilibrium droplets,the fabricated high-quality Ep-MCs greatly promote the further developments of the practical self-healing materials.
文摘Surface coatings have been extensively used to control the degradation rate of Mg alloys for bioimplant applications.However,these coatings only act as passive barriers.In corrosive media,structural damage impairs their barrier properties,resulting in rapid degradation of Mg alloys.The present study incorporates phytic acid(PA)as a healing agent in polycaprolactone(PCL)microcapsules with a unique honeycomb core matrix to obtain a self-healing PA-PCLcaps coating.The contact between simulated body fluid(SBF)and PA-PCLcaps coated ZM21 exhibited Cassie-Baxter interfacial states,resulting in significant hydrophobicity with a contact angle(CA)of 116.3.The corrosion potential(Ecorr)and current density(Icorr)were found to be-0.28 V and 1.1×10^(-9)A/cm^(2),respectively,for PA-PCLcaps coating,resulting in biosafe corrosion rate of 2.5×10^(-4)mm/year.After mechanical scratching,rapid HA mineralization at scratched regions recovered the hydrogen evolution rate(HER,0.36 mL/cm^(2)/day)and pH change(pH 7.10)of scratched PA-PCLcaps coated ZM21 samples to corresponding unscratched samples within one day of immersion.The coating’s self-healing ability could be attributed to PA released from punctured microcapsules,which facilitates HA chelation.The pH-triggered(pH 10)and Mg(II)-triggered(5 mM)conditions enhanced PA release from PA-PCLcaps coating by 2.5 and 3.1 times,respectively.As a result,dense HA mineralization occurred,which protects the coating from structural defects and ensures its durability in stimulating conditions.The findings of present study provide new insight for design of multiple stimuli-feedback based self-healing coatings on biodegradable Mg alloys.