The compaction quality of subgrade filler strongly affects subgrade settlement.The main objective of this research is to analyze the macro-and micro-mechanical compaction characteristics of subgrade filler based on th...The compaction quality of subgrade filler strongly affects subgrade settlement.The main objective of this research is to analyze the macro-and micro-mechanical compaction characteristics of subgrade filler based on the real shape of coarse particles.First,an improved Viola-Jones algorithm is employed to establish a digitalized 2D particle database for coarse particle shape evaluation and discrete modeling purposes of subgrade filler.Shape indexes of 2D subgrade filler are then computed and statistically analyzed.Finally,numerical simulations are performed to quantitatively investigate the effects of the aspect ratio(AR)and interparticle friction coefficient(μ)on the macro-and micro-mechanical compaction characteristics of subgrade filler based on the discrete element method(DEM).The results show that with the increasing AR,the coarse particles are narrower,leading to the increasing movement of fine particles during compaction,which indicates that it is difficult for slender coarse particles to inhibit the migration of fine particles.Moreover,the average displacement of particles is strongly influenced by the AR,indicating that their occlusion under power relies on particle shapes.The dis-placement and velocity of fine particles are much greater than those of the coarse particles,which shows that compaction is primarily a migration of fine particles.Under the cyclic load,the interparticle friction coefficientμhas little effect on the internal structure of the sample;under the quasi-static loads,however,the increase inμwill lead to a significant increase in the porosity of the sample.This study could not only provide a novel approach to investigate the compaction mechanism but also establish a new theoretical basis for the evaluation of intelligent subgrade compaction.展开更多
The present study examines the thermal distribution of ternary nanofluid flow amid two spinning disks influenced by electric and magnetic fields. Keeping in view the shape of the particles, the electrically conducting...The present study examines the thermal distribution of ternary nanofluid flow amid two spinning disks influenced by electric and magnetic fields. Keeping in view the shape of the particles, the electrically conducting ternary nanofluid is analyzed with variable thermophysical features. Three types of nanoparticles namely Copper, Aluminum Oxide, and Graphene with spherical, cylindrical, and platelet shapes are taken respectively and are immersed in a (50-50)% ratio of water and ethylene glycol mixture which acts as a base fluid. The anticipated problem is addressed by employing a reliable and user-friendly numerical bvp4c built-in collocation scheme. This solution is then showcased through illustrations and tables. Strengthening the radiation results in an enhanced heat transfer rate. Radial and azimuthal velocities once rotation of disks is enhanced. The key findings provide a strong theoretical background in photovoltaic cells, solar collectors, radiators, solar water heaters, and many other applications.展开更多
ObjectiveThe thesis aims at investigating the distribution and structural characteristics of various branches in canopy of Korla fragrant pear. MethodStatistic work and analysis were conducted on the numbers and distr...ObjectiveThe thesis aims at investigating the distribution and structural characteristics of various branches in canopy of Korla fragrant pear. MethodStatistic work and analysis were conducted on the numbers and distribution characteristics of various branches in each cubic lattice by using the canopy cellular method. ResultThe results showed that: The total number of scaffold branches of evacuation layered tree shape was 97, which mainly distributed in the lower layer and middle part of the canopy; the total number of scaffold branches of open-center tree shape was 94, which mainly distributed in the lower layer and middle part of the canopy. The total number of annual branches of evacuation layered tree shape was 3 920, which mainly distributed in the middle layer and outer part of the canopy; and the total number of annual branches of the open-center tree shape was 3 183, which mainly distributed in middle layer and outer part of the canopy. The total number of perennial branches of evacuation layered tree shape was 2 184, which mainly distributed in lower layer and outer part of the canopy; the total number of perennial branches of open-center tree shape was 1 444, which mainly distributed in middle layer and outer part of the canopy. ConclusionThe total number and the distribution positions of scaffold branches in the canopy of each tree shape were basically the same. The total numbers of annual branches of the two kinds of tree shapes were different, but the distribution positions were basically the same. The total numbers and the distribution positions of perennial branches in the canopy of the two kinds of tree shapes were different.展开更多
With the rural concealed communication cable as the study object, the shielding effectiveness of different slot shapes was analyzed by using LBEM (linear boundary element method). The engineering example results sho...With the rural concealed communication cable as the study object, the shielding effectiveness of different slot shapes was analyzed by using LBEM (linear boundary element method). The engineering example results showed that for twocore shielded cable, the coupling capacitance of trapezoid slots (asymmetric and symmetric) changed the most, followed by rectangular slots (asymmetric and symmetric), and the changes of wedge slots were the smallest, but the change tenden- cies were consistent. In addition, with the increase of slot width of different slots, the coupling capacitance of tow-cored shielded cable showed small change.展开更多
Segmenting the lesion regions from the ultrasound (US) images is an important step in the intra-operative planning of some computer-aided therapies. High-Intensity Focused Ultrasound (HIFU), as a popular computer-...Segmenting the lesion regions from the ultrasound (US) images is an important step in the intra-operative planning of some computer-aided therapies. High-Intensity Focused Ultrasound (HIFU), as a popular computer-aided therapy, has been widely used in the treatment of uterine fibroids. However, such segmentation in HIFU remains challenge for two reasons: (1) the blurry or missing boundaries of lesion regions in the HIFU images and (2) the deformation of uterine fibroids caused by the patient's breathing or an external force during the US imaging process, which can lead to complex shapes of lesion regions. These factors have prevented classical active contour-based segmentation methods from yielding desired results for uterine fibroids in US images. In this paper, a novel active contour-based segmentation method is proposed, which utilizes the correlation information of target shapes among a sequence of images as prior knowledge to aid the existing active contour method. This prior knowledge can be interpreted as a unsupervised clustering of shapes prior modeling. Meanwhile, it is also proved that the shapes correlation has the low-rank property in a linear space, and the theory of matrix recovery is used as an effective tool to impose the proposed prior on an existing active contour model. Finally, an accurate method is developed to solve the proposed model by using the Augmented Lagrange Multiplier (ALM). Experimental results from both synthetic and clinical uterine fibroids US image sequences demonstrate that the proposed method can consistently improve the performance of active contour models and increase the robustness against missing or misleading boundaries, and can greatly improve the efficiency of HIFU therapy.展开更多
The surface undulating shapes of rock joints have been described qualitatively or experimental quantitatively for a long time. The non determined describing method can not fit quantitative evaluation of mechani...The surface undulating shapes of rock joints have been described qualitatively or experimental quantitatively for a long time. The non determined describing method can not fit quantitative evaluation of mechanical parameters of rock joints in engineering. In this paper, relative amplitude ( R A) is chosen as a quantitative describing index of surface measurement of 1 023 surface undulating curves which conducted by profile curve device(PCD). We discuss the nonuniformity,anisotropy and unhomogeneity of surface undulating shapes of joints. A new method that analyzes the complexity of surface undulating shapes of rock joints directional statistically in various rock joints is also put forward.展开更多
This paper studies the shaped charge jet performance in terms of different liner shapes including conical,bell,hemispherical and bi-conical liners.The critical angles and the relevant flow velocities for the zir-coniu...This paper studies the shaped charge jet performance in terms of different liner shapes including conical,bell,hemispherical and bi-conical liners.The critical angles and the relevant flow velocities for the zir-conium liner material were calculated analytically and numerically using Autodyn hydro-code.The relationship between the critical collapse angle and the flow velocity was determined for the conditions of jet formation and coherency.Penetration tests according to the standard testing procedures of APL-RP34(Section-I1)were performed to validate the numerical predictions of the jet performance of the studied liners.It was found that the four shaped charge liners all produced coherent jets with different performances.The penetration depth of the shaped charges with the bell and the bi-conical liner shapesincreased by 10.3%and 22%,respectively,while the crater diameter of shaped charge with hemispherical liner increased by 85%representing the formation of an explosively-formed-projectile(EF),when they are compared with the corresponding jet characteristics of a conical liner shaped charge.nanоci 1cu.展开更多
The aim of this study was to characterize the changes in berry anatomy during the development of grape(Vitis vinifera L.,and Vitis vinifera×Vitis labrusca)with different shapes.Paraffin sectioning was used to exa...The aim of this study was to characterize the changes in berry anatomy during the development of grape(Vitis vinifera L.,and Vitis vinifera×Vitis labrusca)with different shapes.Paraffin sectioning was used to examine the structural parameters of the cells.The results revealed that,with the development of berries,the transverse and longitudinal diameters of the flesh cells gradually increased,revealing certain regularity.However,the transverse and longitudinal diameters of the epidermal and sub-epidermal cells were different between varieties,reflecting the specificity of the varieties.The growth of the transverse and longitudinal diameters of the berries was found to be completed in the early stage of development.A combination of correlation analysis and size analysis for each cell layer revealed that,due to the small crosssectional area of the epidermal and sub-epidermal cells,the influence of these cells on the transverse and the longitudinal diameters of the berries would be small.In conclusion,the longitudinal and transverse diameters of the grape berries were mainly determined by the longitudinal and transverse diameters of the flesh cells.The different shapes of the grape berries could mainly be attributed to the different growth rates of the flesh cells in the longitudinal and transverse directions.These different rates of growth led to different lengths and widths of the berry.展开更多
The effects of the direction of current on the drag on fish cages are studied in the present paper. The drags on cages of different shapes, including cylindrical, tnmcated conical, cuboidal and hexagonal, are compared...The effects of the direction of current on the drag on fish cages are studied in the present paper. The drags on cages of different shapes, including cylindrical, tnmcated conical, cuboidal and hexagonal, are compared. The drag on the tnmcated conical net is smaller than that on other shapes of the same area. This net shape with a small apex angle is suggested for the design of fish cages.展开更多
The effect of rutile crystal shapes on its settlement in a modified slag was studied by theoretical analysis,FactSage simulation,X-ray diffraction and scanning electron microscopy.The results show that the settling ve...The effect of rutile crystal shapes on its settlement in a modified slag was studied by theoretical analysis,FactSage simulation,X-ray diffraction and scanning electron microscopy.The results show that the settling velocities of spherical rutile crystals are faster than those of other shapes of rutile crystals under the same volume conditions,and the shape transformation of rutile crystals from rod to sphere can be achieved by adding titanium slag to Ti-bearing blast furnace slag.The volume fractions of the rutile crystals in the upper and lower parts of the modified slag are 30%and 71%when the added titanium slag increases to 278 g,indicating that rutile settling is obvious.Due to the rutile settling,half shaker sorting task is saved,and the recovery rate of TiO2 is significantly increased.The TiO2 content of rutile is greater than 93%,and the total content of CaO and MgO is less than 0.4%,meeting the requirements for the raw materials of titanium white in the chloride process.展开更多
The dynamic performance and wake structure of flapping plates with different shapes were studied using multi-block lattice Boltzman and immersed boundary method.Two typical regimes relevant to thrust behavior are iden...The dynamic performance and wake structure of flapping plates with different shapes were studied using multi-block lattice Boltzman and immersed boundary method.Two typical regimes relevant to thrust behavior are identified.One is nonlinear relation between the thrust and the area moment of plate for lower area moment region and the other is linear relation for larger area moment region.The tendency of the power variation with the area moment is reasonably similar to the thrust behavior and the efficiency decreases gradually as the area moment increases.As the mechanism of the dynamic properties is associated with the evolution of vortical structures around the plate,the formation and evolution of vortical structures are investigated and the effects of the plate shape,plate area,Strouhal number and Reynolds number on the vortical structures are analyzed.The results obtained in this study provide physical insight into the understanding of the mechanisms relevant to flapping locomotion.展开更多
Out-of-plane microneedle structures are widely used in various applications such as transcutaneous drug delivery and neural signal recording for brain machine interface.This work presents a novel but simple method to ...Out-of-plane microneedle structures are widely used in various applications such as transcutaneous drug delivery and neural signal recording for brain machine interface.This work presents a novel but simple method to fabricate high-density silicon(Si)microneedle arrays with various heights and diverse cross-sectional shapes depending on photomask pattern designs.The proposed fabrication method is composed of a single photolithography and two subsequent deep reactive ion etching(DRIE)steps.First,a photoresist layer was patterned on a Si substrate to define areas to be etched,which will eventually determine the final location and shape of each individual microneedle.Then,the 1st DRIE step created deep trenches with a highly anisotropic etching of the Si substrate.Subsequently,the photoresist was removed for more isotropic etching;the 2nd DRIE isolated and sharpened microneedles from the predefined trench structures.Depending on diverse photomask designs,the 2nd DRIE formed arrays of microneedles that have various height distributions,as well as diverse cross-sectional shapes across the substrate.With these simple steps,high-aspect ratio microneedles were created in the high density of up to 625 microneedles mm^(-2)on a Si wafer.Insertion tests showed a small force as low as~172μN/microneedle is required for microneedle arrays to penetrate the dura mater of a mouse brain.To demonstrate a feasibility of drug delivery application,we also implemented silk microneedle arrays using molding processes.The fabrication method of the present study is expected to be broadly applicable to create microneedle structures for drug delivery,neuroprosthetic devices,and so on.展开更多
This paper proposes an approach to extract the mode shapes of beam-like structures from the dynamic response of a moving mass. When a mass passes through a beam containing several artificially installed humps, its ver...This paper proposes an approach to extract the mode shapes of beam-like structures from the dynamic response of a moving mass. When a mass passes through a beam containing several artificially installed humps, its vertical acceleration can be recorded. After applying fast Fourier transformation to the dynamic response, one can extract the mode shapes of the beam. The surface roughness was neglected compared to the humps and its adverse effect on the extraction was reduced. The passing mass performs as both “exciter” and “massage receiver”;therefore, this method requires only one single accelerometer, making it more convenient and time saving in practice. Moreover, to estimate the possible error in extracting mode shapes, a wavenumber domain filtering technique is used to reconstruct the general profiles of mode shapes. Experimental validation of this approach in laboratory scale was conducted. The experimental results show that the proposed method performs well in extracting lower order mode shapes. It should also be noted that the passing mass can not have a very high velocity (e.g. 80 mm/s), otherwise the mass may jump and separate from the beam, and the proposed method may fail to identify mode shapes.展开更多
Energy minimization has been widely used for constructing curve and surface in the fields such as computer-aided geometric design, computer graphics. However, our testing examples show that energy minimization does no...Energy minimization has been widely used for constructing curve and surface in the fields such as computer-aided geometric design, computer graphics. However, our testing examples show that energy minimization does not optimize the shape of the curve sometimes. This paper studies the relationship between minimizing strain energy and curve shapes, the study is carried out by constructing a cubic Hermite curve with satisfactory shape. The cubic Hermite curve interpolates the positions and tangent vectors of two given endpoints. Computer simulation technique has become one of the methods of scientific discovery, the study process is carried out by numerical computation and computer simulation technique. Our result shows that: (1) cubic Hermite curves cannot be constructed by solely minimizing the strain energy; (2) by adoption of a local minimum value of the strain energy, the shapes of cubic Hermite curves could be determined for about 60 percent of all cases, some of which have unsatisfactory shapes, however. Based on strain energy model and analysis, a new model is presented for constructing cubic Hermite curves with satisfactory shapes, which is a modification of strain energy model. The new model uses an explicit formula to compute the magnitudes of the two tangent vectors, and has the properties: (1) it is easy to compute; (2) it makes the cubic Hermite curves have satisfactory shapes while holding the good property of minimizing strain energy for some cases in curve construction. The comparison of the new model with the minimum strain energy model is included.展开更多
When the frigate moves forward,due to the ship motion such as pitching and rolling,the flow over the flight deck becomes very complex,which may seriously threaten the taking off and landing of the ship-borne helicopte...When the frigate moves forward,due to the ship motion such as pitching and rolling,the flow over the flight deck becomes very complex,which may seriously threaten the taking off and landing of the ship-borne helicopter.The flow fields over the different modified simple frigate shape(SFS)models,consisting of the hangar and flight deck,were numerically studied by changing the ratio of hangar height and length in the static state and pitching state.For different models,the contours of velocity and pressure above the flight deck,as well as the variations of velocity components of the observation points and line in static state and pitching state were compared and analyzed.The results show that the size of recirculation zone and the location of the reattachment point have distinct differences for diverse models,and reveal the tracks of recirculation zone’s center and reattachment position in a pitching period.In addition,the velocity components at two observation positions also change periodically with the periodic motion.Furthermore,the deviations of the velocity components in static state and pitching state are relatively large,therefore,the flow fields in static state cannot be used to simulate that in pitching state correctly.展开更多
Based on the Joukowsky transformation and Theodorsen method, a novel parametric function (shape function) for wind turbine airfoils has been developed. The airfoil design space and shape control equations also have ...Based on the Joukowsky transformation and Theodorsen method, a novel parametric function (shape function) for wind turbine airfoils has been developed. The airfoil design space and shape control equations also have been studied. Results of the analysis of a typical wind turbine airfoil are shown to illustrate the evaluation process and to demonstrate the rate of convergence of the geometric characteristics. The coordinates and aerodynamic performance of approximate airfoils is rapidly close to the baseline airfoil corresponding to increasing orders of polynomial. Comparison of the RFOIL prediction and experimental results for the baseline airfoil generally show good agreement. A universal method for three-dimensional blade integration-" Shape function/Distribution function" is presented. By changing the parameters of shape function and distribution functions, a three dimensional blade can be designed and then transformed into the physical space in which the actual geometry is defined. Application of this method to a wind turbine blade is presented and the differences of power performance between the represented blade and original one are less than 0. 5%. This method is particularly simple and convenient for bodies of streamline forms.展开更多
基金This work was supported by the National Key R&D Program‘Transportation Infrastructure’project(No.2022YFB2603400).
文摘The compaction quality of subgrade filler strongly affects subgrade settlement.The main objective of this research is to analyze the macro-and micro-mechanical compaction characteristics of subgrade filler based on the real shape of coarse particles.First,an improved Viola-Jones algorithm is employed to establish a digitalized 2D particle database for coarse particle shape evaluation and discrete modeling purposes of subgrade filler.Shape indexes of 2D subgrade filler are then computed and statistically analyzed.Finally,numerical simulations are performed to quantitatively investigate the effects of the aspect ratio(AR)and interparticle friction coefficient(μ)on the macro-and micro-mechanical compaction characteristics of subgrade filler based on the discrete element method(DEM).The results show that with the increasing AR,the coarse particles are narrower,leading to the increasing movement of fine particles during compaction,which indicates that it is difficult for slender coarse particles to inhibit the migration of fine particles.Moreover,the average displacement of particles is strongly influenced by the AR,indicating that their occlusion under power relies on particle shapes.The dis-placement and velocity of fine particles are much greater than those of the coarse particles,which shows that compaction is primarily a migration of fine particles.Under the cyclic load,the interparticle friction coefficientμhas little effect on the internal structure of the sample;under the quasi-static loads,however,the increase inμwill lead to a significant increase in the porosity of the sample.This study could not only provide a novel approach to investigate the compaction mechanism but also establish a new theoretical basis for the evaluation of intelligent subgrade compaction.
文摘The present study examines the thermal distribution of ternary nanofluid flow amid two spinning disks influenced by electric and magnetic fields. Keeping in view the shape of the particles, the electrically conducting ternary nanofluid is analyzed with variable thermophysical features. Three types of nanoparticles namely Copper, Aluminum Oxide, and Graphene with spherical, cylindrical, and platelet shapes are taken respectively and are immersed in a (50-50)% ratio of water and ethylene glycol mixture which acts as a base fluid. The anticipated problem is addressed by employing a reliable and user-friendly numerical bvp4c built-in collocation scheme. This solution is then showcased through illustrations and tables. Strengthening the radiation results in an enhanced heat transfer rate. Radial and azimuthal velocities once rotation of disks is enhanced. The key findings provide a strong theoretical background in photovoltaic cells, solar collectors, radiators, solar water heaters, and many other applications.
基金Supported by National Department Public Benefit Research Foundation(201304701-4)Science and Technology Planning Program of Xinjiang Uygur Autonomous RegionXinjiang Uygur Autonomous Region Fruit Major Subjects~~
文摘ObjectiveThe thesis aims at investigating the distribution and structural characteristics of various branches in canopy of Korla fragrant pear. MethodStatistic work and analysis were conducted on the numbers and distribution characteristics of various branches in each cubic lattice by using the canopy cellular method. ResultThe results showed that: The total number of scaffold branches of evacuation layered tree shape was 97, which mainly distributed in the lower layer and middle part of the canopy; the total number of scaffold branches of open-center tree shape was 94, which mainly distributed in the lower layer and middle part of the canopy. The total number of annual branches of evacuation layered tree shape was 3 920, which mainly distributed in the middle layer and outer part of the canopy; and the total number of annual branches of the open-center tree shape was 3 183, which mainly distributed in middle layer and outer part of the canopy. The total number of perennial branches of evacuation layered tree shape was 2 184, which mainly distributed in lower layer and outer part of the canopy; the total number of perennial branches of open-center tree shape was 1 444, which mainly distributed in middle layer and outer part of the canopy. ConclusionThe total number and the distribution positions of scaffold branches in the canopy of each tree shape were basically the same. The total numbers of annual branches of the two kinds of tree shapes were different, but the distribution positions were basically the same. The total numbers and the distribution positions of perennial branches in the canopy of the two kinds of tree shapes were different.
基金Supported by the Science and Technology Program of the Education Department of Shaanxi Provincial Government(09JK378)the Key Scientific Research Fund of Shaanxi University of Technology(SLGKY12-02)~~
文摘With the rural concealed communication cable as the study object, the shielding effectiveness of different slot shapes was analyzed by using LBEM (linear boundary element method). The engineering example results showed that for twocore shielded cable, the coupling capacitance of trapezoid slots (asymmetric and symmetric) changed the most, followed by rectangular slots (asymmetric and symmetric), and the changes of wedge slots were the smallest, but the change tenden- cies were consistent. In addition, with the increase of slot width of different slots, the coupling capacitance of tow-cored shielded cable showed small change.
基金Supported by the National Basic Research Program of China(2011CB707904)the Natural Science Foundation of China(61472289)Hubei Province Natural Science Foundation of China(2015CFB254)
文摘Segmenting the lesion regions from the ultrasound (US) images is an important step in the intra-operative planning of some computer-aided therapies. High-Intensity Focused Ultrasound (HIFU), as a popular computer-aided therapy, has been widely used in the treatment of uterine fibroids. However, such segmentation in HIFU remains challenge for two reasons: (1) the blurry or missing boundaries of lesion regions in the HIFU images and (2) the deformation of uterine fibroids caused by the patient's breathing or an external force during the US imaging process, which can lead to complex shapes of lesion regions. These factors have prevented classical active contour-based segmentation methods from yielding desired results for uterine fibroids in US images. In this paper, a novel active contour-based segmentation method is proposed, which utilizes the correlation information of target shapes among a sequence of images as prior knowledge to aid the existing active contour method. This prior knowledge can be interpreted as a unsupervised clustering of shapes prior modeling. Meanwhile, it is also proved that the shapes correlation has the low-rank property in a linear space, and the theory of matrix recovery is used as an effective tool to impose the proposed prior on an existing active contour model. Finally, an accurate method is developed to solve the proposed model by using the Augmented Lagrange Multiplier (ALM). Experimental results from both synthetic and clinical uterine fibroids US image sequences demonstrate that the proposed method can consistently improve the performance of active contour models and increase the robustness against missing or misleading boundaries, and can greatly improve the efficiency of HIFU therapy.
文摘The surface undulating shapes of rock joints have been described qualitatively or experimental quantitatively for a long time. The non determined describing method can not fit quantitative evaluation of mechanical parameters of rock joints in engineering. In this paper, relative amplitude ( R A) is chosen as a quantitative describing index of surface measurement of 1 023 surface undulating curves which conducted by profile curve device(PCD). We discuss the nonuniformity,anisotropy and unhomogeneity of surface undulating shapes of joints. A new method that analyzes the complexity of surface undulating shapes of rock joints directional statistically in various rock joints is also put forward.
文摘This paper studies the shaped charge jet performance in terms of different liner shapes including conical,bell,hemispherical and bi-conical liners.The critical angles and the relevant flow velocities for the zir-conium liner material were calculated analytically and numerically using Autodyn hydro-code.The relationship between the critical collapse angle and the flow velocity was determined for the conditions of jet formation and coherency.Penetration tests according to the standard testing procedures of APL-RP34(Section-I1)were performed to validate the numerical predictions of the jet performance of the studied liners.It was found that the four shaped charge liners all produced coherent jets with different performances.The penetration depth of the shaped charges with the bell and the bi-conical liner shapesincreased by 10.3%and 22%,respectively,while the crater diameter of shaped charge with hemispherical liner increased by 85%representing the formation of an explosively-formed-projectile(EF),when they are compared with the corresponding jet characteristics of a conical liner shaped charge.nanоci 1cu.
基金The authors are grateful for the National Key Research and Development Program(Grant No.2019YFD1000101)the financial support from the National Natural Science Foundation Project(Grant Nos.31672131 and 31372027)+1 种基金China Agriculture Research System(Grant No.CARS-29)and the Agricultural Science and Technology Innovation Program(Grant No.CAAS-ASTIP-2018-ZFRI).
文摘The aim of this study was to characterize the changes in berry anatomy during the development of grape(Vitis vinifera L.,and Vitis vinifera×Vitis labrusca)with different shapes.Paraffin sectioning was used to examine the structural parameters of the cells.The results revealed that,with the development of berries,the transverse and longitudinal diameters of the flesh cells gradually increased,revealing certain regularity.However,the transverse and longitudinal diameters of the epidermal and sub-epidermal cells were different between varieties,reflecting the specificity of the varieties.The growth of the transverse and longitudinal diameters of the berries was found to be completed in the early stage of development.A combination of correlation analysis and size analysis for each cell layer revealed that,due to the small crosssectional area of the epidermal and sub-epidermal cells,the influence of these cells on the transverse and the longitudinal diameters of the berries would be small.In conclusion,the longitudinal and transverse diameters of the grape berries were mainly determined by the longitudinal and transverse diameters of the flesh cells.The different shapes of the grape berries could mainly be attributed to the different growth rates of the flesh cells in the longitudinal and transverse directions.These different rates of growth led to different lengths and widths of the berry.
基金This workis financially supported by the National Natural Science Foundation of China (No.10272118) ,the Key Scientific and Technological Program of China (No.2004BA526B03) and the Research Fund for the Doctoral Program of the Ministry of Education of China (No.20020558013)
文摘The effects of the direction of current on the drag on fish cages are studied in the present paper. The drags on cages of different shapes, including cylindrical, tnmcated conical, cuboidal and hexagonal, are compared. The drag on the tnmcated conical net is smaller than that on other shapes of the same area. This net shape with a small apex angle is suggested for the design of fish cages.
基金Project(2015BAB18B00)supported by the National Science and Technology Support Program of China。
文摘The effect of rutile crystal shapes on its settlement in a modified slag was studied by theoretical analysis,FactSage simulation,X-ray diffraction and scanning electron microscopy.The results show that the settling velocities of spherical rutile crystals are faster than those of other shapes of rutile crystals under the same volume conditions,and the shape transformation of rutile crystals from rod to sphere can be achieved by adding titanium slag to Ti-bearing blast furnace slag.The volume fractions of the rutile crystals in the upper and lower parts of the modified slag are 30%and 71%when the added titanium slag increases to 278 g,indicating that rutile settling is obvious.Due to the rutile settling,half shaker sorting task is saved,and the recovery rate of TiO2 is significantly increased.The TiO2 content of rutile is greater than 93%,and the total content of CaO and MgO is less than 0.4%,meeting the requirements for the raw materials of titanium white in the chloride process.
基金supported by the National Natural Science Foundation of China(11372304 and 11132010)the 111 Project(B07033)
文摘The dynamic performance and wake structure of flapping plates with different shapes were studied using multi-block lattice Boltzman and immersed boundary method.Two typical regimes relevant to thrust behavior are identified.One is nonlinear relation between the thrust and the area moment of plate for lower area moment region and the other is linear relation for larger area moment region.The tendency of the power variation with the area moment is reasonably similar to the thrust behavior and the efficiency decreases gradually as the area moment increases.As the mechanism of the dynamic properties is associated with the evolution of vortical structures around the plate,the formation and evolution of vortical structures are investigated and the effects of the plate shape,plate area,Strouhal number and Reynolds number on the vortical structures are analyzed.The results obtained in this study provide physical insight into the understanding of the mechanisms relevant to flapping locomotion.
基金This work was supported by KIST(Korea Institute of Science and Technology)institutional grants(2E30965,and 2V07360)the National R&D Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(Nos.2020R1C1C1006065,2021M3F3A2A01037366)+1 种基金This work was also supported by the Korea Medical Device Development Fund grant funded by the Korea government(the Ministry of Science and ICT,the Ministry of Trade,Industry and Energy,the Ministry of Health&Welfarethe Ministry of Food and Drug Safety)(Project Number:9991006818,KMDF_PR_20200901_0145-2021).
文摘Out-of-plane microneedle structures are widely used in various applications such as transcutaneous drug delivery and neural signal recording for brain machine interface.This work presents a novel but simple method to fabricate high-density silicon(Si)microneedle arrays with various heights and diverse cross-sectional shapes depending on photomask pattern designs.The proposed fabrication method is composed of a single photolithography and two subsequent deep reactive ion etching(DRIE)steps.First,a photoresist layer was patterned on a Si substrate to define areas to be etched,which will eventually determine the final location and shape of each individual microneedle.Then,the 1st DRIE step created deep trenches with a highly anisotropic etching of the Si substrate.Subsequently,the photoresist was removed for more isotropic etching;the 2nd DRIE isolated and sharpened microneedles from the predefined trench structures.Depending on diverse photomask designs,the 2nd DRIE formed arrays of microneedles that have various height distributions,as well as diverse cross-sectional shapes across the substrate.With these simple steps,high-aspect ratio microneedles were created in the high density of up to 625 microneedles mm^(-2)on a Si wafer.Insertion tests showed a small force as low as~172μN/microneedle is required for microneedle arrays to penetrate the dura mater of a mouse brain.To demonstrate a feasibility of drug delivery application,we also implemented silk microneedle arrays using molding processes.The fabrication method of the present study is expected to be broadly applicable to create microneedle structures for drug delivery,neuroprosthetic devices,and so on.
文摘This paper proposes an approach to extract the mode shapes of beam-like structures from the dynamic response of a moving mass. When a mass passes through a beam containing several artificially installed humps, its vertical acceleration can be recorded. After applying fast Fourier transformation to the dynamic response, one can extract the mode shapes of the beam. The surface roughness was neglected compared to the humps and its adverse effect on the extraction was reduced. The passing mass performs as both “exciter” and “massage receiver”;therefore, this method requires only one single accelerometer, making it more convenient and time saving in practice. Moreover, to estimate the possible error in extracting mode shapes, a wavenumber domain filtering technique is used to reconstruct the general profiles of mode shapes. Experimental validation of this approach in laboratory scale was conducted. The experimental results show that the proposed method performs well in extracting lower order mode shapes. It should also be noted that the passing mass can not have a very high velocity (e.g. 80 mm/s), otherwise the mass may jump and separate from the beam, and the proposed method may fail to identify mode shapes.
基金Supported by the National Natural Science Foundation of China(61173174,61103150,61373078)the NSFC Joint Fund with Guangdong under Key Project(U1201258)the National Research Foundation for the Doctoral Program of Higher Education of China(20110131130004)
文摘Energy minimization has been widely used for constructing curve and surface in the fields such as computer-aided geometric design, computer graphics. However, our testing examples show that energy minimization does not optimize the shape of the curve sometimes. This paper studies the relationship between minimizing strain energy and curve shapes, the study is carried out by constructing a cubic Hermite curve with satisfactory shape. The cubic Hermite curve interpolates the positions and tangent vectors of two given endpoints. Computer simulation technique has become one of the methods of scientific discovery, the study process is carried out by numerical computation and computer simulation technique. Our result shows that: (1) cubic Hermite curves cannot be constructed by solely minimizing the strain energy; (2) by adoption of a local minimum value of the strain energy, the shapes of cubic Hermite curves could be determined for about 60 percent of all cases, some of which have unsatisfactory shapes, however. Based on strain energy model and analysis, a new model is presented for constructing cubic Hermite curves with satisfactory shapes, which is a modification of strain energy model. The new model uses an explicit formula to compute the magnitudes of the two tangent vectors, and has the properties: (1) it is easy to compute; (2) it makes the cubic Hermite curves have satisfactory shapes while holding the good property of minimizing strain energy for some cases in curve construction. The comparison of the new model with the minimum strain energy model is included.
基金supported by the Fundamental Research Funds for the Central Universities(No. NS2019006)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘When the frigate moves forward,due to the ship motion such as pitching and rolling,the flow over the flight deck becomes very complex,which may seriously threaten the taking off and landing of the ship-borne helicopter.The flow fields over the different modified simple frigate shape(SFS)models,consisting of the hangar and flight deck,were numerically studied by changing the ratio of hangar height and length in the static state and pitching state.For different models,the contours of velocity and pressure above the flight deck,as well as the variations of velocity components of the observation points and line in static state and pitching state were compared and analyzed.The results show that the size of recirculation zone and the location of the reattachment point have distinct differences for diverse models,and reveal the tracks of recirculation zone’s center and reattachment position in a pitching period.In addition,the velocity components at two observation positions also change periodically with the periodic motion.Furthermore,the deviations of the velocity components in static state and pitching state are relatively large,therefore,the flow fields in static state cannot be used to simulate that in pitching state correctly.
基金Supported by the National Natural Science Foundation of China ( No. 50775227 ) and the Natural Science Foundation of Chongqing ( No. CSTC, 2008BC3029).
文摘Based on the Joukowsky transformation and Theodorsen method, a novel parametric function (shape function) for wind turbine airfoils has been developed. The airfoil design space and shape control equations also have been studied. Results of the analysis of a typical wind turbine airfoil are shown to illustrate the evaluation process and to demonstrate the rate of convergence of the geometric characteristics. The coordinates and aerodynamic performance of approximate airfoils is rapidly close to the baseline airfoil corresponding to increasing orders of polynomial. Comparison of the RFOIL prediction and experimental results for the baseline airfoil generally show good agreement. A universal method for three-dimensional blade integration-" Shape function/Distribution function" is presented. By changing the parameters of shape function and distribution functions, a three dimensional blade can be designed and then transformed into the physical space in which the actual geometry is defined. Application of this method to a wind turbine blade is presented and the differences of power performance between the represented blade and original one are less than 0. 5%. This method is particularly simple and convenient for bodies of streamline forms.