期刊文献+
共找到2,864篇文章
< 1 2 144 >
每页显示 20 50 100
Roughness characterization and shearing dislocation failure for rock-backfill interface
1
作者 Meifeng Cai Zhilou Feng +3 位作者 Qifeng Guo Xiong Yin Minghui Ma Xun Xi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1167-1176,共10页
Shearing dislocation is a common failure type for rock–backfill interfaces because of backfill sedimentation and rock strata movement in backfill mining goaf.This paper designed a test method for rock–backfill shear... Shearing dislocation is a common failure type for rock–backfill interfaces because of backfill sedimentation and rock strata movement in backfill mining goaf.This paper designed a test method for rock–backfill shearing dislocation.Using digital image techno-logy and three-dimensional(3D)laser morphology scanning techniques,a set of 3D models with rough joint surfaces was established.Further,the mechanical behavior of rock–backfill shearing dislocation was investigated using a direct shear test.The effects of interface roughness on the shear–displacement curve and failure characteristics of rock–backfill specimens were considered.The 3D fractal dimen-sion,profile line joint roughness coefficient(JRC),profile line two-dimensional fractal dimension,and the surface curvature of the frac-tures were obtained.The correlation characterization of surface roughness was then analyzed,and the shear strength could be measured and calculated using JRC.The results showed the following:there were three failure threshold value points in rock–backfill shearing dis-location:30%–50%displacement before the peak,70%–90%displacement before the peak,and 100%displacement before the peak to post-peak,which could be a sign for rock–backfill shearing dislocation failure.The surface JRC could be used to judge the rock–backfill shearing dislocation failure,including post-peak sliding,uniform variations,and gradient change,corresponding to rock–backfill disloca-tion failure on the field site.The research reveals the damage mechanism for rock–backfill complexes based on the free joint surface,fills the gap of existing shearing theoretical systems for isomerism complexes,and provides a theoretical basis for the prevention and control of possible disasters in backfill mining. 展开更多
关键词 rock–backfill ROUGHNESS correlation characterization shearing dislocation interface failure
下载PDF
Engineering behaviour of in situ cored deep cement mixed marine deposits subjected to undrained and drained shearing
2
作者 Wei Li Chung Yee Kwok 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1749-1760,共12页
The deep cement mixing(DCM)is used to improve the capacity and reduce the settlement of the soft ground by forming cemented clay columns.The investigation on the mechanical behaviour of the DCM samples is limited to e... The deep cement mixing(DCM)is used to improve the capacity and reduce the settlement of the soft ground by forming cemented clay columns.The investigation on the mechanical behaviour of the DCM samples is limited to either laboratory-prepared samples or in-situ samples under unconfined compression.In this study,a series of drained and undrained triaxial shearing tests was performed on the in-situ cored DCM samples with high cement content to assess their mechanical behaviours.It is found that the drainage condition affects significantly the stiffness,peak and residual strengths of the DCM samples,which is mainly due to the state of excess pore water pressure at different strain levels,i.e.being positive before the peak deviatoric stress and negative after the peak deviatoric stress,in the undrained tests.The slope of the failure envelope changes obviously with the confining pressures,being steeper at lower stress levels and flatter at higher stress levels.The strength parameters,effective cohesion and friction angle obtained from lower stress levels(c′0 andφ′0)are 400 kPa and 58°,respectively,which are deemed to be true for design in most DCM applications where the in-situ stress levels are normally at lower values of 50-200 kPa.Additionally,the computed tomography(CT)scanning system was adopted to visualize the internal structures of DCM samples.It is found that the clay pockets existing inside the DCM samples due to uneven mixing affect markedly their stress-strain behaviour,which is one of the main reasons for the high variability of the DCM samples. 展开更多
关键词 Deep cement mixing(DCM) In-situ cored sample Triaxial shearing Drainage condition Confining pressure Computed tomography(CT)
下载PDF
Anisotropic time-dependent behaviors of shale under direct shearing and associated empirical creep models 被引量:2
3
作者 Yachen Xie Michael Z.Hou +1 位作者 Hejuan Liu Cunbao Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1262-1279,共18页
Understanding the anisotropic creep behaviors of shale under direct shearing is a challenging issue.In this context,we conducted shear-creep and steady-creep tests on shale with five bedding orientations (i.e.0°,... Understanding the anisotropic creep behaviors of shale under direct shearing is a challenging issue.In this context,we conducted shear-creep and steady-creep tests on shale with five bedding orientations (i.e.0°,30°,45°,60°,and 90°),under multiple levels of direct shearing for the first time.The results show that the anisotropic creep of shale exhibits a significant stress-dependent behavior.Under a low shear stress,the creep compliance of shale increases linearly with the logarithm of time at all bedding orientations,and the increase depends on the bedding orientation and creep time.Under high shear stress conditions,the creep compliance of shale is minimal when the bedding orientation is 0°,and the steady-creep rate of shale increases significantly with increasing bedding orientations of 30°,45°,60°,and 90°.The stress-strain values corresponding to the inception of the accelerated creep stage show an increasing and then decreasing trend with the bedding orientation.A semilogarithmic model that could reflect the stress dependence of the steady-creep rate while considering the hardening and damage process is proposed.The model minimizes the deviation of the calculated steady-state creep rate from the observed value and reveals the behavior of the bedding orientation's influence on the steady-creep rate.The applicability of the five classical empirical creep models is quantitatively evaluated.It shows that the logarithmic model can well explain the experimental creep strain and creep rate,and it can accurately predict long-term shear creep deformation.Based on an improved logarithmic model,the variations in creep parameters with shear stress and bedding orientations are discussed.With abovementioned findings,a mathematical method for constructing an anisotropic shear creep model of shale is proposed,which can characterize the nonlinear dependence of the anisotropic shear creep behavior of shale on the bedding orientation. 展开更多
关键词 Rock anisotropy Direct shear creep Creep compliance Steady-creep rate Empirical model Creep constitutive model
下载PDF
Anisotropic shearing mechanism of Kangding slate:Experimental investigation and numerical analysis 被引量:1
4
作者 Ping Liu Quansheng Liu +4 位作者 Penghai Deng Yucong Pan Yiming Lei Chenglei Du Xianqi Xie 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1487-1504,共18页
The shear mechanical behavior is regarded as an essential factor affecting the stability of the surrounding rocks in underground engineering.The shear strength and failure mechanisms of layered rock are significantly ... The shear mechanical behavior is regarded as an essential factor affecting the stability of the surrounding rocks in underground engineering.The shear strength and failure mechanisms of layered rock are significantly affected by the foliation angles.Direct shear tests were conducted on cubic slate samples with foliation angles of 0°,30°,45°,60°,and 90°.The effect of foliation angles on failure patterns,acoustic emission(AE)characteristics,and shear strength parameters was analyzed.Based on AE characteristics,the slate failure process could be divided into four stages:quiet period,step-like increasing period,dramatic increasing period,and remission period.A new empirical expression of cohesion for layered rock was proposed,which was compared with linear and sinusoidal cohesion expressions based on the results made by this paper and previous experiments.The comparative analysis demonstrated that the new expression has better prediction ability than other expressions.The proposed empirical equation was used for direct shear simulations with the combined finite-discrete element method(FDEM),and it was found to align well with the experimental results.Considering both computational efficiency and accuracy,it was recommended to use a shear rate of 0.01 m/s for FDEM to carry out direct shear simulations.To balance the relationship between the number of elements and the simulation results in the direct shear simulations,the recommended element size is 1 mm. 展开更多
关键词 ANISOTROPY Empirical expression of cohesion foliation angles Combined finite-discrete element method(FDEM) Shear rate Element size
下载PDF
A statistical damage-based constitutive model for shearing of rock joints in brittle drop mode
5
作者 Xinrong Liu Peiyao Li +5 位作者 Xueyan Guo Xinyang Luo Xiaohan Zhou Luli Miao Fuchuan Zhou Hao Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第8期1041-1058,共18页
Some rock joints exhibit significant brittleness,characterized by a sharp decrease in shear stress upon reaching the peak strength.However,existing models often fail to accurately represent this behavior and are encum... Some rock joints exhibit significant brittleness,characterized by a sharp decrease in shear stress upon reaching the peak strength.However,existing models often fail to accurately represent this behavior and are encumbered by numerous parameters lacking clear mechanical significance.This study presents a new statistical damage constitutive model rooted in both damage mechanics and statistics,containing only three model parameters.The proposed model encompasses all stages of joint shearing,including the compaction stage,linear stage,plastic yielding stage,drop stage,strain softening stage,and residual strength stage.To derive the analytical expression of the constitutive model,three boundary conditions are introduced.Experimental data from both natural and artificial rock joints is utilized to validate the model,resulting in average absolute relative errors ranging from 3%to 8%.Moreover,a comparative analysis with established models illustrates that the proposed model captures stress drop and post-peak strain softening more effectively,with model parameters possessing clearer mechanical interpretations.Furthermore,parameter analysis is conducted to investigate the impacts of model parameters on the curves and unveil the relationship between these parameters and the mechanical properties of rock joints.Importantly,the proposed model is straightforward in form,and all model parameters can be obtained from direct shear tests,thus facilitating the utilization in numerical simulations. 展开更多
关键词 Rock joints Brittle rock Direct shear test Damage-based constitutive model Parameters analysis
下载PDF
Experimental investigation on the factors affecting VWF damage based on an in vitro blood-shearing platform
6
作者 Xu Mei Lian Hou +2 位作者 Yu-Lin Chen Hao Mei Ying-Ying Zhong 《Biomedical Engineering Communications》 2023年第4期31-38,共8页
With the increasing number of people suffering from heart failure,ventricular assist devices have gradually become an effective way to treat end-stage heart failure.However,the blood damage caused by ventricular assis... With the increasing number of people suffering from heart failure,ventricular assist devices have gradually become an effective way to treat end-stage heart failure.However,the blood damage caused by ventricular assist devices has not been effectively solved,which is an obstacle to its clinical promotion.Most research focused on erythrocyte damage under shear stress,while few researches were conducted on the interaction between blood under shear stress and the induction of von Willebrand factor(VWF)damage.This research used a vortex oscillator blood-shearing platform to conduct in vitro experiments and used immunoblotting to quantify VWF damage in sheared samples to study the laws of shear-induced VWF damage under different shear stress,different exposure times,different blood components,and hemolysis conditions.It was found that VWF damage increased with exposure time and shear stress.At the same time,under lower shear stress,other blood components had little effect on VWF damage,while in a higher shear stress,other blood components would accelerate VWF damage.Hemolysis will also affect VWF damage,and the higher the degree of hemolysis,the higher the rate of VWF degradation in the plasma.The results of this research provide a reference for VWF damage evaluation standards and follow-up research and also guide for improving the design of ventricular assist devices to reduce VWF damage. 展开更多
关键词 VWF damage shear stress exposure time HEMOLYSIS blood-shearing platform
下载PDF
四分之一空间内椭圆孔对SH(shearing horizontal,反平面剪切)波的散射 被引量:2
7
作者 史文谱 杨洪兰 +2 位作者 张春萍 方世杰 侯志刚 《机械强度》 CAS CSCD 北大核心 2010年第5期774-780,共7页
利用保角变换和多极坐标移动技术,求解四分之一空间内含有椭圆孔时椭圆孔对入射平面SH(shearing hori-zontal)波的稳态散射问题。首先利用四分之一空间两垂直边界处的应力自由条件,写出不含椭圆孔时空间介质内的反射波场;其次,通过保角... 利用保角变换和多极坐标移动技术,求解四分之一空间内含有椭圆孔时椭圆孔对入射平面SH(shearing hori-zontal)波的稳态散射问题。首先利用四分之一空间两垂直边界处的应力自由条件,写出不含椭圆孔时空间介质内的反射波场;其次,通过保角映射技术考虑空间介质内含有任意主轴方向的椭圆孔时,由于椭圆孔对入射和反射波场的散射作用而产生的散射波场,并预先使得该散射波场满足四分之一空间介质两垂直边界处的应力自由条件,利用叠加原理,将入射波场、反射波场和散射波场叠加起来,即可得到问题的总位移波场。最后借助于椭圆孔边界处的应力自由条件和傅里叶级数展开列出求解散射波解中未知系数的无穷代数方程组,在满足计算精度的前提下将方程组进行有限项截断,得到一个有限线性方程组并求解。通过算例具体讨论四分之一空间内椭圆孔边界处的环向动应力集中系数随入射波入射角、无量纲波数、椭圆孔方位参数的变化情况。 展开更多
关键词 SH(shearing HORIZONTAL 反平面剪切)波散射四分之一空间椭圆孔保角变换动应力集中系数
下载PDF
Formation and Evolution of Non-dendritic Microstructures of Semisolid Alloys Prepared by Shearing/Cooling Roll Process 被引量:13
8
作者 Shuncheng WANG Furong CAO Renguo GUAN Jinglin WEN 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第2期195-199,共5页
The shearing/cooling roll (SCR) process was adopted to prepare semi-solid A2017 alloy. The formation and evolution of non-dendritic microstructures in semi-solid A2017 alloy were studied. It is shown that the micros... The shearing/cooling roll (SCR) process was adopted to prepare semi-solid A2017 alloy. The formation and evolution of non-dendritic microstructures in semi-solid A2017 alloy were studied. It is shown that the microstructures of semi-solid billets transform from coarse dendrites into fine equiaxed grains as the pouring temperature of molten alloy decreases o.r roll-shoe cavity height is reduced. From the inlet to the exit of roll-shoe cavity, microstructure of semi-solid slurry near the shoe surface is in the order of coarse dendrites, degenerated dendrites or equiaxed grains, but fine equiaxed grains are near the roll surface. Microstructural evolution of semi-solid slurry prepared by SCR process is that the molten alloy nucleates and grows into dendrite firstly on the roll and shoe's surface. Under the shearing and stirring given by the rotating roll, the dendrites crush off and disperse into the melt. Under the shearing and stirring on semi-solid slurry with high volume fraction of solid, the dendrite arms fracture and form equiaxed grain microstructures. 展开更多
关键词 Semi-solid metal processing Non-dendrite Microstructural evolution shearing and stirring Aluminum alloy
下载PDF
Fabrication of fine-grained,high strength and toughness Mg alloy by extrusion−shearing process 被引量:15
9
作者 Bo-ning WANG Feng WANG +2 位作者 Zhi WANG Zheng LIU Ping-li MAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第3期666-678,共13页
A novel extrusion-shearing(ES) composite process was designed to fabricate fine-grained, high strength and tough magnesium alloy. The structural parameters of an ES die were optimized by conducting an orthogonal simul... A novel extrusion-shearing(ES) composite process was designed to fabricate fine-grained, high strength and tough magnesium alloy. The structural parameters of an ES die were optimized by conducting an orthogonal simulation experiment using finite element software Deform-3D, and Mg-3 Zn-0.6 Ca-0.6 Zr(ZXK310) alloy was processed using the ES die. The results show that the optimized structural parameters of ES die are extrusion angle(α) of 90°, extrusion section height(h) of 15 mm and inner fillet radius(r) of 10 mm. After ES at an extrusion temperature and a die temperature of 350 °C, ZXK310 alloy exhibited good ES forming ability, and obvious dynamic recrystallization occurred in the forming area. The grain size decreased from 1.42 μm of extrusion area to 0.85 μm of the forming area. Owing to the pinning of second phase and formation of ultrafine grains, the tensile strength, yield strength and elongation of alloy reached 362 MPa, 289 MPa and 21.7%, respectively. 展开更多
关键词 Mg−Zn−Ca−Zr alloy extrusion−shearing process die design dynamic recrystallization mechanical properties
下载PDF
Hybrid finite-discrete element modelling of asperity degradation and gouge grinding during direct shearing of rough rock joints 被引量:10
10
作者 H. Y. Liu Haoyu Han +1 位作者 H. M. An J. J. Shi 《International Journal of Coal Science & Technology》 EI 2016年第3期295-310,共16页
A hybrid finite-discrete element method was implemented to study the fracture process of rough rock joints under direct shearing. The hybrid method reproduced the joint shear resistance evolution process from asperity... A hybrid finite-discrete element method was implemented to study the fracture process of rough rock joints under direct shearing. The hybrid method reproduced the joint shear resistance evolution process from asperity sliding to degradation and from gouge formation to grinding. It is found that, in the direct shear test of rough rock joints under constant normal displacement loading conditions, higher shearing rate promotes the asperity degradation but constraints the volume dilation, which then results in higher peak shear resistance, more gouge formation and grinding, and smoother new joint surfaces. Moreover, it is found that the joint roughness affects the joint shear resistance evolution through influencing the joint fracture micro mechanism. The asperity degradation and gouge grinding are the main failure micro-mechanism in shearing rougher rock joints with deeper asperities while the asperity sliding is the main failure micro-mechanism in shearing smoother rock joints with shallower asperities. It is concluded that the hybrid finite-discrete element method is a valuable numerical tool better than traditional finite element method and discrete element method for modelling the joint sliding, asperity degradation, gouge formation, and gouge grinding occurred in the direct shear tests of rough rock joints. 展开更多
关键词 Hybrid FEM-DEM Rock joint Asperity sliding Asperity shearing Fragment grinding
下载PDF
Electro-elastic Fields of Piezoelectric Materials with An Elliptic Hole under Uniform Internal Shearing Forces 被引量:6
11
作者 DU Yanliang LIU Shuhong +1 位作者 DUAN Shijie LI Yanqiang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第3期454-461,共8页
The existing investigations on piezoelectric materials containing an elliptic hole mainly focus on remote uniform tensile loads. In order to have a better understanding of the fracture behavior of piezoelectric materi... The existing investigations on piezoelectric materials containing an elliptic hole mainly focus on remote uniform tensile loads. In order to have a better understanding of the fracture behavior of piezoelectric materials under different loading conditions, theoretical and numerical solutions are presented for an elliptic hole in transversely isotropic piezoelectric materials subjected to uniform internal shearing forces based on the complex potential approach. By solving ten variable linear equations, the analytical solutions inside and outside the hole satisfying the permeable electric boundary conditions are obtained. Taking PZT-4 ceramic into consideration, numerical results of electro-elastic fields along the edge of the hole and axes, and the electric displacements in the hole are presented. Comparison with stresses in transverse isotropic elastic materials shows that the hoop stress at the ends of major axis in two kinds of material equals zero for the various ratios of major to minor axis lengths; If the ratio is greater than 1, the hoop stress in piezoelectric materials is smaller than that in elastic materials, and if the ratio is smaller than 1, the hoop stress in piezoelectric materials is greater than that in elastic materials; When it is a circle hole, the shearing stress in two materials along axes is the same. The distribution of electric displacement components shows that the vertical electric displacement in the hole and along axes in the material is always zero though under the permeable electric boundary condition; The horizontal and vertical electric displacement components along the edge of the hole are symmetrical and antisymmetrical about horizontal axis, respectively. The stress and electric displacement distribution tends to zero at distances far from the elliptical hole, which conforms to the conclusion usually made on the basis of Saint-Venant’s principle. Unlike the existing work, uniform shearing forces acting on the edge of the hole, and the distribution of electro-elastic fields inside and outside the elliptic hole are considered. 展开更多
关键词 piezoelectric material elliptic hole permeable boundary condition electro-elastic fields internal shearing forces
下载PDF
Three-dimensional analysis of the modified sloping cooling/shearing process 被引量:7
12
作者 Renguo Guan Luolian Zhang +2 位作者 Chao Wang Jinglin Wen Jianzhong Cui 《Journal of University of Science and Technology Beijing》 CSCD 2007年第2期146-150,共5页
A self-designed setup of modified sloping cooling/shearing process was made to prepare the semisolid Al-3wt%Mg alloy. A three-dimensional simulation model was established for the analysis of preparing the semisolid Al... A self-designed setup of modified sloping cooling/shearing process was made to prepare the semisolid Al-3wt%Mg alloy. A three-dimensional simulation model was established for the analysis of preparing the semisolid Al-3wt%Mg alloy. Through simulation and experiment, it is shown that the sloping angle of the plate greatly affects temperature and velocity distributions, and the temperature and velocity of the alloy at the exit of the sloping plate increase with the increase of the sloping angle. The alloy temperature decreases linearly from the pouring mouth to the exit. The alloy temperature at the exit increases obviously with the increase of pouring temperature. To prepare the semisolid Al-3wt%Mg alloy with good quality, the sloping angle θ=45° is reasonable, and the pouring temperature is suggested to be designed above 650-660℃ but under 700℃. 展开更多
关键词 semisolid alloy modified sloping cooling/shearing process simulation TEMPERATURE VELOCITY
下载PDF
Grain refinement of AZ91D alloy by intensive melt shearing and its persistence after remelting and isothermal holding 被引量:4
13
作者 Zuo Yubo Fan Zhongyun Cui Jianzhong 《China Foundry》 SCIE CAS 2013年第1期39-42,共4页
Intensive melt shearing has a significant grain refining effect on some light alloys.However,the persistence of the grain refining effect during isothermal holding and remelting is still unclear,although it is very im... Intensive melt shearing has a significant grain refining effect on some light alloys.However,the persistence of the grain refining effect during isothermal holding and remelting is still unclear,although it is very important for the practical application.In this study,intensive melt shearing was achieved in a twin-screw mechanism to investigate its grain refining effect on AZ91D magnesium alloy.The refinement mechanism was discussed and the persistence of grain refinement after remelting and isothermal holding was also studied.A Zeiss imaging system with polarized light was used for quantitative measurement of grain size.The results show that the intensive melt shearing has a significant grain refining effect on AZ91D magnesium alloy.With the application of intensive melt shearing,the grain size of AZ91D magnesium alloy can be reduced from 530 μm(for a typical as-cast microstructure) to 170 μm,which is about 70% size reduction.The grain refinement achieved by the intensive melt shearing can be partially kept after isothermal holding and remelting.It is believed that the refinement effect was mainly due to the finer and well dispersed oxide particles formed by high intensive shearing.The smaller size of oxide particles and their slow motion velocity in the sheared melt could make important contributions to the remained grain refinement. 展开更多
关键词 magnesium alloy microstructure intensive melt shearing REMELTING isothermal holding
下载PDF
Effect of casting speed on floating grains and macrosegregation ofdirect-chill cast 2024 alloy with intensive melt shearing 被引量:4
14
作者 Xu-dong LIU Qing-feng ZHU +6 位作者 Zhi-meng LI Cheng ZHU Rui WANG Tao JIA Zhi-hao ZHAO Jian-zhong CUI Yu-bo ZUO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第3期565-575,共11页
The ingot was prepared by direct-chill(DC)casting technology with different casting speeds under the influence of intensive melt shearing to explore the effect of casting speed and intensive melt shearing on the float... The ingot was prepared by direct-chill(DC)casting technology with different casting speeds under the influence of intensive melt shearing to explore the effect of casting speed and intensive melt shearing on the floating grains and negative centerline segregation.The results indicate that the application of intensive melt shearing in DC casting process can distribute the floating grains uniformly,reduce the area fraction of the floating grains,alleviate the negative centerline segregation,and improve the uniformity of temperature field in the sump.It is also suggested that under the influence of intensive melt shearing,the casting speed plays a crucial role in the amounts and distribution of floating grains.At low casting speed,the intensive melt shearing can significantly reduce the area fraction of the floating grains and distribute them uniformly throughout the ingot.However,this effect gradually disappears with the increase of casting speed. 展开更多
关键词 direct-chill casting intensive melt shearing MACROSEGREGATION floating grains casting speed 2024 aluminum alloy
下载PDF
Formation of adiabatic shearing band for high-strength Ti-5553 alloy:A dramatic thermoplastic microstructural evolution 被引量:3
15
作者 Dong-yang Qin Ying-gang Miao Yu-long Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第11期2045-2051,共7页
By using split Hopkinson pressure bar, optical microscopy and electronic microscopy, we investigate the influence of initial microstructures on the adiabatic shear behavior of high-strength Ti-5Al-5V-5Mo-3Cr(Ti-5553) ... By using split Hopkinson pressure bar, optical microscopy and electronic microscopy, we investigate the influence of initial microstructures on the adiabatic shear behavior of high-strength Ti-5Al-5V-5Mo-3Cr(Ti-5553) alloy with lamellar microstructure and bimodal microstructure. Lamellar alloy tends to form adiabatic shearing band(ASB) at low compression strain, while bimodal alloy is considerably ASBresistant. Comparing with the initial microstructure of Ti-5553 alloy, we find that the microstructure of the ASB changes dramatically. Adiabatic shear of lamellar Ti-5553 alloy not only results in the formation of recrystallized β nano-grains within the ASB, but also leads to the chemical redistribution of the alloying elements such as Al, V, Cr and Mo. As a result, the alloying elements distribute evenly in the ASB.In contrast, the dramatic adiabatic shear of bimodal alloy might give rise to the complete lamination of the globular primary a grain and the equiaxial prior β grain, which is accompanied by the dynamic recrystallization of a lamellae and β lamellae. As a result, ASB of bimodal alloy is composed of a/β nanomultilayers. Chemical redistribution does not occur in ASB of bimodal alloy. Bimodal Ti-5553 alloy should be a promising candidate for high performance armors with high mass efficiency due to the processes high dynamic flow stress and excellent ASB-resistance. 展开更多
关键词 Titanium alloys ARMOR High loading rate Adiabatic shearing band Dynamic phase transformation
下载PDF
Influence of AZ31 sheet treated by cryogenic on punch shearing 被引量:3
16
作者 HU Zhi-qing GUO Chao-fan LI Hong-mei 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第6期1582-1591,共10页
Punch shearing is used to form the part in the material process.Cryogenic treatment(CT)has active effect on local mechanical properties of steel,but it is still uncertain of the influence of CT on the properties of th... Punch shearing is used to form the part in the material process.Cryogenic treatment(CT)has active effect on local mechanical properties of steel,but it is still uncertain of the influence of CT on the properties of the magnesium alloy during punch shearing.In this work,the influence of AZ31 sheet treated by cryogenic on punch shearing was studied.Microstructures were observed with a ZEISS optical microscope,and mechanical properties,as well as shear properties were tested by tensile testing and punch shearing.The results show that the number of secondary phase increases and a large number of twins appear in the grains after CT.Meanwhile,the ultimate tensile strength(UTS),the ductility,and hardness of AZ31 are improved,while the yield strength(YS)decreases gradually during CT.During punch shearing,the shearing strength decreases,the rollover radius changes insignificantly,and the height of the burr on the edge of the cross section decreases.At the same time,a larger proportion of smooth zone on the cross section has been achieved. 展开更多
关键词 AZ31 magnesium alloy cryogenic treatment mechanical properties punch shearing
下载PDF
Numerical simulation of two-dimensional granular shearing flows and the friction force of a moving slab on the granular media 被引量:3
17
作者 蔡庆东 陈十一 盛晓伟 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第2期326-331,共6页
This paper studies some interesting features of two-dimensional granular shearing flow by using molecular dynamic approach for a specific granular system. The obtained results show that the probability distribution fu... This paper studies some interesting features of two-dimensional granular shearing flow by using molecular dynamic approach for a specific granular system. The obtained results show that the probability distribution function of velocities of particles is Gaussian at the central part, but diverts from Gaussian distribution nearby the wall. The macroscopic stress along the vertical direction has large fluctuation around a constant value, the non-zero average velocity occurs mainly near the moving wall, which forms a shearing zone.. In the shearing movement, the volume of the granular material behaves in a random manner. The equivalent fl'iction coefficient between moving slab and granular material correlates with the moving speed at low velocity, and approaches constant as the velocity is large enough. 展开更多
关键词 granular shearing flow FRICTION molecular dynamics modeling
下载PDF
Breaking and Characteristics of Ganoderma Lucidum Spores by High Speed Entrifugai Shearing Pulverizer 被引量:2
18
作者 马晶晶 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第4期617-621,共5页
The spores of Ganoderma lucidum were ground and broken to ultrafine particles by high speed centrifugal shearing(HSCS) pulverizer. The characteristics of Ganoderma lucidum spores were analyzed by scanning electron m... The spores of Ganoderma lucidum were ground and broken to ultrafine particles by high speed centrifugal shearing(HSCS) pulverizer. The characteristics of Ganoderma lucidum spores were analyzed by scanning electron microscope (SEM), Fourier transform infrared spectrophotometry (FTIR). Ultraviolet-visible pectrophotometer was used to determine the extraction ratio of aqueous solubility polysaccharide between the raw and broken spores. The immunological function on the mice before and after the breaking of spores wan investigated. The experimental results show that after being ground, the sporoderm-broken ratio reachs 100%, the original active ingredients of ganoderma lucidum spores do not change, and the extraction ratio of aqueous solubility polysaccharide is greatly increased by 40.08%. The broken spores show much higher immunological activity comparing with original spores of Ganoderma lucidum. 展开更多
关键词 Ganoderma lucidum spores high speed centrifugal shearing sporoderm-broken ratio extraction ratio immunological activity
下载PDF
Influence of moisture content on shearing strength of unsaturated undisturbed quaternary system middle pleistocene 被引量:7
19
作者 钟祖良 刘元雪 +2 位作者 刘新荣 李小勇 王睢 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2776-2782,共7页
The unsaturated undisturbed quaternary system middle pleistocene loess,a typical unsaturated soil,often occurs in the implementation of western development strategy.To obtain the shearing strength characteristics of t... The unsaturated undisturbed quaternary system middle pleistocene loess,a typical unsaturated soil,often occurs in the implementation of western development strategy.To obtain the shearing strength characteristics of this unsaturated undisturbed loess,based on the analysis of mineral composition,the triaxial shear test of undisturbed quaternary system middle pleistocene loess under different moisture contents is conducted with the specialized triaxial instrument for unsaturated soil.The test results show that the mainly mineral composition of undisturbed quaternary system middle pleistocene loess is quartz and albite.Under the same confining pressure,the matric suction increases with the decrease of moisture content.The smaller the moisture content,the larger the matric suction;the higher the moisture content,the lower the matric suction.Under the same moisture content,the matric suction increases with the confining pressure and reaches a maximum when the confining pressure is 100 kPa,and then decreases with the increase of confining pressure.This phenomenon is closely related to the grain contact tightness of soil mass under high confining pressure.According to the triaxial test of loess,the sample of loess experiences 4 stages from loading to failure:1) compaction stage;2) compression stage;3) microcrack developing stage;4) shear failure stage.The test sample is of brittle failure(weak softening)under low moisture content and confining pressure.With the decrease of matric suction and the increase of consolidated confining pressure,the stress-strain curve changes from softening type to ideal plastic type.In the shearing strength parameters of unsaturated undisturbed loess,the influence of moisture content on internal friction angle is small,but that on cohesive force is obvious.Therefore,the shearing strength of unsaturated undisturbed loess is higher than that of saturated undisturbed loess and varies with the moisture content. 展开更多
关键词 unsaturated undisturbed loess matric suction test shearing strength
下载PDF
Comparative Study on Shearing Edge Quality Influence of the Change of Tool Geometry in Fine-Blanking for Non-homogeneous Materials 被引量:1
20
作者 Y C Leung L C Chan T C Lee 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期117-118,共2页
Excellent quality of shearing edge implies that a s mo oth cutting edge without tearing will be observed on the whole edge surface. Thi s is one of the most significant features of the Fine-blanking process. To achi e... Excellent quality of shearing edge implies that a s mo oth cutting edge without tearing will be observed on the whole edge surface. Thi s is one of the most significant features of the Fine-blanking process. To achi eve such a superb blanking edge quality in fine-blanking, there actually involv es quite a large number of factors, such as blanking speed, processing material, product shape, lubrication and tool geometry, to be considered simultaneously d uring the operation. Nevertheless, the thorough investigations on different effe cts of those critical factors for different kinds of popular and applicable mate rial are rare and limited. Thus, the objective of this paper is mainly focused o n the study of the quality influence of tool geometry change in fine-blanking f or non-homogeneous materials. However, the most obvious change of the tool geo metry during the operation will be the essential variation of the nose radius of the punch. This is because the nose radius usually seriously deteriorates with the increasing service period in mass production which eventually causes the ent irely lose of the specific features of the fine-blanking process. Therefore, a tailor-made experimental study was carried out to investigate the relationship between the punch nose radius and the shearing edge quality, such as blanked edg e finish, burr height and die-roll height, during fine-blanking for different types of material. Five punches with each specified nose radius (Rp), 0.00 mm, 0.25 mm, 0.50 mm, 0.75 mm and 1.00 mm, and four kinds of blanking material ( Mil d steel SS400, Stainless steel AISI316L, Copper alloy UNSC16200 and Aluminium al loy AA6063 ) were employed throughout the study. Subsequently, features of the s heared edge surfaces and data of each experiment were observed and captured for further analysis in this research. Consequently, findings show that an increase of punch nose radius would produce a higher percentage of fracture of blanked ed ge and increase the amount of burr height. In overall comparison, it is found th at mild steel and copper alloy do provide better surface edge finish with higher percentage of sheared area and less burr height than that of stainless steel an d aluminium alloy. 展开更多
关键词 fine-blanking tool geometry shearing edge qual ity
下载PDF
上一页 1 2 144 下一页 到第
使用帮助 返回顶部