The complexity of river-tide interaction poses a significant challenge in predicting discharge in tidal rivers.Long short-term memory(LSTM)networks excel in processing and predicting crucial events with extended inter...The complexity of river-tide interaction poses a significant challenge in predicting discharge in tidal rivers.Long short-term memory(LSTM)networks excel in processing and predicting crucial events with extended intervals and time delays in time series data.Additionally,the sequence-to-sequence(Seq2Seq)model,known for handling temporal relationships,adapting to variable-length sequences,effectively capturing historical information,and accommodating various influencing factors,emerges as a robust and flexible tool in discharge forecasting.In this study,we introduce the application of LSTM-based Seq2Seq models for the first time in forecasting the discharge of a tidal reach of the Changjiang River(Yangtze River)Estuary.This study focuses on discharge forecasting using three key input characteristics:flow velocity,water level,and discharge,which means the structure of multiple input and single output is adopted.The experiment used the discharge data of the whole year of 2020,of which the first 80%is used as the training set,and the last 20%is used as the test set.This means that the data covers different tidal cycles,which helps to test the forecasting effect of different models in different tidal cycles and different runoff.The experimental results indicate that the proposed models demonstrate advantages in long-term,mid-term,and short-term discharge forecasting.The Seq2Seq models improved by 6%-60%and 5%-20%of the relative standard deviation compared to the harmonic analysis models and improved back propagation neural network models in discharge prediction,respectively.In addition,the relative accuracy of the Seq2Seq model is 1%to 3%higher than that of the LSTM model.Analytical assessment of the prediction errors shows that the Seq2Seq models are insensitive to the forecast lead time and they can capture characteristic values such as maximum flood tide flow and maximum ebb tide flow in the tidal cycle well.This indicates the significance of the Seq2Seq models.展开更多
非侵入式负荷分解对于节能减排、负荷调峰、智能用能等方面均具有重要的现实意义。针对目前非侵入式负荷分解方法在低频采样条件下(1 Hz及以下)分解准确率较低的问题,提出了一种基于卷积神经网络(convolution netural network,CNN)与长...非侵入式负荷分解对于节能减排、负荷调峰、智能用能等方面均具有重要的现实意义。针对目前非侵入式负荷分解方法在低频采样条件下(1 Hz及以下)分解准确率较低的问题,提出了一种基于卷积神经网络(convolution netural network,CNN)与长短期记忆网络(long short-term memory,LSTM)相结合的seq2seq的非侵入式负荷分解算法(seq2seq based on CNN and LSTM,seq2seqBCL)。该深度学习模型将功率时间序列作为网络的输入,通过CNN做特征提取。考虑到电力数据的时序性,增加了LSTM层进行电器识别,相比于NILMTK中seq2seq模型降低了网络层数,简化了网络结构。在REDD数据集上对算法性能进行了评估,所提出的算法提升了整个网络系统的性能,与FHMM、CO和传统seq2seq算法相比,负荷分解准确率有明显提升。展开更多
针对现有的数字化档案多标签分类方法存在分类标签之间缺少关联性的问题,提出一种用于档案多标签分类的深层神经网络模型ALBERT-Seq2Seq-Attention.该模型通过ALBERT(A Little BERT)预训练语言模型内部多层双向的Transfomer结构获取进...针对现有的数字化档案多标签分类方法存在分类标签之间缺少关联性的问题,提出一种用于档案多标签分类的深层神经网络模型ALBERT-Seq2Seq-Attention.该模型通过ALBERT(A Little BERT)预训练语言模型内部多层双向的Transfomer结构获取进行文本特征向量的提取,并获得上下文语义信息;将预训练提取的文本特征作为Seq2Seq-Attention(Sequence to Sequence-Attention)模型的输入序列,构建标签字典以获取多标签间的关联关系.将分类模型在3种数据集上分别进行对比实验,结果表明:模型分类的效果F1值均超过90%.该模型不仅能提高档案文本的多标签分类效果,也能关注标签之间的相关关系.展开更多
以非侵入式负荷分解为基础,对用户异常用电行为进行研究。采用Kmeans聚类算法提取负荷状态特征;采用深度学习算法中的序列到序列翻译(sequence to sequence, seq2seq)模型,将电力用户用电总数据分解成单个电器的功耗数据;结合SVM算法对...以非侵入式负荷分解为基础,对用户异常用电行为进行研究。采用Kmeans聚类算法提取负荷状态特征;采用深度学习算法中的序列到序列翻译(sequence to sequence, seq2seq)模型,将电力用户用电总数据分解成单个电器的功耗数据;结合SVM算法对分解后多种家用电器用电数据进行异常检测。在UKDALE数据集实验结果表明,该模型不仅能提高分解准确度、降低分解误差,而且多个电器数据结合分析实现了用户异常行为检测。展开更多
基金The National Natural Science Foundation of China under contract Nos 42266006 and 41806114the Jiangxi Provincial Natural Science Foundation under contract Nos 20232BAB204089 and 20202ACBL214019.
文摘The complexity of river-tide interaction poses a significant challenge in predicting discharge in tidal rivers.Long short-term memory(LSTM)networks excel in processing and predicting crucial events with extended intervals and time delays in time series data.Additionally,the sequence-to-sequence(Seq2Seq)model,known for handling temporal relationships,adapting to variable-length sequences,effectively capturing historical information,and accommodating various influencing factors,emerges as a robust and flexible tool in discharge forecasting.In this study,we introduce the application of LSTM-based Seq2Seq models for the first time in forecasting the discharge of a tidal reach of the Changjiang River(Yangtze River)Estuary.This study focuses on discharge forecasting using three key input characteristics:flow velocity,water level,and discharge,which means the structure of multiple input and single output is adopted.The experiment used the discharge data of the whole year of 2020,of which the first 80%is used as the training set,and the last 20%is used as the test set.This means that the data covers different tidal cycles,which helps to test the forecasting effect of different models in different tidal cycles and different runoff.The experimental results indicate that the proposed models demonstrate advantages in long-term,mid-term,and short-term discharge forecasting.The Seq2Seq models improved by 6%-60%and 5%-20%of the relative standard deviation compared to the harmonic analysis models and improved back propagation neural network models in discharge prediction,respectively.In addition,the relative accuracy of the Seq2Seq model is 1%to 3%higher than that of the LSTM model.Analytical assessment of the prediction errors shows that the Seq2Seq models are insensitive to the forecast lead time and they can capture characteristic values such as maximum flood tide flow and maximum ebb tide flow in the tidal cycle well.This indicates the significance of the Seq2Seq models.
文摘非侵入式负荷分解对于节能减排、负荷调峰、智能用能等方面均具有重要的现实意义。针对目前非侵入式负荷分解方法在低频采样条件下(1 Hz及以下)分解准确率较低的问题,提出了一种基于卷积神经网络(convolution netural network,CNN)与长短期记忆网络(long short-term memory,LSTM)相结合的seq2seq的非侵入式负荷分解算法(seq2seq based on CNN and LSTM,seq2seqBCL)。该深度学习模型将功率时间序列作为网络的输入,通过CNN做特征提取。考虑到电力数据的时序性,增加了LSTM层进行电器识别,相比于NILMTK中seq2seq模型降低了网络层数,简化了网络结构。在REDD数据集上对算法性能进行了评估,所提出的算法提升了整个网络系统的性能,与FHMM、CO和传统seq2seq算法相比,负荷分解准确率有明显提升。
文摘针对现有的数字化档案多标签分类方法存在分类标签之间缺少关联性的问题,提出一种用于档案多标签分类的深层神经网络模型ALBERT-Seq2Seq-Attention.该模型通过ALBERT(A Little BERT)预训练语言模型内部多层双向的Transfomer结构获取进行文本特征向量的提取,并获得上下文语义信息;将预训练提取的文本特征作为Seq2Seq-Attention(Sequence to Sequence-Attention)模型的输入序列,构建标签字典以获取多标签间的关联关系.将分类模型在3种数据集上分别进行对比实验,结果表明:模型分类的效果F1值均超过90%.该模型不仅能提高档案文本的多标签分类效果,也能关注标签之间的相关关系.
文摘以非侵入式负荷分解为基础,对用户异常用电行为进行研究。采用Kmeans聚类算法提取负荷状态特征;采用深度学习算法中的序列到序列翻译(sequence to sequence, seq2seq)模型,将电力用户用电总数据分解成单个电器的功耗数据;结合SVM算法对分解后多种家用电器用电数据进行异常检测。在UKDALE数据集实验结果表明,该模型不仅能提高分解准确度、降低分解误差,而且多个电器数据结合分析实现了用户异常行为检测。