期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Comparisons of passive microwave remote sensing sea ice concentrations with ship-based visual observations during the CHINARE Arctic summer cruises of 2010–2018 被引量:6
1
作者 Yuanren Xiu Zhijun Li +3 位作者 Ruibo Lei Qingkai Wang Peng Lu Matti Leppäranta 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2020年第9期38-49,共12页
In order to apply satellite data to guiding navigation in the Arctic more effectively,the sea ice concentrations(SIC)derived from passive microwave(PM)products were compared with ship-based visual observations(OBS)col... In order to apply satellite data to guiding navigation in the Arctic more effectively,the sea ice concentrations(SIC)derived from passive microwave(PM)products were compared with ship-based visual observations(OBS)collected during the Chinese National Arctic Research Expeditions(CHINARE).A total of 3667 observations were collected in the Arctic summers of 2010,2012,2014,2016,and 2018.PM SIC were derived from the NASA-Team(NT),Bootstrap(BT)and Climate Data Record(CDR)algorithms based on the SSMIS sensor,as well as the BT,enhanced NASA-Team(NT2)and ARTIST Sea Ice(ASI)algorithms based on AMSR-E/AMSR-2 sensors.The daily arithmetic average of PM SIC values and the daily weighted average of OBS SIC values were used for the comparisons.The correlation coefficients(CC),biases and root mean square deviations(RMSD)between PM SIC and OBS SIC were compared in terms of the overall trend,and under mild/normal/severe ice conditions.Using the OBS data,the influences of floe size and ice thickness on the SIC retrieval of different PM products were evaluated by calculating the daily weighted average of floe size code and ice thickness.Our results show that CC values range from 0.89(AMSR-E/AMSR-2 NT2)to 0.95(SSMIS NT),biases range from−3.96%(SSMIS NT)to 12.05%(AMSR-E/AMSR-2 NT2),and RMSD values range from 10.81%(SSMIS NT)to 20.15%(AMSR-E/AMSR-2 NT2).Floe size has a significant influence on the SIC retrievals of the PM products,and most of the PM products tend to underestimate SIC under smaller floe size conditions and overestimate SIC under larger floe size conditions.Ice thickness thicker than 30 cm does not have a significant influence on the SIC retrieval of PM products.Overall,the best(worst)agreement occurs between OBS SIC and SSMIS NT(AMSR-E/AMSR-2 NT2)SIC in the Arctic summer. 展开更多
关键词 sea ice concentration passive microwave remote sensing ship-based visual observations Arctic navigation SUMMER
下载PDF
The signature analysis of summer Antarctic sea-ice distribution by ship-based sea-ice observation
2
作者 ShuLin Tang 1,Ning Li 1,AnNan Jiang 2,XingRu Zhou 1 1.China Railway 21st Bureau Group CO.,LTD,Lanzhou 730000,China.2.Institute of Highway and Bridge,Dalian Maritime University,Dalian 116026,China. 《Research in Cold and Arid Regions》 2009年第4期300-306,共7页
Based on the Chinese 19th National Antarctic Research Expedition,we carried out ship-based Antarctic sea-ice observa-tion on icebreaker Xue Long using Antarctic sea-ice process and climate (ASPeCt) criteria during aus... Based on the Chinese 19th National Antarctic Research Expedition,we carried out ship-based Antarctic sea-ice observa-tion on icebreaker Xue Long using Antarctic sea-ice process and climate (ASPeCt) criteria during austral summer.Sea-ice distribution data were obtained along nearly 6,500 km of the ship’s track.The measurement parameters included sea-ice thickness,sea-ice concentration,snow thickness,and floe size.Analysis showed the presence of the large spatial varia-tions of the observed sea-ice characteristics.Sea-ice concentration varied between 0 and 80 percent and reached its peak value in Weddell Sea because of the specific dynamical process affecting in summer sea-ice melting.There are large areas of open water along the study section.Sea ice and the upper snow thickness of the section varied between 10 cm and 210 cm and 2 cm and 80 cm,respectively,and each reaches its peak values near Amery ice shelf.The floe size varied from less than 10 cm and the maximum of more than 2,000 km along the section. 展开更多
关键词 Antarctic sea ice ship-based observation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部