Efficient probes/contrast agents are highly desirable for good-performance photoacoustic (PA) imaging, where the PA signal amplitude of a probe is dominated by both its optical absorption and the conversion efficien...Efficient probes/contrast agents are highly desirable for good-performance photoacoustic (PA) imaging, where the PA signal amplitude of a probe is dominated by both its optical absorption and the conversion efficiency from absorbed laser energy to acoustic waves. Nanoprobes have a unique micro- mechanism of PA energy conversion due to the size effect, which, however, has not been quantitatively demonstrated and effectively utilized. Here, we present quantitative simulations of the PA signal production process for plasmon- mediated nanoprobes based on the finite element analysis method, which were performed to provide a deep understanding of their PA conversion micromechanism. Moreover, we propose a method to amplify the PA conversion efficiency of nanoprobes through the use of thermally confined shell coating, which allows the active control of the conversion efficiency beyond that of conventional probes. Additionally, we deduced the dependence of the conversion efficiency on the shell properties. Gold-nanoparticles/polydimethylsiloxane nanocomposites were experimentally synthesized in the form of gel and microfilms to verify our idea and the simulation results agreed with the experiments. Our work paves the way for the rational design and optimization of nanoprobes with improved conversion efficiency.展开更多
The Donnell theory of shell is applied to describe shell motion and layer motion is described by means of three-dimensional Navier equations.Using deformation harmonious condi- tions of the interface,the effects of st...The Donnell theory of shell is applied to describe shell motion and layer motion is described by means of three-dimensional Navier equations.Using deformation harmonious condi- tions of the interface,the effects of stiffeners and layer are treated as reverse forces and moments acting on the cylindrical shell.In studying the acoustic field produced by vibration of the sub- merged ring-stiffened cylindrical coated shell,the structure dynamic equation,Helmholtz equation in the fluid field and the continuous conditions of the fluid-structure interface compose the cou- pling vibration equation of the sound-fluid-structure.The extract of sound pressure comes down to the extract of coupling vibration equation.By use of the solution of the equation,the influ- ences of hydrostatic pressure,physical characters and geometric parameters of the layer on sound radiation are discussed.展开更多
In this paper, for improving the photocatalytic efficiency of titania(TiO2) nanoparticles(NPs), Ag Au alloy-TiO2 core-shell NPs are fabricated via a sol-gel(SG) process in the presence of Ag Au alloy NPs with block co...In this paper, for improving the photocatalytic efficiency of titania(TiO2) nanoparticles(NPs), Ag Au alloy-TiO2 core-shell NPs are fabricated via a sol-gel(SG) process in the presence of Ag Au alloy NPs with block copolymer shells as templates. The photocatalytic activities of the Ag Au-TiO2 NPs on the photodecomposition of methylene blue(MB) are investigated. The Ag Au-TiO2 composite NPs coated with 5.0% titania related to block copolymers show higher photocatalytic activity than the other samples in which the titania contents are larger than 5.0%. The results indicate that the increase of the thickness of the TiO2 shell leads to the decrease of the photocatalytic activity.展开更多
Precursors of binary alloy (Fe112C0112, Fel/2Ni1/2, Ni1/2Co1/2, hereinafter referred to as FeCo, FeNi, NiCo) coated cenospheres were prepared by heterogeneous precipitation under optimized conditions. Magnetic binar...Precursors of binary alloy (Fe112C0112, Fel/2Ni1/2, Ni1/2Co1/2, hereinafter referred to as FeCo, FeNi, NiCo) coated cenospheres were prepared by heterogeneous precipitation under optimized conditions. Magnetic binary alloy coated cenosphere composites with core-shell structure were subsequently obtained by thermal reduction of the as-prepared precursors at 700℃ for 2 h under H2/N2 atmosphere. The results showed that the alloy coatings were uniform and the binary alloy coated cenosphere composites basically retained the spherical morphology, suggesting that the thickness of the alloy coating could be adjusted to fabricate core-shell composites with multilayer structures. The composites exhibited higher coercivity than the pure alloy powders, and could therefore be used for high-performance functional materials and devices.展开更多
Bismuth oxychloride(Bi OCl) with morphology of squared-like nanosheet is synthesized by solvothermal method using ethylene glycol aqueous reaction solution. The product is characterized by X-ray powder diffraction(XRD...Bismuth oxychloride(Bi OCl) with morphology of squared-like nanosheet is synthesized by solvothermal method using ethylene glycol aqueous reaction solution. The product is characterized by X-ray powder diffraction(XRD), scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), transmission electron microscopy(TEM) and ultraviolet-visible(UV-Vis) diffuse reflection spectroscopy, respectively. The layered structure, the hydrogen bonding between hydroxyl groups and their selective adsorption cause the formation of the squared-like nanosheets. The photocatalytic degradation activity of the as-prepared Bi OCl is tested by the degradation of methyl orange under UV light irradiation. Repeating the degradation process four times under the same condition, the results show that the squared-like Bi OCl nanosheets present high photocatalytic activity and stability.展开更多
基金This research is supported by the National Natural Science Foundation of China (Nos. 91539127, 61331001, 11604105 and 61361160414), The National High-tech R&D Program of China (No. 2015AA020901), The Sdence and Technology Planning Project of Guangdong Province, China (Nos. 2015B020233016, 2014B020215003 and 2014A020215031).
文摘Efficient probes/contrast agents are highly desirable for good-performance photoacoustic (PA) imaging, where the PA signal amplitude of a probe is dominated by both its optical absorption and the conversion efficiency from absorbed laser energy to acoustic waves. Nanoprobes have a unique micro- mechanism of PA energy conversion due to the size effect, which, however, has not been quantitatively demonstrated and effectively utilized. Here, we present quantitative simulations of the PA signal production process for plasmon- mediated nanoprobes based on the finite element analysis method, which were performed to provide a deep understanding of their PA conversion micromechanism. Moreover, we propose a method to amplify the PA conversion efficiency of nanoprobes through the use of thermally confined shell coating, which allows the active control of the conversion efficiency beyond that of conventional probes. Additionally, we deduced the dependence of the conversion efficiency on the shell properties. Gold-nanoparticles/polydimethylsiloxane nanocomposites were experimentally synthesized in the form of gel and microfilms to verify our idea and the simulation results agreed with the experiments. Our work paves the way for the rational design and optimization of nanoprobes with improved conversion efficiency.
基金Project supported by the National Defence Science and Technology Emphases Laboratory Foundation of China(No.99JS23.2.1.JWO506).
文摘The Donnell theory of shell is applied to describe shell motion and layer motion is described by means of three-dimensional Navier equations.Using deformation harmonious condi- tions of the interface,the effects of stiffeners and layer are treated as reverse forces and moments acting on the cylindrical shell.In studying the acoustic field produced by vibration of the sub- merged ring-stiffened cylindrical coated shell,the structure dynamic equation,Helmholtz equation in the fluid field and the continuous conditions of the fluid-structure interface compose the cou- pling vibration equation of the sound-fluid-structure.The extract of sound pressure comes down to the extract of coupling vibration equation.By use of the solution of the equation,the influ- ences of hydrostatic pressure,physical characters and geometric parameters of the layer on sound radiation are discussed.
基金supported by the National Natural Science Foundation of China(Nos.51173069 and 51473068)
文摘In this paper, for improving the photocatalytic efficiency of titania(TiO2) nanoparticles(NPs), Ag Au alloy-TiO2 core-shell NPs are fabricated via a sol-gel(SG) process in the presence of Ag Au alloy NPs with block copolymer shells as templates. The photocatalytic activities of the Ag Au-TiO2 NPs on the photodecomposition of methylene blue(MB) are investigated. The Ag Au-TiO2 composite NPs coated with 5.0% titania related to block copolymers show higher photocatalytic activity than the other samples in which the titania contents are larger than 5.0%. The results indicate that the increase of the thickness of the TiO2 shell leads to the decrease of the photocatalytic activity.
基金supported by Postdoctoral Science Foundation of China (20080431069)
文摘Precursors of binary alloy (Fe112C0112, Fel/2Ni1/2, Ni1/2Co1/2, hereinafter referred to as FeCo, FeNi, NiCo) coated cenospheres were prepared by heterogeneous precipitation under optimized conditions. Magnetic binary alloy coated cenosphere composites with core-shell structure were subsequently obtained by thermal reduction of the as-prepared precursors at 700℃ for 2 h under H2/N2 atmosphere. The results showed that the alloy coatings were uniform and the binary alloy coated cenosphere composites basically retained the spherical morphology, suggesting that the thickness of the alloy coating could be adjusted to fabricate core-shell composites with multilayer structures. The composites exhibited higher coercivity than the pure alloy powders, and could therefore be used for high-performance functional materials and devices.
基金supported by the National Natural Science Foundation of China(Nos.51272063 and 51172059)the Natural Science Foundation of Anhui Province(No.1408085QE85)
文摘Bismuth oxychloride(Bi OCl) with morphology of squared-like nanosheet is synthesized by solvothermal method using ethylene glycol aqueous reaction solution. The product is characterized by X-ray powder diffraction(XRD), scanning electron microscopy(SEM), energy dispersive spectroscopy(EDS), transmission electron microscopy(TEM) and ultraviolet-visible(UV-Vis) diffuse reflection spectroscopy, respectively. The layered structure, the hydrogen bonding between hydroxyl groups and their selective adsorption cause the formation of the squared-like nanosheets. The photocatalytic degradation activity of the as-prepared Bi OCl is tested by the degradation of methyl orange under UV light irradiation. Repeating the degradation process four times under the same condition, the results show that the squared-like Bi OCl nanosheets present high photocatalytic activity and stability.