There has been rapid development of high-speed railway lines, especially passenger-dedicated railway lines, in China. Trains are traveling at speeds exceeding 250 km per hour and they require highly smooth tracks to e...There has been rapid development of high-speed railway lines, especially passenger-dedicated railway lines, in China. Trains are traveling at speeds exceeding 250 km per hour and they require highly smooth tracks to ensure safety. However, there have been no in-depth studies on the early warning of the settlement of high-speed railway lines in China or abroad. Most methods use a simple model based on data processing and decision rules. The core issues of early warning lie in the science and rationality of decision rules. The present paper therefore investigates novel and critical indexes for the warning of settlement under high-speed railway lines according to existing norms and field data, and several essential indexes of deformation warning are suggested through theoretical and experimental analysis.展开更多
Field tests on settlement characteristics were carried out on the cement fly-ash gravel (CFG) pile-plate composite foundation on Beijing-Xuzhou section of Beijing-Shanghai high-speed railway. The settlements of the ...Field tests on settlement characteristics were carried out on the cement fly-ash gravel (CFG) pile-plate composite foundation on Beijing-Xuzhou section of Beijing-Shanghai high-speed railway. The settlements of the piles and the soil between pries were measured and analyzed. The results show that the settlement-time dependency experienced three phases: rapid development phase, stable development phase and stable phase. Therefore, surcharge preloading was necessary to reduce the settlement after construction. The finite element software Plaxis was used to calculate the deformations of the pile top and the soil between piles at the embankment center, as well as the settlements of CFG pile reinforcement area and the underlying stratum under surcharge preloading. The calculation results and the field test results were compared and analyzed. Both the results show that the settlement of the composite foundation mainly occured in underlying stratum. The settlement characteristics of pile-plate composite foundation under high embankment are also concluded.展开更多
Prediction and control of the permanent settlement of a track caused by traffic loading from trains is crucial to high-speed railway design and maintenance. In this study, a unified prediction model of accumulative de...Prediction and control of the permanent settlement of a track caused by traffic loading from trains is crucial to high-speed railway design and maintenance. In this study, a unified prediction model of accumulative deformation of geomaterials used in railway construction subjected to cyclic loadings is introduced and calibrated using physical model testing. Based on this versatile model, a calculation approach to determine the track structure settlement under repeated loadings caused by the movement of the wheel axle of the train is proposed. Regression analysis on the physical model testing is adopted to determine the parameters involved in the computational approach. Comparison of model test data and computed results shows that the parameters obtained from the back-analysis are consistent throughout the various testing conditions, and the proposed calculation approach is capable of satisfactorily predicting the accumulative settlement of the railway roadbed and subgrade soil for various axle loads and loading cycles. A case study of a high-speed railway is performed to demonstrate the feasibility of the proposed approach in realistic engineering applications. The computation results from the settlement development of a roadbed and subgrade soil are presented and discussed.展开更多
Stratum deformation(settlement) is a challenging issue in tunnel engineering, especially when construction of metro tunnels has to undercut high-speed railway. For this purpose, we used the FLAC30 software to analyze ...Stratum deformation(settlement) is a challenging issue in tunnel engineering, especially when construction of metro tunnels has to undercut high-speed railway. For this purpose, we used the FLAC30 software to analyze the stratum settlement characteristics of high-speed railway at different crossing angles intersected by metro tunnel, in terms of ground settlement trough, stratum slip line and irregularity of ballastless tracks. According to the evolution of the stratum settlement at different angle regions, an optimized angle is proposed for the actual project design. In order to reduce the influence of stratum settlement on the safety of high-speed railway, an approach of safety assessment is proposed for the shield engineering undercutting high-speed railway, as per Chinese specifications using numerical results and on-site conditions. A case study is conducted for the shield tunnel section crossing the Wuhan-Guangzhou High-speed Railway between the Guangzhou North Railway Station and the Huacheng Road Station, which represents the first metro tunnel project passing below a high-speed railway in China. A series of measures is taken to ensure the safe excavation of the shield tunnel and the operation of the high-speed railway. The results can provide a technical support for performing a safety evaluation between high-speed railways and metro tunnels.展开更多
In this paper, numerical simulation with soil-water coupling finite element-finite difference(FE-FD) analysis is conducted to investigate the settlement and the excess pore water pressure(EPWP) of a piled-raft fou...In this paper, numerical simulation with soil-water coupling finite element-finite difference(FE-FD) analysis is conducted to investigate the settlement and the excess pore water pressure(EPWP) of a piled-raft foundation due to cyclic high-speed(speed: 300km/h) train loading. To demonstrate the performance of this numerical simulation, the settlement and EPWP in the ground under the train loading within one month was calculated and confirmed by monitoring data, which shows that the change of the settlement and EPWP can be simulated well on the whole. In order to ensure the safety of train operation, countermeasure by the fracturing grouting is proposed. Two cases are analyzed, namely, grouting in No-4 softest layer and No-9 pile bearing layer respectively. It is found that fracturing grouting in the pile bearing layer(No-9 layer) has better effect on reducing the settlement.展开更多
The main factor that contributes to the deterioration of track components is traffic load. Explanations on how the speed, load and repetition of traffic influence the long-term settlement of ballast in a ballasted tra...The main factor that contributes to the deterioration of track components is traffic load. Explanations on how the speed, load and repetition of traffic influence the long-term settlement of ballast in a ballasted track are very scarce. Having in mind that tracks subjected to the same load show different settlement behaviors, explanations of track settlements in accordance with the speed, load and repetition are needed. This study is motivated to show how traffic affects the long-term settlement of ballast and how the traffic parameters (speed, load and repetition) contribute to the process. Using finite element modeling software, the three-dimensional track is modeled and analyzed for different values of speed, load and number of repetitions. Drucker Prager plastic model is applied for the ballast and sub-ballast materials of the track. To get the parameters for the Drucker Prager plastic model of granular materials, triaxial test simulation is performed using discrete element software. Hertz’s contact theory is used to model the contact between the wheel and rail. The long-term settlement behavior of ballast material is analyzed by applying 8000 cycles of moving axel load. According to the analyses, a change in the speed and the number of repetitions of train movement changes the permanent settlement of ballast more than the variation in load. Increase in the speed of train movement by 20 km/hr. will increase the stress transferred to the subgrade by up to about 1000 kPa. Speed of train movement is the most contributing parameter in the degradation of ballast material more than the load and number of repetitions. In a conventional ballasted track after about 6000 repetitions of train movement ballast material will start to decrease its performance. The comparison of the effects of the variation of individual traffic parameters speed, load and number of repetitions on the settlement of ballast which is not touched by former researches is well addressed by this study which is very helpful for designing a new railway track and monitoring existing railway tracks. Based on the analysis of the model with the parameters from Ethio-Djibouti standard gauge railway track, the possible maintenance period of ballast material is predicted.展开更多
提出一种地基真孔径雷达(Ground-Based Real Aperture Radar,GB-RAR)变形信息估计方法,将该方法应用于上海某地铁线路盾构隧道下穿E大桥的安全监测与分析。基于GB-RAR数据进行分析推导,得到桥梁的沉降变形时间序列,并通过水准测量进行...提出一种地基真孔径雷达(Ground-Based Real Aperture Radar,GB-RAR)变形信息估计方法,将该方法应用于上海某地铁线路盾构隧道下穿E大桥的安全监测与分析。基于GB-RAR数据进行分析推导,得到桥梁的沉降变形时间序列,并通过水准测量进行了验证,精度优于0.27 mm。通过功率谱分析和最大似然估计,去除彩色噪声比,不考虑彩色噪声影响的变形监测信息更准确,与水准测量结果更加吻合。研究结果表明,该方法在本次工作中具有可靠性和有效性,桥梁在监测期内稳定、安全。展开更多
文摘There has been rapid development of high-speed railway lines, especially passenger-dedicated railway lines, in China. Trains are traveling at speeds exceeding 250 km per hour and they require highly smooth tracks to ensure safety. However, there have been no in-depth studies on the early warning of the settlement of high-speed railway lines in China or abroad. Most methods use a simple model based on data processing and decision rules. The core issues of early warning lie in the science and rationality of decision rules. The present paper therefore investigates novel and critical indexes for the warning of settlement under high-speed railway lines according to existing norms and field data, and several essential indexes of deformation warning are suggested through theoretical and experimental analysis.
文摘Field tests on settlement characteristics were carried out on the cement fly-ash gravel (CFG) pile-plate composite foundation on Beijing-Xuzhou section of Beijing-Shanghai high-speed railway. The settlements of the piles and the soil between pries were measured and analyzed. The results show that the settlement-time dependency experienced three phases: rapid development phase, stable development phase and stable phase. Therefore, surcharge preloading was necessary to reduce the settlement after construction. The finite element software Plaxis was used to calculate the deformations of the pile top and the soil between piles at the embankment center, as well as the settlements of CFG pile reinforcement area and the underlying stratum under surcharge preloading. The calculation results and the field test results were compared and analyzed. Both the results show that the settlement of the composite foundation mainly occured in underlying stratum. The settlement characteristics of pile-plate composite foundation under high embankment are also concluded.
基金National Natural Science Foundation of China Under Grant No.50538010,10702063Technology Promotion Project of China Ministry of Railway Under Grant No.2008G005-D
文摘Prediction and control of the permanent settlement of a track caused by traffic loading from trains is crucial to high-speed railway design and maintenance. In this study, a unified prediction model of accumulative deformation of geomaterials used in railway construction subjected to cyclic loadings is introduced and calibrated using physical model testing. Based on this versatile model, a calculation approach to determine the track structure settlement under repeated loadings caused by the movement of the wheel axle of the train is proposed. Regression analysis on the physical model testing is adopted to determine the parameters involved in the computational approach. Comparison of model test data and computed results shows that the parameters obtained from the back-analysis are consistent throughout the various testing conditions, and the proposed calculation approach is capable of satisfactorily predicting the accumulative settlement of the railway roadbed and subgrade soil for various axle loads and loading cycles. A case study of a high-speed railway is performed to demonstrate the feasibility of the proposed approach in realistic engineering applications. The computation results from the settlement development of a roadbed and subgrade soil are presented and discussed.
基金the National Natural Science Foundation of China(Grant Nos. 51278423 and 51478395)for its financial support
文摘Stratum deformation(settlement) is a challenging issue in tunnel engineering, especially when construction of metro tunnels has to undercut high-speed railway. For this purpose, we used the FLAC30 software to analyze the stratum settlement characteristics of high-speed railway at different crossing angles intersected by metro tunnel, in terms of ground settlement trough, stratum slip line and irregularity of ballastless tracks. According to the evolution of the stratum settlement at different angle regions, an optimized angle is proposed for the actual project design. In order to reduce the influence of stratum settlement on the safety of high-speed railway, an approach of safety assessment is proposed for the shield engineering undercutting high-speed railway, as per Chinese specifications using numerical results and on-site conditions. A case study is conducted for the shield tunnel section crossing the Wuhan-Guangzhou High-speed Railway between the Guangzhou North Railway Station and the Huacheng Road Station, which represents the first metro tunnel project passing below a high-speed railway in China. A series of measures is taken to ensure the safe excavation of the shield tunnel and the operation of the high-speed railway. The results can provide a technical support for performing a safety evaluation between high-speed railways and metro tunnels.
基金National Natural Science Foundation of China under Grant Nos.41627801 and 41372284The Special Project Fund of Taishan Scholars of Shandong Province under Grant No.2015-212China Postdoctoral Science Foundation under Grant No.2017M612227
文摘In this paper, numerical simulation with soil-water coupling finite element-finite difference(FE-FD) analysis is conducted to investigate the settlement and the excess pore water pressure(EPWP) of a piled-raft foundation due to cyclic high-speed(speed: 300km/h) train loading. To demonstrate the performance of this numerical simulation, the settlement and EPWP in the ground under the train loading within one month was calculated and confirmed by monitoring data, which shows that the change of the settlement and EPWP can be simulated well on the whole. In order to ensure the safety of train operation, countermeasure by the fracturing grouting is proposed. Two cases are analyzed, namely, grouting in No-4 softest layer and No-9 pile bearing layer respectively. It is found that fracturing grouting in the pile bearing layer(No-9 layer) has better effect on reducing the settlement.
文摘The main factor that contributes to the deterioration of track components is traffic load. Explanations on how the speed, load and repetition of traffic influence the long-term settlement of ballast in a ballasted track are very scarce. Having in mind that tracks subjected to the same load show different settlement behaviors, explanations of track settlements in accordance with the speed, load and repetition are needed. This study is motivated to show how traffic affects the long-term settlement of ballast and how the traffic parameters (speed, load and repetition) contribute to the process. Using finite element modeling software, the three-dimensional track is modeled and analyzed for different values of speed, load and number of repetitions. Drucker Prager plastic model is applied for the ballast and sub-ballast materials of the track. To get the parameters for the Drucker Prager plastic model of granular materials, triaxial test simulation is performed using discrete element software. Hertz’s contact theory is used to model the contact between the wheel and rail. The long-term settlement behavior of ballast material is analyzed by applying 8000 cycles of moving axel load. According to the analyses, a change in the speed and the number of repetitions of train movement changes the permanent settlement of ballast more than the variation in load. Increase in the speed of train movement by 20 km/hr. will increase the stress transferred to the subgrade by up to about 1000 kPa. Speed of train movement is the most contributing parameter in the degradation of ballast material more than the load and number of repetitions. In a conventional ballasted track after about 6000 repetitions of train movement ballast material will start to decrease its performance. The comparison of the effects of the variation of individual traffic parameters speed, load and number of repetitions on the settlement of ballast which is not touched by former researches is well addressed by this study which is very helpful for designing a new railway track and monitoring existing railway tracks. Based on the analysis of the model with the parameters from Ethio-Djibouti standard gauge railway track, the possible maintenance period of ballast material is predicted.
文摘提出一种地基真孔径雷达(Ground-Based Real Aperture Radar,GB-RAR)变形信息估计方法,将该方法应用于上海某地铁线路盾构隧道下穿E大桥的安全监测与分析。基于GB-RAR数据进行分析推导,得到桥梁的沉降变形时间序列,并通过水准测量进行了验证,精度优于0.27 mm。通过功率谱分析和最大似然估计,去除彩色噪声比,不考虑彩色噪声影响的变形监测信息更准确,与水准测量结果更加吻合。研究结果表明,该方法在本次工作中具有可靠性和有效性,桥梁在监测期内稳定、安全。