A design of semi-submersible platform is mainly based on the extreme response analysis due to the forces experienced by the components during lifetime. The external loads can induce the extreme air gap response and po...A design of semi-submersible platform is mainly based on the extreme response analysis due to the forces experienced by the components during lifetime. The external loads can induce the extreme air gap response and potential deck impact to the semi-submersible platform. It is important to predict air gap response of platforms accurately in order to check the strength of local structures which withstand the wave slamming due to negative air gap. The wind load cannot be simulated easily by model test in towing tank whereas it can be simulated accurately in wind tunnel test. Furthermore, full scale simulation of the mooring system in model test is still a tuffwork especially the stiffness of the mooring system. Owing to the above mentioned problem, the model test results are not accurate enough for air gap evaluation. The aim of this paper is to present sensitivity analysis results of air gap motion with respect to the mooring system and wind load for the design of semi-submersible platform. Though the model test results are not suitable for the direct evaluation of air gap, they can be used as a good basis for tuning the radiation damping and viscous drag in numerical simulation. In the presented design example, a numerical model is tuned and validated by ANSYS AQWA based on the model test results with a simple 4 line symmetrical horizontal soft mooring system. According to the tuned numerical model, sensitivity analysis studies of air gap motion with respect to the mooring system and wind load are performed in time domain. Three mooring systems and five simulation cases about the presented platform are simulated based on the results of wind tunnel tests and sea-keeping tests. The sensitivity analysis results are valuable for the floating platform design.展开更多
A wave load computation approach in direct strength analysis of semi-submersible platform structures was presented in this paper. Considering the differences in shape of pontoon, column and beam, the combination of ac...A wave load computation approach in direct strength analysis of semi-submersible platform structures was presented in this paper. Considering the differences in shape of pontoon, column and beam, the combination of accumulative chord length cubic parameter spline theory and analytic method was adopted for generating the wet surface mesh of platform. The hydrodynamic coefficients of platform were calculated by the three-dimensional potential flow theory of the linear hydrodynamic problem for platform with low forward speed. The equation of platform motions was established and solved in frequency domain, and the responses of wave-induced loads on the platform can be obtained. With the interpolation method being utilized, the pressure loads on shell elements for finite element analysis (FEA) were converted from those on the hydrodynamic computation mesh, which pave the basis for FEA with commercial software.A computer program based on this method has been developed, and a calculation example of semi-submersible platform was illustrated.Analysis results show that this method is a satisfying approach of wave loads computation for this kind of platform.展开更多
By applying experimental and numerical simulations, the motion performance of a semi-submersible platform with mooring positoning system under combined actions of wind and waves is studied. The numerical simulation is...By applying experimental and numerical simulations, the motion performance of a semi-submersible platform with mooring positoning system under combined actions of wind and waves is studied. The numerical simulation is conducted by the method of nonlinear time domain coupled analysis, and the mooring forces are calculated by the piecewise extrapolating method. The scale in the model experiment is 1:100, and the mooring system of the model is designed with the method of equivalent water-depth truncation by comparing the numerical and the experimental results, the platform motion and mooring forces subject to wind and waves are investigated. The results indicate that the numerically simulated mooring forces agree well with the experimental results in static equivalent field, but show some difference in dynamic equivalent field; the numerically simulated platform motions coincide well with the experimental results. The maximum motion of the platform under operating conditions is 20.5 m. It means that the horizontal displacement is 2% less than the water depth, which satisfies the operating requirements.展开更多
An investigation into the prediction method for internal solitary waves(ISWs)loads on the columns and caissons of the semi-submersible platform found on three kinds of internal solitary wave theories and the modified ...An investigation into the prediction method for internal solitary waves(ISWs)loads on the columns and caissons of the semi-submersible platform found on three kinds of internal solitary wave theories and the modified Morison Equation is described.The characteristics of loads exerted on the semi-submersible platform model caused by the ISWs have been observed experimentally,and the inertial and drag coefficients in Morison Equation are determined by analyzing the forces of experiments.From the results,it is of interest to find that Reynolds number,KC number and layer thickness ratio have a considerable influence on the coefficients.The direction of incoming waves,how-ever,is almost devoid of effects on the coefficients.The drag coefficient of columns varies as an exponential function of Reynolds number,and inertia coefficient of columns is a power function related to KC number.Meanwhile,the drag coefficient of caissons is approximately constant in terms of regression analysis of experimental data.The results from different experimental conditions reveal that the inertia coefficient of caissons appears to be exponential correlated with upper layer depths.展开更多
For a semi-submersible platform in repair, the eight old main brackets which connect columns with pontoons need to be replaced by new ones. In order to ensure the safety of the cutting operation of the old main bracke...For a semi-submersible platform in repair, the eight old main brackets which connect columns with pontoons need to be replaced by new ones. In order to ensure the safety of the cutting operation of the old main bracket and calculate the initial stress condition of new main bracket, the structural stress monitoring of eight key spots is carried out, and then the calibrated finite element model is established according to the field monitoring results. Before cutting the main bracket and all associated structures, eight rectangular rosettes were installed, and a tailored cutting scheme was proposed to release the initial stress, in which the main bracket and associated column and pontoon plates were partly cut. During the cutting procedure, the strains of the monitoring spots were measured, and then the structural stress of the monitored spots were obtained. The stress variation characteristics at different spots during the initial cutting operation were shown and the initial stress condition of the monitored spots was figured out. The loading and support conditions of the semi-submersible platform were calibrated based on the measured initial stress condition, which made the finite element model more credible. The stress condition with the main bracket and associated structures being entirely cut out is analyzed by the Finite Element Method (FEM), which demonstrates the cutting operation to be safe and feasible. In addition, the calibrated finite element model can be used to calculate the initial stress condition of the new main bracket, which will be very helpful for the long-term stress monitoring on the main bracket.展开更多
Based on the principle of turned mass damper(TMD) systems,the conceptual design of semi-submersible platform with a moveable heave-plate(MHS) has been put forward.The heave motion response amplitude operator(RAO) and ...Based on the principle of turned mass damper(TMD) systems,the conceptual design of semi-submersible platform with a moveable heave-plate(MHS) has been put forward.The heave motion response amplitude operator(RAO) and viscous damping of the MHS platform are calculated by iteration,and the coupling stiffness between the MHS hull and the heave-plate is optimized to decrease the maximum heave motion response of the MHS hull under 10-year survival conditions in the South China Sea.The nu-merical results indicate that the heave motion RAO of the MHS hull can be decreased in the range of predominant wave frequencies,which may provide some reference to the heave motion control of offshore platforms.展开更多
Mooring system failure can lead to largely different dynamic response of floating structures when compared to the response under the condition of intact mooring system.For a semi-submersible platform with taut mooring...Mooring system failure can lead to largely different dynamic response of floating structures when compared to the response under the condition of intact mooring system.For a semi-submersible platform with taut mooring system under extreme environmental conditions,the typical mooring system failure includes anchor line breaking failure due to the broken anchor line,and the anchor dragging failure caused by the anchor failure in the seabed soil due to the shortage of the anchor bearing capacity.However,study on the mooring failure caused by anchor failure is rare.The current work investigates the effect of three failure modes of taut mooring system on dynamic response of a semi-submersible platform,including one line breaking failure,two lines breaking failure,and one line breaking with one line attached anchor dragging failure.The nonlinear polynomial mooring line model in AQWA was used with integrating the load and displacement curve from the anchor pulling study to characterize the anchor dragging behavior for mooring system failure caused by the anchor failure.The offsets of the platform and the tension of mooring lines were analyzed for mooring system failure with 100-year return period.It is found that the mooring failure of one line breaking with one line attached anchor dragging is a case between the other two mooring failures.The traditional mooring analysis considering only the damaged condition with one line breaking is not safe enough.And the simple way of mooring analysis of two lines breaking is too conservative for the costly offshore engineering.展开更多
This paper presents a novel semi-submersible(SEMI) platform concept, called the multiple small columns(MSC) SEMI that improves upon the hydrodynamic performance of the conventional SEMI. Unlike the conventional SEMI, ...This paper presents a novel semi-submersible(SEMI) platform concept, called the multiple small columns(MSC) SEMI that improves upon the hydrodynamic performance of the conventional SEMI. Unlike the conventional SEMI, the proposed MSC SEMI utilizes multiple small circular columns to support the deck and a large pontoon that increases the structural displacement. The novelty of the MSC SEMI is its reduction of the hydrodynamic load on the structure and suppression of its motion response, particularly in the heave direction. The MSC SEMI has the advantages of increasing the added mass, radiation damping, and natural period of the structure. A comprehensive investigation of the hydrodynamic performance of the novel MSC SEMI is conducted in both the time and frequency domains with a special focus on the resulting hydrodynamic load and motion response. Numerical simulation results demonstrate that the MSC SEMI concept can reduce the hydrodynamic load and motion response and improve the hydrodynamic performance of SEMIs as expected.展开更多
Assessing the fatigue life of mooring systems is important for deep water structures. In this paper, a comprehensive fatigue analysis is conducted on the mooring lines applied in a semi-submersible platform with speci...Assessing the fatigue life of mooring systems is important for deep water structures. In this paper, a comprehensive fatigue analysis is conducted on the mooring lines applied in a semi-submersible platform with special focus on the low frequency(LF) fatigue damage. Several influential factors, including water depth, wave spectral parameters, and riser system, are considered. Numerical simulation of a semi-submersible platform with the mooring/riser system is executed under different conditions, and the fatigue damage of mooring lines is assessed by using the time domain analysis method as a benchmark. The effects of these factors on the mooring line tension and the fatigue damage are investigated and discussed in detail. Research results indicate that the LF fatigue damage only accounts for a very small portion of the total damage, although the LF components dominate the global motion response and the mooring line tension of the semi-submersible platform. However, it is demonstrated that the LF fatigue damage is clearly affected by the influential factors. The increase in water depth and spectral peak periods, and the existence of risers can weaken the contribution of the LF components to the mooring line fatigue damage, while the fatigue damage due to the LF components increases with the increase of significant wave height.展开更多
Wave drift force is the key factor affecting the mooring ability of semi-submersible platform. Aiming at the mooring system composed of replenishment ship and semi-submersible platform, the influence of hydrodynamic i...Wave drift force is the key factor affecting the mooring ability of semi-submersible platform. Aiming at the mooring system composed of replenishment ship and semi-submersible platform, the influence of hydrodynamic interference on semi-submersible platform is analyzed. Based on the three-dimensional potential flow theory and AQWA software, the effects of different wave directions and spacing on the wave drift force of semi-submersible platform are considered. The results show that the hydrodynamic interference of the replenishment ship will affect the wave drift force of the semi-submersible platform, and the influence of the distance between adjacent vessels and the wave direction angle is more sensitive in the middle and high wave frequencies. This paper can provide support for the research of hydrodynamic interference of semi-submersible platform.展开更多
The automatic positioning control of mooring system for deepwater semi-submersible platform has become a key issue in the research and development field of deep-sea resources. The Dual-Stage Actuator (DSA) proposed in...The automatic positioning control of mooring system for deepwater semi-submersible platform has become a key issue in the research and development field of deep-sea resources. The Dual-Stage Actuator (DSA) proposed in this paper can replace the single actuator to achieve the high speed and high precision positioning by cooperative control. The relative model and control algorithm of motion trajectory (CAMT) are designed and validated, which proves that the method proposed in this paper is effective.展开更多
The automatic positioning control of mooring system for deepwater semi-submersible platform has become a key issue in the research and development field of deep-sea resources. The Dual- Stage Actuator (DSA) proposed i...The automatic positioning control of mooring system for deepwater semi-submersible platform has become a key issue in the research and development field of deep-sea resources. The Dual- Stage Actuator (DSA) proposed in this paper can replace the single actuator to achieve the high speed and high precision positioning by cooperative control. The relative model and control algorithm of motion trajectory (CAMT) are designed and validated, which proves that the method proposed in this paper is effective.展开更多
The present research deals with the numerical prediction of the air gap within the 6th generation of deepwater drilling floating semi-submersible platform and the experimental studies on the slamming loadings onto the...The present research deals with the numerical prediction of the air gap within the 6th generation of deepwater drilling floating semi-submersible platform and the experimental studies on the slamming loadings onto the structure. The survivability of the floating model with a mooring system was tested under extreme wave of 10-year return period. In the numerical simulation of the Gaussian method,the narrow band model was applied to obtain the first-order wave surface equation and the modified second-order wave surface equation. The hydrodynamic responses of the floating body,i.e. radiation damping,added mass,second-order wave excitation force and drifting force,were computed by using the potential flow theory based on higher order boundary element method in frequent domain. In the experimental analysis,high-frequency sensors were installed at the lower deck to measure the wave slamming loads. Equivalent truncated mooring system was applied to make sure position of the floating body in the wave tank. The comparison between the numerical and experimental results showed the numerical model underestimated the air gap of the floating body. Nevertheless,the predictions of the high risk spots underneath the floating deck that is prone to wave slamming obtained from both models were agreeable to each other. The experimental results also revealed that the wave slamming events often occurred at the connection point between the rear columns and the lower deck.展开更多
The general layout of 6th generation semi-submersible drilling platforms is the main factor impacting the efficiency of their drilling operations. This paper provides a compound/integrated algorithm based on process f...The general layout of 6th generation semi-submersible drilling platforms is the main factor impacting the efficiency of their drilling operations. This paper provides a compound/integrated algorithm based on process flow that is aimed at improving efficiency, while giving attention to stability and safety at the same time. The paper describes the process flow of dual drilling centers and a hierarchical division of rigs based on the different modes of transportation of various drilling support systems. The general layout-centripetal overall arrangement spatially was determined based on drilling efficiency. We derived our modules according to drilling functionality; the modules became our basic layout units. We applied different layout algorithm to mark out the upper and lower decks. That is, the upper deck was designed based on the lowest transportation cost while the lower deck's calculations were based on the best-fit scope. Storage configurations in columns and pontoons were also considered for the layout design. Finally the center of gravity was taken into consideration and the general layout was adjusted accordingly, to result in an optimal center of gravity. The methodology of the general layout can provide a reference for implementation of domestic designs of semi-submersible rigs.展开更多
To address the problem of poor wave resistance of existing offshore floating wind turbines,a new type of semisubmersible platform with truncated-cone-type upper pontoons is proposed by combining the characteristics of...To address the problem of poor wave resistance of existing offshore floating wind turbines,a new type of semisubmersible platform with truncated-cone-type upper pontoons is proposed by combining the characteristics of offshore wind turbine semi-submersible floating platforms.Based on the coupled hydrodynamic,aerodynamic,and mooring force physical fields of FAST,the surge,heave,pitch,and yaw motions responses of the floating wind turbine under different wave heights and periods are obtained,and the mooring line tension responses are also obtained;and compare the dynamic response of the new semi-submersible platform with the OC4-DeepCwind platformat six degrees of freedom.The results show that different wave conditions have obvious effects on the heave and pitch motions of the new floating wind turbine,and fewer effects on the surge and yaw motions;the tensegrity response of the mooring system is more affected by the wave conditions;compared with the OC4-DeepCwind floating wind turbine,the pitch and roll response of the new floating wind turbine has been significantly reduced and has good stability.展开更多
A design of offshore floating structure is mainly based on the extreme response analysis due to the forces experienced. The extreme response can induce the negative air gap response and potential impact to the deck bo...A design of offshore floating structure is mainly based on the extreme response analysis due to the forces experienced. The extreme response can induce the negative air gap response and potential impact to the deck bottom of floating structure. It is important to predict the slamming load in order to check the strength of local structures which withstand the wave slamming. In recent years, studies of the effects of wind load on air gap response and slamming load are ignored. When the platform suffers the extreme wave, the wind is also harsh.Moreover, the wind load can affect the motion response of the platform. The wind load cannot be simulated easily by model test in towing tank whereas it can be simulated accurately in wind tunnel test. Though the model test results are not accurate enough for air gap and slamming load evaluation due to the loss of wind effect, they can be used as a good basis for tuning the radiation damping and viscous drag in numerical simulation. This paper aims at presenting the sensitivity analysis results of wave slamming load with respect to the wind load for the design of semi-submersible platform. As an example of semi-submersible drilling platform design, the wind tunnel test has been carried out, and the sea-keeping model test is also performed in towing tank, while the wind load effect is ignored. According to the model test results, a numerical model is tuned and validated by ANSYS AQWA. Sensitivity analysis studies of the relative velocity between water particle and platform surface and the wave slamming load with respect to the wind load are performed in time domain by the tuned numerical model.Five simulation cases about the presented platform are simulated based on the results of wind tunnel tests and sea-keeping tests. The sensitivity analysis results are valuable for the floating platform design.展开更多
Transportation of tension leg platform (TLP) structures for a long distance has always been associated with the use of a heavy semi-transport vessel. The requirements of this type of vessel are always special, and t...Transportation of tension leg platform (TLP) structures for a long distance has always been associated with the use of a heavy semi-transport vessel. The requirements of this type of vessel are always special, and their availability is limited. To prepare for the future development of South China Sea deepwater projects, the China Offshore Oil Engineering Corporation has recently built a heavy lift transport vessel-Hai Yang Shi You 278. This semi-submersible vessel has a displacement capacity of 50k DWT, and a breath of 42 meters. Understanding the vessel's applicability and preparing it for use in future deepwater projects are becoming imminent needs. This paper reviews the current critical issues associated with TLP transportation and performs detailed analysis of the designed TLP during load-out and transportation. The newly built COOEC transportation vessel HYSY 278 was applied to dry transport of the TLP structure from the COOEC fabrication yard in Qingdao to an oil field in South China Sea. The entire process included the load-out of the TLP structure from the landsite of the fabrication yard, the offloading and float-on of the platform from the vessel, the dry transport of the TLP over a long distance, and the final offloading of the platform. Both hydrodynamic and structure analysis were performed to evaluate the behavior of the transport vessel and TLP structure. Special attention was paid to critical areas associated with the use of this new vessel, along with any potential limitations. The results demonstrate that HYSY 278 can effectively be used for transporting the structure with proper arrangement and well-prepared operation. The procedure and details were presented on the basis of the study results. Special attention was also given to discussion on future use based on the results from the analysis.展开更多
This paper quantitatively studies the transient dynamic response of a semi-submersible production platform with the loss of one or several positioning mooring lines.A semi-submersible platform,production risers,and po...This paper quantitatively studies the transient dynamic response of a semi-submersible production platform with the loss of one or several positioning mooring lines.A semi-submersible platform,production risers,and positioning mooring lines are all included in the numerical simulation.Increased motion of the semi-submersible platform,tension variation of the remaining mooring lines/risers and the risk of mooring line or riser clashing are all investigated through fully coupled time-domain analysis.Combined environmental loads are selected from irregular waves and the steady current varying from very rough to extreme sea conditions.Three dimension radiation/diffraction theories and Morison’s equation are applied to calculate first-order wave force and second-order mean drift force of floating semi-submersible platform.Nonlinear time-domain finite element methods are employed to analyze the behavior of mooring lines and risers.Results show that the failure of mooring lines seriously reduce the platform’s stability performance.The tension of the rest lines is also increased accordingly.Remaining lines which are closer to the failed lines will have larger tension increase to compensate.Line-Line distance provides practical information for the risk of clashing investigation.展开更多
The real-time dynamic deformation monitoring of offshore platforms under environmental excitation is crucial to their safe operation.Although Global Navigation Satellite System-Precise Point Positioning(GNSS-PPP)has b...The real-time dynamic deformation monitoring of offshore platforms under environmental excitation is crucial to their safe operation.Although Global Navigation Satellite System-Precise Point Positioning(GNSS-PPP)has been considered for this purpose,its monitoring accuracy is relatively low.Moreover,the influence of background noise on the dynamic monitoring accuracy of GNSS-PPP remains unclear.Hence,it is imperative to further validate the feasibility of GNSS-PPP for deformation monitoring of offshore platforms.To address these concerns,vibration table tests with different amplitudes and frequencies are conducted.The results demonstrate that GNSS-PPP can effectively monitor horizontal vibration displacement as low as±30 mm,which is consistent with GNSS-RTK.Furthermore,the spectral characteristic of background noise in GNSS-PPP is similar to that of GNSS-RTK(Real Time Kinematic).Building on this observation,an improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)has been proposed to de-noise the data and enhance the dynamic monitoring accuracy of GNSS-PPP.Field monitoring application research is also undertaken,successfully extracting and analyzing the dynamic deformation of an offshore platform structure under environmental excitation using GNSS-PPP monitoring in conjunction with improved CEEMDAN de-noising.By comparing the de-noised dynamic deformation trajectories of the offshore platform during different periods,it is observed that the platform exhibits reversible alternating vibration responses under environmental excitation,with more pronounced displacement deformation in the direction of load action.The research results confirm the feasibility and potential of GNSS-PPP for dynamic deformation monitoring of offshore platforms.展开更多
Deepwater offshore structures such as semi-submersible platforms suffer powerful ocean waves due to their location and site condition. The long distance away from the shore also brings many difficulties to energy supp...Deepwater offshore structures such as semi-submersible platforms suffer powerful ocean waves due to their location and site condition. The long distance away from the shore also brings many difficulties to energy supply for the platform operation. How to reduce the response of the platform and convert the wave energy into electrical power is a meaningful topic. In this paper, a tuned heave plate system(THP) is presented and designed to be employed on a semi-submersible platform for heave motion suppression and energy harvesting. This THP system is composed of spring supports, a power take-off system(PTO), and a heave plate. The PTO system is a permanent magnet linear generator(PMLG), which could directly convert the kinetic energy of the heave plate into electronic power. The stiffness of the spring supports is designed based on the principle of the tuned mass damper(TMD). The numerical model of the platform and the THP system is established according to the hydrodynamic analysis results of the platform. The model is tested and modified by scale model tests on the platform in the wave tank. A parameter study, including the size, tuned period, and damping ratio of the THP system, is conducted systematically based on the numerical model. The optimal parameters of the THP are selected due to the maximum heave motion reduction under severe wave conditions in South China Sea. The performance of the semi-submersible with and without the THP system under different wave conditions is analyzed. It is demonstrated that this novel tuned heave plate system could reduce the heave motion of the semi-submersible platform significantly and generate considerable power, which makes the THP system have a broad prospect for development.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.11072149)
文摘A design of semi-submersible platform is mainly based on the extreme response analysis due to the forces experienced by the components during lifetime. The external loads can induce the extreme air gap response and potential deck impact to the semi-submersible platform. It is important to predict air gap response of platforms accurately in order to check the strength of local structures which withstand the wave slamming due to negative air gap. The wind load cannot be simulated easily by model test in towing tank whereas it can be simulated accurately in wind tunnel test. Furthermore, full scale simulation of the mooring system in model test is still a tuffwork especially the stiffness of the mooring system. Owing to the above mentioned problem, the model test results are not accurate enough for air gap evaluation. The aim of this paper is to present sensitivity analysis results of air gap motion with respect to the mooring system and wind load for the design of semi-submersible platform. Though the model test results are not suitable for the direct evaluation of air gap, they can be used as a good basis for tuning the radiation damping and viscous drag in numerical simulation. In the presented design example, a numerical model is tuned and validated by ANSYS AQWA based on the model test results with a simple 4 line symmetrical horizontal soft mooring system. According to the tuned numerical model, sensitivity analysis studies of air gap motion with respect to the mooring system and wind load are performed in time domain. Three mooring systems and five simulation cases about the presented platform are simulated based on the results of wind tunnel tests and sea-keeping tests. The sensitivity analysis results are valuable for the floating platform design.
文摘A wave load computation approach in direct strength analysis of semi-submersible platform structures was presented in this paper. Considering the differences in shape of pontoon, column and beam, the combination of accumulative chord length cubic parameter spline theory and analytic method was adopted for generating the wet surface mesh of platform. The hydrodynamic coefficients of platform were calculated by the three-dimensional potential flow theory of the linear hydrodynamic problem for platform with low forward speed. The equation of platform motions was established and solved in frequency domain, and the responses of wave-induced loads on the platform can be obtained. With the interpolation method being utilized, the pressure loads on shell elements for finite element analysis (FEA) were converted from those on the hydrodynamic computation mesh, which pave the basis for FEA with commercial software.A computer program based on this method has been developed, and a calculation example of semi-submersible platform was illustrated.Analysis results show that this method is a satisfying approach of wave loads computation for this kind of platform.
文摘By applying experimental and numerical simulations, the motion performance of a semi-submersible platform with mooring positoning system under combined actions of wind and waves is studied. The numerical simulation is conducted by the method of nonlinear time domain coupled analysis, and the mooring forces are calculated by the piecewise extrapolating method. The scale in the model experiment is 1:100, and the mooring system of the model is designed with the method of equivalent water-depth truncation by comparing the numerical and the experimental results, the platform motion and mooring forces subject to wind and waves are investigated. The results indicate that the numerically simulated mooring forces agree well with the experimental results in static equivalent field, but show some difference in dynamic equivalent field; the numerically simulated platform motions coincide well with the experimental results. The maximum motion of the platform under operating conditions is 20.5 m. It means that the horizontal displacement is 2% less than the water depth, which satisfies the operating requirements.
基金This study was financially supported by the National Natural Science Foundation of China(Grant Nos.11802176 and 11802301).
文摘An investigation into the prediction method for internal solitary waves(ISWs)loads on the columns and caissons of the semi-submersible platform found on three kinds of internal solitary wave theories and the modified Morison Equation is described.The characteristics of loads exerted on the semi-submersible platform model caused by the ISWs have been observed experimentally,and the inertial and drag coefficients in Morison Equation are determined by analyzing the forces of experiments.From the results,it is of interest to find that Reynolds number,KC number and layer thickness ratio have a considerable influence on the coefficients.The direction of incoming waves,how-ever,is almost devoid of effects on the coefficients.The drag coefficient of columns varies as an exponential function of Reynolds number,and inertia coefficient of columns is a power function related to KC number.Meanwhile,the drag coefficient of caissons is approximately constant in terms of regression analysis of experimental data.The results from different experimental conditions reveal that the inertia coefficient of caissons appears to be exponential correlated with upper layer depths.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51709170 and 51979167)the Ministry of Industry and Information Technology of China(Project No.[2016] 546)+1 种基金the Shanghai Sailing Program(Grant No.17YF1409700)the Open Foundation of State Key Laboratory of Ocean Engineering(Grant No.1716)
文摘For a semi-submersible platform in repair, the eight old main brackets which connect columns with pontoons need to be replaced by new ones. In order to ensure the safety of the cutting operation of the old main bracket and calculate the initial stress condition of new main bracket, the structural stress monitoring of eight key spots is carried out, and then the calibrated finite element model is established according to the field monitoring results. Before cutting the main bracket and all associated structures, eight rectangular rosettes were installed, and a tailored cutting scheme was proposed to release the initial stress, in which the main bracket and associated column and pontoon plates were partly cut. During the cutting procedure, the strains of the monitoring spots were measured, and then the structural stress of the monitored spots were obtained. The stress variation characteristics at different spots during the initial cutting operation were shown and the initial stress condition of the monitored spots was figured out. The loading and support conditions of the semi-submersible platform were calibrated based on the measured initial stress condition, which made the finite element model more credible. The stress condition with the main bracket and associated structures being entirely cut out is analyzed by the Finite Element Method (FEM), which demonstrates the cutting operation to be safe and feasible. In addition, the calibrated finite element model can be used to calculate the initial stress condition of the new main bracket, which will be very helpful for the long-term stress monitoring on the main bracket.
基金supported by the National Basic Research Program of China (No. 2011CB013702)
文摘Based on the principle of turned mass damper(TMD) systems,the conceptual design of semi-submersible platform with a moveable heave-plate(MHS) has been put forward.The heave motion response amplitude operator(RAO) and viscous damping of the MHS platform are calculated by iteration,and the coupling stiffness between the MHS hull and the heave-plate is optimized to decrease the maximum heave motion response of the MHS hull under 10-year survival conditions in the South China Sea.The nu-merical results indicate that the heave motion RAO of the MHS hull can be decreased in the range of predominant wave frequencies,which may provide some reference to the heave motion control of offshore platforms.
基金financially supported by the National Natural Science Foundation of China(Grant No.51809165).
文摘Mooring system failure can lead to largely different dynamic response of floating structures when compared to the response under the condition of intact mooring system.For a semi-submersible platform with taut mooring system under extreme environmental conditions,the typical mooring system failure includes anchor line breaking failure due to the broken anchor line,and the anchor dragging failure caused by the anchor failure in the seabed soil due to the shortage of the anchor bearing capacity.However,study on the mooring failure caused by anchor failure is rare.The current work investigates the effect of three failure modes of taut mooring system on dynamic response of a semi-submersible platform,including one line breaking failure,two lines breaking failure,and one line breaking with one line attached anchor dragging failure.The nonlinear polynomial mooring line model in AQWA was used with integrating the load and displacement curve from the anchor pulling study to characterize the anchor dragging behavior for mooring system failure caused by the anchor failure.The offsets of the platform and the tension of mooring lines were analyzed for mooring system failure with 100-year return period.It is found that the mooring failure of one line breaking with one line attached anchor dragging is a case between the other two mooring failures.The traditional mooring analysis considering only the damaged condition with one line breaking is not safe enough.And the simple way of mooring analysis of two lines breaking is too conservative for the costly offshore engineering.
基金the support by the National Science Fund for Distinguished Young Scholars (No. 51625902)the National Key Research and Development Program of China (No. 2016YFE0200100)+1 种基金the Major Program of the National Natural Science Foundation of China (No. 51490675)the Taishan Scholars Program of Shandong Province (No. TS201511016)
文摘This paper presents a novel semi-submersible(SEMI) platform concept, called the multiple small columns(MSC) SEMI that improves upon the hydrodynamic performance of the conventional SEMI. Unlike the conventional SEMI, the proposed MSC SEMI utilizes multiple small circular columns to support the deck and a large pontoon that increases the structural displacement. The novelty of the MSC SEMI is its reduction of the hydrodynamic load on the structure and suppression of its motion response, particularly in the heave direction. The MSC SEMI has the advantages of increasing the added mass, radiation damping, and natural period of the structure. A comprehensive investigation of the hydrodynamic performance of the novel MSC SEMI is conducted in both the time and frequency domains with a special focus on the resulting hydrodynamic load and motion response. Numerical simulation results demonstrate that the MSC SEMI concept can reduce the hydrodynamic load and motion response and improve the hydrodynamic performance of SEMIs as expected.
基金financial support by the National Basic Research Program of China (Grant No. 2011CB013704)the major program of the National Natural Science Foundation of China (Grant No. 51490675)+1 种基金the Shandong Provincial Science & Technology Development Project (Grant No. 2013GHY11503)the Taishan Scholars Program of Shandong Province
文摘Assessing the fatigue life of mooring systems is important for deep water structures. In this paper, a comprehensive fatigue analysis is conducted on the mooring lines applied in a semi-submersible platform with special focus on the low frequency(LF) fatigue damage. Several influential factors, including water depth, wave spectral parameters, and riser system, are considered. Numerical simulation of a semi-submersible platform with the mooring/riser system is executed under different conditions, and the fatigue damage of mooring lines is assessed by using the time domain analysis method as a benchmark. The effects of these factors on the mooring line tension and the fatigue damage are investigated and discussed in detail. Research results indicate that the LF fatigue damage only accounts for a very small portion of the total damage, although the LF components dominate the global motion response and the mooring line tension of the semi-submersible platform. However, it is demonstrated that the LF fatigue damage is clearly affected by the influential factors. The increase in water depth and spectral peak periods, and the existence of risers can weaken the contribution of the LF components to the mooring line fatigue damage, while the fatigue damage due to the LF components increases with the increase of significant wave height.
文摘Wave drift force is the key factor affecting the mooring ability of semi-submersible platform. Aiming at the mooring system composed of replenishment ship and semi-submersible platform, the influence of hydrodynamic interference on semi-submersible platform is analyzed. Based on the three-dimensional potential flow theory and AQWA software, the effects of different wave directions and spacing on the wave drift force of semi-submersible platform are considered. The results show that the hydrodynamic interference of the replenishment ship will affect the wave drift force of the semi-submersible platform, and the influence of the distance between adjacent vessels and the wave direction angle is more sensitive in the middle and high wave frequencies. This paper can provide support for the research of hydrodynamic interference of semi-submersible platform.
文摘The automatic positioning control of mooring system for deepwater semi-submersible platform has become a key issue in the research and development field of deep-sea resources. The Dual-Stage Actuator (DSA) proposed in this paper can replace the single actuator to achieve the high speed and high precision positioning by cooperative control. The relative model and control algorithm of motion trajectory (CAMT) are designed and validated, which proves that the method proposed in this paper is effective.
文摘The automatic positioning control of mooring system for deepwater semi-submersible platform has become a key issue in the research and development field of deep-sea resources. The Dual- Stage Actuator (DSA) proposed in this paper can replace the single actuator to achieve the high speed and high precision positioning by cooperative control. The relative model and control algorithm of motion trajectory (CAMT) are designed and validated, which proves that the method proposed in this paper is effective.
文摘The present research deals with the numerical prediction of the air gap within the 6th generation of deepwater drilling floating semi-submersible platform and the experimental studies on the slamming loadings onto the structure. The survivability of the floating model with a mooring system was tested under extreme wave of 10-year return period. In the numerical simulation of the Gaussian method,the narrow band model was applied to obtain the first-order wave surface equation and the modified second-order wave surface equation. The hydrodynamic responses of the floating body,i.e. radiation damping,added mass,second-order wave excitation force and drifting force,were computed by using the potential flow theory based on higher order boundary element method in frequent domain. In the experimental analysis,high-frequency sensors were installed at the lower deck to measure the wave slamming loads. Equivalent truncated mooring system was applied to make sure position of the floating body in the wave tank. The comparison between the numerical and experimental results showed the numerical model underestimated the air gap of the floating body. Nevertheless,the predictions of the high risk spots underneath the floating deck that is prone to wave slamming obtained from both models were agreeable to each other. The experimental results also revealed that the wave slamming events often occurred at the connection point between the rear columns and the lower deck.
基金Supported by the National High Technology Research and Development Program of China (863 Program) under Grant No.2006AA09A104
文摘The general layout of 6th generation semi-submersible drilling platforms is the main factor impacting the efficiency of their drilling operations. This paper provides a compound/integrated algorithm based on process flow that is aimed at improving efficiency, while giving attention to stability and safety at the same time. The paper describes the process flow of dual drilling centers and a hierarchical division of rigs based on the different modes of transportation of various drilling support systems. The general layout-centripetal overall arrangement spatially was determined based on drilling efficiency. We derived our modules according to drilling functionality; the modules became our basic layout units. We applied different layout algorithm to mark out the upper and lower decks. That is, the upper deck was designed based on the lowest transportation cost while the lower deck's calculations were based on the best-fit scope. Storage configurations in columns and pontoons were also considered for the layout design. Finally the center of gravity was taken into consideration and the general layout was adjusted accordingly, to result in an optimal center of gravity. The methodology of the general layout can provide a reference for implementation of domestic designs of semi-submersible rigs.
基金funded by the National Key R&D Program of China(Grant Number 2018YFB1501203)funded by the National Natural Science Foundation of China(Grant Number 52075305).
文摘To address the problem of poor wave resistance of existing offshore floating wind turbines,a new type of semisubmersible platform with truncated-cone-type upper pontoons is proposed by combining the characteristics of offshore wind turbine semi-submersible floating platforms.Based on the coupled hydrodynamic,aerodynamic,and mooring force physical fields of FAST,the surge,heave,pitch,and yaw motions responses of the floating wind turbine under different wave heights and periods are obtained,and the mooring line tension responses are also obtained;and compare the dynamic response of the new semi-submersible platform with the OC4-DeepCwind platformat six degrees of freedom.The results show that different wave conditions have obvious effects on the heave and pitch motions of the new floating wind turbine,and fewer effects on the surge and yaw motions;the tensegrity response of the mooring system is more affected by the wave conditions;compared with the OC4-DeepCwind floating wind turbine,the pitch and roll response of the new floating wind turbine has been significantly reduced and has good stability.
基金the National Natural Science Foundation of China(No.11072149)
文摘A design of offshore floating structure is mainly based on the extreme response analysis due to the forces experienced. The extreme response can induce the negative air gap response and potential impact to the deck bottom of floating structure. It is important to predict the slamming load in order to check the strength of local structures which withstand the wave slamming. In recent years, studies of the effects of wind load on air gap response and slamming load are ignored. When the platform suffers the extreme wave, the wind is also harsh.Moreover, the wind load can affect the motion response of the platform. The wind load cannot be simulated easily by model test in towing tank whereas it can be simulated accurately in wind tunnel test. Though the model test results are not accurate enough for air gap and slamming load evaluation due to the loss of wind effect, they can be used as a good basis for tuning the radiation damping and viscous drag in numerical simulation. This paper aims at presenting the sensitivity analysis results of wave slamming load with respect to the wind load for the design of semi-submersible platform. As an example of semi-submersible drilling platform design, the wind tunnel test has been carried out, and the sea-keeping model test is also performed in towing tank, while the wind load effect is ignored. According to the model test results, a numerical model is tuned and validated by ANSYS AQWA. Sensitivity analysis studies of the relative velocity between water particle and platform surface and the wave slamming load with respect to the wind load are performed in time domain by the tuned numerical model.Five simulation cases about the presented platform are simulated based on the results of wind tunnel tests and sea-keeping tests. The sensitivity analysis results are valuable for the floating platform design.
基金Supported by the State Key Project "Installation Technical Study for Deepwater Floating Structures" under Grant No.2008ZX05026
文摘Transportation of tension leg platform (TLP) structures for a long distance has always been associated with the use of a heavy semi-transport vessel. The requirements of this type of vessel are always special, and their availability is limited. To prepare for the future development of South China Sea deepwater projects, the China Offshore Oil Engineering Corporation has recently built a heavy lift transport vessel-Hai Yang Shi You 278. This semi-submersible vessel has a displacement capacity of 50k DWT, and a breath of 42 meters. Understanding the vessel's applicability and preparing it for use in future deepwater projects are becoming imminent needs. This paper reviews the current critical issues associated with TLP transportation and performs detailed analysis of the designed TLP during load-out and transportation. The newly built COOEC transportation vessel HYSY 278 was applied to dry transport of the TLP structure from the COOEC fabrication yard in Qingdao to an oil field in South China Sea. The entire process included the load-out of the TLP structure from the landsite of the fabrication yard, the offloading and float-on of the platform from the vessel, the dry transport of the TLP over a long distance, and the final offloading of the platform. Both hydrodynamic and structure analysis were performed to evaluate the behavior of the transport vessel and TLP structure. Special attention was paid to critical areas associated with the use of this new vessel, along with any potential limitations. The results demonstrate that HYSY 278 can effectively be used for transporting the structure with proper arrangement and well-prepared operation. The procedure and details were presented on the basis of the study results. Special attention was also given to discussion on future use based on the results from the analysis.
基金supported by the Fundamental Research Funds for the Central Universities,Dalian Maritime University,China(Grant Nos.3132019306 and 3132020116).
文摘This paper quantitatively studies the transient dynamic response of a semi-submersible production platform with the loss of one or several positioning mooring lines.A semi-submersible platform,production risers,and positioning mooring lines are all included in the numerical simulation.Increased motion of the semi-submersible platform,tension variation of the remaining mooring lines/risers and the risk of mooring line or riser clashing are all investigated through fully coupled time-domain analysis.Combined environmental loads are selected from irregular waves and the steady current varying from very rough to extreme sea conditions.Three dimension radiation/diffraction theories and Morison’s equation are applied to calculate first-order wave force and second-order mean drift force of floating semi-submersible platform.Nonlinear time-domain finite element methods are employed to analyze the behavior of mooring lines and risers.Results show that the failure of mooring lines seriously reduce the platform’s stability performance.The tension of the rest lines is also increased accordingly.Remaining lines which are closer to the failed lines will have larger tension increase to compensate.Line-Line distance provides practical information for the risk of clashing investigation.
基金financially supported by the National Key R&D Program of China(Grant No.2022YFB4200705)the National Natural Science Foundation of China(Grant No.52109146)。
文摘The real-time dynamic deformation monitoring of offshore platforms under environmental excitation is crucial to their safe operation.Although Global Navigation Satellite System-Precise Point Positioning(GNSS-PPP)has been considered for this purpose,its monitoring accuracy is relatively low.Moreover,the influence of background noise on the dynamic monitoring accuracy of GNSS-PPP remains unclear.Hence,it is imperative to further validate the feasibility of GNSS-PPP for deformation monitoring of offshore platforms.To address these concerns,vibration table tests with different amplitudes and frequencies are conducted.The results demonstrate that GNSS-PPP can effectively monitor horizontal vibration displacement as low as±30 mm,which is consistent with GNSS-RTK.Furthermore,the spectral characteristic of background noise in GNSS-PPP is similar to that of GNSS-RTK(Real Time Kinematic).Building on this observation,an improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)has been proposed to de-noise the data and enhance the dynamic monitoring accuracy of GNSS-PPP.Field monitoring application research is also undertaken,successfully extracting and analyzing the dynamic deformation of an offshore platform structure under environmental excitation using GNSS-PPP monitoring in conjunction with improved CEEMDAN de-noising.By comparing the de-noised dynamic deformation trajectories of the offshore platform during different periods,it is observed that the platform exhibits reversible alternating vibration responses under environmental excitation,with more pronounced displacement deformation in the direction of load action.The research results confirm the feasibility and potential of GNSS-PPP for dynamic deformation monitoring of offshore platforms.
基金supported by the National Natural Science Foundation of China(Grant No.50921001)the National Basic Research Program of China("973"Project)(Grant No.2011CB013705)
文摘Deepwater offshore structures such as semi-submersible platforms suffer powerful ocean waves due to their location and site condition. The long distance away from the shore also brings many difficulties to energy supply for the platform operation. How to reduce the response of the platform and convert the wave energy into electrical power is a meaningful topic. In this paper, a tuned heave plate system(THP) is presented and designed to be employed on a semi-submersible platform for heave motion suppression and energy harvesting. This THP system is composed of spring supports, a power take-off system(PTO), and a heave plate. The PTO system is a permanent magnet linear generator(PMLG), which could directly convert the kinetic energy of the heave plate into electronic power. The stiffness of the spring supports is designed based on the principle of the tuned mass damper(TMD). The numerical model of the platform and the THP system is established according to the hydrodynamic analysis results of the platform. The model is tested and modified by scale model tests on the platform in the wave tank. A parameter study, including the size, tuned period, and damping ratio of the THP system, is conducted systematically based on the numerical model. The optimal parameters of the THP are selected due to the maximum heave motion reduction under severe wave conditions in South China Sea. The performance of the semi-submersible with and without the THP system under different wave conditions is analyzed. It is demonstrated that this novel tuned heave plate system could reduce the heave motion of the semi-submersible platform significantly and generate considerable power, which makes the THP system have a broad prospect for development.