Few-layer molybdenum disulfide(MoS2) is emerging as a promising quasi-two-dimensional material for photonics and optoelectronics, further extending the library of suitable layered nanomaterials with exceptional opti...Few-layer molybdenum disulfide(MoS2) is emerging as a promising quasi-two-dimensional material for photonics and optoelectronics, further extending the library of suitable layered nanomaterials with exceptional optical properties for use in saturable absorber devices that enable short-pulse generation in laser systems. In this work, we catalog and review the nonlinear optical properties of few-layer MoS2, summarize recent progress in processing and integration into saturable absorber devices, and comment on the current status and future perspectives of MoS2-based pulsed lasers.展开更多
We have developed a new radiography setup with a short-pulse laser-driven x-ray source. Using a radiography axis perpendicular to both long- and short-pulse lasers allowed optimizing the incident angle of the short-pu...We have developed a new radiography setup with a short-pulse laser-driven x-ray source. Using a radiography axis perpendicular to both long- and short-pulse lasers allowed optimizing the incident angle of the short-pulse laser on the x-ray source target. The setup has been tested with various x-ray source target materials and different laser wavelengths.Signal to noise ratios are presented as well as achieved spatial resolutions. The high quality of our technique is illustrated on a plasma flow radiograph obtained during a laboratory astrophysics experiment on POLARs.展开更多
We propose and demonstrate the use of random phase plates(RPPs)for high-energy sub-picosecond lasers.Contrarily to previous work related to nanosecond lasers,an RPP poses technical challenges with ultrashort-pulse las...We propose and demonstrate the use of random phase plates(RPPs)for high-energy sub-picosecond lasers.Contrarily to previous work related to nanosecond lasers,an RPP poses technical challenges with ultrashort-pulse lasers.Here,we implement the RPP near the beginning of the amplifier and image-relay it throughout the laser amplifier.With this,we obtain a uniform intensity distribution in the focus over an area 1600 times the diffraction limit.This method shows no significant drawbacks for the laser and it has been implemented at the PHELIX laser facility where it is now available for users.展开更多
The measurements of temperature and moisture content of a wet porous material were accomplished on the micro-seconds scale. The temperature wave was observed when the wet porous material was heated by short-pulsed las...The measurements of temperature and moisture content of a wet porous material were accomplished on the micro-seconds scale. The temperature wave was observed when the wet porous material was heated by short-pulsed laser with high power. It firstly revealed that the moisture content of wet porous material rapidly rises twice in one laser irradiation. The influences of laser parameters, the thickness and initial moisture content of the wet porous material on its temperature and moisture content were investigated.展开更多
The 2024 aluminum alloy is used extensively in the aircraft and aerospace industries because of its excellent mechanical properties.However,the weldability of 2024 aluminum alloy is generally low because it contains a...The 2024 aluminum alloy is used extensively in the aircraft and aerospace industries because of its excellent mechanical properties.However,the weldability of 2024 aluminum alloy is generally low because it contains a high number of solutes,such as copper(Cu),magnesium(Mg),and manganese(Mn),causing solidification cracking.If high speed welding of 2024 aluminum alloy without the use of filler is achieved,the applicability of 2024 aluminum alloys will expand.Grain refining is one of the methods used to prevent solidification cracking in weld metal,although it has never been achieved for high-speed laser welding of 2024 aluminum alloy without filler.Here,we propose a short-pulsed,laser-induced,grain-refining method during continuous wave laser welding without filler.Bead-on-plate welding was performed on a 2024-T3 aluminum alloy at a welding speed of 1 m min−1 with a single mode fiber laser at a wavelength of 1070 nm and power of 1 kW.Areas in and around the molten pool were irradiated with nanosecond laser pulses at a wavelength of 1064 nm,pulse width of 10 ns,and pulse energy of 430 mJ.The grain-refinement effect was confirmed when laser pulses were irradiated on the molten pool.The grain-refinement region was formed in a semicircular shape along the solid–liquid interface.Results of the vertical section indicate that the grain-refinement region reached a depth of 1 mm along the solid–liquid interface.The Vickers hardness test results demonstrated that the hardness increased as a result of grain refinement and that the progress of solidification cracking was suppressed in the grain refinement region.展开更多
The quasistatic axial magnetic fields in plasmas produced by ultrashort laser pulses were measured by measuring the Faraday rotation angle of the backscattered emission. The spatial distribution of the axial magnetic ...The quasistatic axial magnetic fields in plasmas produced by ultrashort laser pulses were measured by measuring the Faraday rotation angle of the backscattered emission. The spatial distribution of the axial magnetic field was obtained with a peak value as high as 170 Tesla. Theory suggests that the axial magnetic field is generated by dynamo effect in laser-plasma interaction.展开更多
The resonant third-harmonic generation of a tion was investigated. Because of self-focusing self-focusing laser in plasma with a density transi- of the fundamental laser pulse, a transverse intensity gradient was crea...The resonant third-harmonic generation of a tion was investigated. Because of self-focusing self-focusing laser in plasma with a density transi- of the fundamental laser pulse, a transverse intensity gradient was created, which generated a plasma wave at the fundamental wave frequency. Phase matching was satisfied by using a Wiggler magnetic field, which provided additional angular too- mentum to the third-harmonic photon to make the process resonant. An enhancement was observed in the resonant third-harmonic generation of an intense short-pulse laser in plasma embedded with a magnetic Wiggler with a density transition. A plasma density ramp played an important role in the self-focusing, enhancing the third-harmonic generation in plasma. We also examined the ef- fect of the Wiggler magnetic field on the pulse slippage of the third-harmonic pulse in plasma. The pulse slippage was due to the group-velocity mismatch between the fundamental and third-harmonic pulses.展开更多
High-energy and high-intensity lasers are essential for pushing the boundaries of science.Their development has allowed leaps forward in basic research areas,including laser±plasma interaction,high-energy density...High-energy and high-intensity lasers are essential for pushing the boundaries of science.Their development has allowed leaps forward in basic research areas,including laser±plasma interaction,high-energy density science,metrology,biology and medical technology.The Helmholtz International Beamline for Extreme Fields user consortium contributes and operates two high-peak-power optical lasers using the high energy density instrument at the European X-ray free electron laser(EuXFEL)facility.These lasers will be used to generate transient extreme states of density and temperature to be probed by the X-ray beam.This paper introduces the ReLaX laser,a short-pulse high-intensity Ti:Sa laser system,and discusses its characteristics as available for user experiments.It will also present the first experimental commissioning results validating its successful integration into the EuXFEL infrastructure and viability as a relativisticintensity laser driver.展开更多
Background:The treatment of port-wine stains(PWS)becomes extremely difficult due to age-related malformation of the vasculature.In this study,we used alternative methods to treat hypertrophic PWS.Methods:A short-pulse...Background:The treatment of port-wine stains(PWS)becomes extremely difficult due to age-related malformation of the vasculature.In this study,we used alternative methods to treat hypertrophic PWS.Methods:A short-pulsed CO_(2) laser was applied to ablate the hypertrophic vasculature of PWS.The ablation was ended when the wound was on the same plane as normal skin.The long-pulsed neodymium-doped yttriumaluminum-garnet(lpNd:YAG)laser was primarily applied to coagulate and subsequently liquefy the hypertrophic vasculature of the PWS.The therapeutic energy used in treating different lesions should be carefully regulated to significantly affect the treatment outcomes.Results:The two cases presented herein demonstrated substantial improvement in hypertrophic vasculature that was largely removed.The skin was resurfaced,although some scar formation and mild hypopigmentation occurred.Conclusion:We suggest the use of short-pulsed CO_(2) and lpNd:YAG lasers for treating certain cases of hypertrophic PWS.When using a short-pulsed CO_(2) laser,it is wise to judge the treatment endpoint and take appropriate precautions to avoid intraoperative bleeding.When using an lpNd:YAG laser,the therapeutic energy should be controlled according to the thickness of the lesion to reduce scar formation.展开更多
Ultrashort pulses at 920 nm are a highly desired light source in two-photon microscopy for the efficient excitation of green fluorescence protein.Although Nd3þ-doped fibers have been utilized for 920-nm ultrashor...Ultrashort pulses at 920 nm are a highly desired light source in two-photon microscopy for the efficient excitation of green fluorescence protein.Although Nd3þ-doped fibers have been utilized for 920-nm ultrashort pulse generation,the competitive amplified spontaneous emission(ASE)at 1.06μm remains a significant challenge in improving their performance.Here,we demonstrate a coordination engineering strategy to tailor the properties of Nd3þ-doped silica glass and fiber.By elevating the covalency between Nd3þand bonded anions via sulfur incorporation,the fiber gain performance at 920 nm is enhanced,and 1.06-μm ASE intensity is suppressed simultaneously.As a result,the continuous-wave laser efficiencies and signal-to-noise ratio at 920 nm by this fiber are significantly enhanced.Importantly,the stable picosecond pulses at 920 nm are produced by a passive mode-locking technique with a fundamental repetition rate up to 207 MHz,which,to the best of our knowledge,is the highest reported repetition rate realized by Nd3þ-doped silica fibers.The presented strategy enriches the capacity of Nd3þ-doped silica fiber in generating 920-nm ultrashort pulses for application in biophotonics,and it also provides a promising way to tune the properties of rare-earth ion-doped silica glasses and fibers toward ultrafast lasers.展开更多
Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using exi...Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using existing alloys for laser powder bed fusion(L-PBF)AM have persisted.These challenges arise because commercial alloys are primarily designed for conventional casting or forging processes,overlooking the fast cooling rates,steep temperature gradients and multiple thermal cycles of L-PBF.To address this,there is an urgent need to develop novel alloys specifically tailored for L-PBF technologies.This review provides a comprehensive summary of the strategies employed in alloy design for L-PBF.It aims to guide future research on designing novel alloys dedicated to L-PBF instead of adapting existing alloys.The review begins by discussing the features of the L-PBF processes,focusing on rapid solidification and intrinsic heat treatment.Next,the printability of the four main existing alloys(Fe-,Ni-,Al-and Ti-based alloys)is critically assessed,with a comparison of their conventional weldability.It was found that the weldability criteria are not always applicable in estimating printability.Furthermore,the review presents recent advances in alloy development and associated strategies,categorizing them into crack mitigation-oriented,microstructure manipulation-oriented and machine learning-assisted approaches.Lastly,an outlook and suggestions are given to highlight the issues that need to be addressed in future work.展开更多
The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ...The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.展开更多
Slicing and post-treatment of SiC crystals have been a significant challenge in the integrated circuit and microelectronics industry.To compete with wire-sawing and mechanical grinding technology,a promis-ing approach...Slicing and post-treatment of SiC crystals have been a significant challenge in the integrated circuit and microelectronics industry.To compete with wire-sawing and mechanical grinding technology,a promis-ing approach combining laser slicing and laser polishing technologies has been innovatively applied to increase utilization and decrease damage defects for single crystal 4H-SiC.Significant material utiliza-tion has been achieved in the hybrid laser processes,where material loss is reduced by 75%compared to that of conventional machining technologies.Without any special process control or additional treat-ment,an internally modified layer formed by laser slicing can easily separate the 4H-SiC crystals using an external force of about∼3.6 MPa.The modified layer has been characterized using a micro-Raman method to determine residual stress.The sliced surface exhibits a combination of smooth and coarse appearances around the fluvial morphology,with an average surface roughness of over S_(a) 0.89μm.An amorphous phase surrounds the SiC substrate,with two dimensions of lattice spacing,d=0.261 nm and d=0.265 nm,confirmed by high-resolution transmission electron microscopy(HRTEM).The creation of laser-induced periodic surface nanostructures in the laser-polished surface results in a flatter surface with an average roughness of less than S_(a) 0.22μm.Due to the extreme cooling rates and multiple thermal cy-cles,dissociation of Si-C bonding,and phase separation are identified on the laser-polished surface,which is much better than that of the machining surface.We anticipate that this approach will be applicable to other high-value crystals and will have promising viability in the aerospace and semiconductor industries.展开更多
The fluid model is proposed to investigate the gas breakdown driven by a short-pulse(such as a Gaussian pulse) highpower microwave at high pressures.However,the fluid model requires specification of the electron ene...The fluid model is proposed to investigate the gas breakdown driven by a short-pulse(such as a Gaussian pulse) highpower microwave at high pressures.However,the fluid model requires specification of the electron energy distribution function(EEDF);the common assumption of a Maxwellian EEDF can result in the inaccurate breakdown prediction when the electrons are not in equilibrium.We confirm that the influence of the incident pulse shape on the EEDF is tiny at high pressures by using the particle-in-cell Monte Carlo collision(PIC-MCC) model.As a result,the EEDF for a rectangular microwave pulse directly derived from the Boltzmann equation solver Bolsig+ is introduced into the fluid model for predicting the breakdown threshold of the non-rectangular pulse over a wide range of pressures,and the obtained results are very well matched with those of the PIC-MCC simulations.The time evolution of a non-rectangular pulse breakdown in gas,obtained by the fluid model with the EEDF from Bolsig+,is presented and analyzed at different pressures.In addition,the effect of the incident pulse shape on the gas breakdown is discussed.展开更多
By analyzing the current distribution of Bow-Tie antenna used in short-pulse ground penetrating radar, the methods of antenna load and driving are presented in this paper to reduce strength of reflective wave both at ...By analyzing the current distribution of Bow-Tie antenna used in short-pulse ground penetrating radar, the methods of antenna load and driving are presented in this paper to reduce strength of reflective wave both at antenna end and excitation point. The numerical simulation results show the strength of reflective wave is smaller than ?55 dB comparing with the driving wave when the methods are adopted. Key words short-pulse GPR - resistive loading - finite difference time domain method CLC number TN 820 Foundation item: Supported by the National Natural Science Foundation of China (49984001)Biography: LI Tai-quan (1961-), male, Ph. D candidate, research direction: antenna model and design展开更多
Advancements in sensor technology have significantly enhanced atmospheric monitoring.Notably,metal oxide and carbon(MO_(x)/C)hybrids have gained attention for their exceptional sensitivity and room-temperature sensing...Advancements in sensor technology have significantly enhanced atmospheric monitoring.Notably,metal oxide and carbon(MO_(x)/C)hybrids have gained attention for their exceptional sensitivity and room-temperature sensing performance.However,previous methods of synthesizing MO_(x)/C composites suffer from problems,including inhomogeneity,aggregation,and challenges in micropatterning.Herein,we introduce a refined method that employs a metal–organic framework(MOF)as a precursor combined with direct laser writing.The inherent structure of MOFs ensures a uniform distribution of metal ions and organic linkers,yielding homogeneous MO_(x)/C structures.The laser processing facilitates precise micropatterning(<2μm,comparable to typical photolithography)of the MO_(x)/C crystals.The optimized MOF-derived MO_(x)/C sensor rapidly detected ethanol gas even at room temperature(105 and 18 s for response and recovery,respectively),with a broad range of sensing performance from 170 to 3,400 ppm and a high response value of up to 3,500%.Additionally,this sensor exhibited enhanced stability and thermal resilience compared to previous MOF-based counterparts.This research opens up promising avenues for practical applications in MOF-derived sensing devices.展开更多
This study investigated whether the curative effect of short-pulse gastric electrical stimulation (GES) on the vasopressin-induced dyspeptic symptoms was mediated by central opioid peptide-producing neurons. Five fe...This study investigated whether the curative effect of short-pulse gastric electrical stimulation (GES) on the vasopressin-induced dyspeptic symptoms was mediated by central opioid peptide-producing neurons. Five female beagle dogs implanted with 1 pair of electrodes in gastric serosa were used in a two-experiment study. In experiment one, the brain was scanned by positron emission tomography in 3 dogs with and without short-pulse GES, and the radioactivity in nuclei of solitary tract (NST) and hypothalamus was detected. Experiment two was composed of 4 sessions. In session one, the dogs were injected with vasopressin in the absence of short-pulse GES. With session two, the short-pulse GES was simultaneously given via the electrodes with the injection of vasopressin. In sessions three and four, naloxone and naloxone methiodide was administered respectively in the presence of short-pulse GES. Motion sickness-like symptoms were scored and compared among the different sessions. The results showed that the short-pulse GES significantly increased the radioactivity in NST and hypothalamic nuclei (P〈0.05, vs control). The short-pulse GES could ameliorate the vasopressin-induced motion sickness-like symptoms in dogs. Naloxone, but not naloxone methiodide could attenuate the curative effects of short-pulse GES. It is concluded that NST and hypothalamic nuclei may participate in the mediation of the curative effects of short-pulse GES on dyspepsia-like symptoms. Central opioid peptide-containing neurons presumably mediate the therapeutic effect on dyspeptic symptoms of short-pulse GES.展开更多
The use of broadband laser technology is a novel approach for inhibiting processes related to laser plasma interactions(LPIs).In this study,several preliminary experiments into broadband-laser-driven LPIs are carried ...The use of broadband laser technology is a novel approach for inhibiting processes related to laser plasma interactions(LPIs).In this study,several preliminary experiments into broadband-laser-driven LPIs are carried out using a newly established hundreds-of-joules broadband second-harmonic-generation laser facility.Through direct comparison with LPI results for a traditional narrowband laser,the actual LPI-suppression effect of the broadband laser is shown.The broadband laser had a clear suppressive effect on both back-stimulated Raman scattering and back-stimulated Brillouin scattering at laser intensities below 1×10^(15) W cm^(−2).An abnormal hot-electron phenomenon is also investigated,using targets of different thicknesses.展开更多
AIM:To compare the short-term effectiveness of intelligent navigated laser photocoagulation and 577-nm subthreshold micropulse laser(SML)treatment in patients with chronic central serous chorioretinopathy(cCSC).METHOD...AIM:To compare the short-term effectiveness of intelligent navigated laser photocoagulation and 577-nm subthreshold micropulse laser(SML)treatment in patients with chronic central serous chorioretinopathy(cCSC).METHODS:This observational retrospective cohort study included 60 consecutive patients who underwent intelligent navigated laser photocoagulation(n=30)or 577-nm SML treatment(n=30)for cCSC between Jan.2021 and Oct.2022.During 3mo follow-up,all patients underwent assessments of best correct visual acuity(BCVA)and optical coherence tomography(OCT).RESULTS:The operation of laser treatment was successful in all cases.At 1mo,BCVA improved significantly more in the intelligent navigated laser photocoagulation group compared to the SML group(P<0.05).The change was not significantly different at 3mo(P>0.05).Central macular thickness(CMT)in the intelligent navigated laser photocoagulation group was lower than in the SML group at 1mo(P<0.05).The subfoveal choroidal thickness(SFCT)in two groups were all significantly improved at 3mo(all P<0.05).The change between two groups was not significantly different at 1mo or at 3mo(P>0.05).CONCLUSION:Intelligent navigated laser photocoagulation is superior to SML for treating cCSC,leading to better improvements in vision and CMT for short term.展开更多
Laser powder bed fusion(L-PBF) has attracted significant attention in both the industry and academic fields since its inception, providing unprecedented advantages to fabricate complex-shaped metallic components. The ...Laser powder bed fusion(L-PBF) has attracted significant attention in both the industry and academic fields since its inception, providing unprecedented advantages to fabricate complex-shaped metallic components. The printing quality and performance of L-PBF alloys are infuenced by numerous variables consisting of feedstock powders, manufacturing process,and post-treatment. As the starting materials, metallic powders play a critical role in infuencing the fabrication cost, printing consistency, and properties. Given their deterministic roles, the present review aims to retrospect the recent progress on metallic powders for L-PBF including characterization, preparation, and reuse. The powder characterization mainly serves for printing consistency while powder preparation and reuse are introduced to reduce the fabrication costs.Various powder characterization and preparation methods are presented in the beginning by analyzing the measurement principles, advantages, and limitations. Subsequently, the effect of powder reuse on the powder characteristics and mechanical performance of L-PBF parts is analyzed, focusing on steels, nickel-based superalloys, titanium and titanium alloys, and aluminum alloys. The evolution trends of powders and L-PBF parts vary depending on specific alloy systems, which makes the proposal of a unified reuse protocol infeasible. Finally,perspectives are presented to cater to the increased applications of L-PBF technologies for future investigations. The present state-of-the-art work can pave the way for the broad industrial applications of L-PBF by enhancing printing consistency and reducing the total costs from the perspective of powders.展开更多
基金support from the Royal Academy of Engineering (RAEng)
文摘Few-layer molybdenum disulfide(MoS2) is emerging as a promising quasi-two-dimensional material for photonics and optoelectronics, further extending the library of suitable layered nanomaterials with exceptional optical properties for use in saturable absorber devices that enable short-pulse generation in laser systems. In this work, we catalog and review the nonlinear optical properties of few-layer MoS2, summarize recent progress in processing and integration into saturable absorber devices, and comment on the current status and future perspectives of MoS2-based pulsed lasers.
基金the support of RFBR grant 14-29-06099Competitiveness Programme of NRNU MEPhI
文摘We have developed a new radiography setup with a short-pulse laser-driven x-ray source. Using a radiography axis perpendicular to both long- and short-pulse lasers allowed optimizing the incident angle of the short-pulse laser on the x-ray source target. The setup has been tested with various x-ray source target materials and different laser wavelengths.Signal to noise ratios are presented as well as achieved spatial resolutions. The high quality of our technique is illustrated on a plasma flow radiograph obtained during a laboratory astrophysics experiment on POLARs.
基金European Union’s Horizon 2020 research and innovation program under grant agreement number 633053。
文摘We propose and demonstrate the use of random phase plates(RPPs)for high-energy sub-picosecond lasers.Contrarily to previous work related to nanosecond lasers,an RPP poses technical challenges with ultrashort-pulse lasers.Here,we implement the RPP near the beginning of the amplifier and image-relay it throughout the laser amplifier.With this,we obtain a uniform intensity distribution in the focus over an area 1600 times the diffraction limit.This method shows no significant drawbacks for the laser and it has been implemented at the PHELIX laser facility where it is now available for users.
基金This work was financially supported the National Natural Science Foundation of China (No.50376063) and the Chinese NationalKey Foundation Research Subject (No.G2000026306)
文摘The measurements of temperature and moisture content of a wet porous material were accomplished on the micro-seconds scale. The temperature wave was observed when the wet porous material was heated by short-pulsed laser with high power. It firstly revealed that the moisture content of wet porous material rapidly rises twice in one laser irradiation. The influences of laser parameters, the thickness and initial moisture content of the wet porous material on its temperature and moisture content were investigated.
基金The authors would like to thank Mr Tetsuji Kuwabara of NAC Image Technology Inc.for support of high-speed photographingThis work was supported in part by MEXT Quantum Leap Flagship Program(MEXT Q-LEAP)Grant No.JPMXS0118068348,JSPS KAKENHI Grant Nos.JP16H04247,JP16K14417,and 19K22061This work was funded in part by ImPACT Program of Council for Science,Technology and Innovation(Cabinet Office,Government of Japan).
文摘The 2024 aluminum alloy is used extensively in the aircraft and aerospace industries because of its excellent mechanical properties.However,the weldability of 2024 aluminum alloy is generally low because it contains a high number of solutes,such as copper(Cu),magnesium(Mg),and manganese(Mn),causing solidification cracking.If high speed welding of 2024 aluminum alloy without the use of filler is achieved,the applicability of 2024 aluminum alloys will expand.Grain refining is one of the methods used to prevent solidification cracking in weld metal,although it has never been achieved for high-speed laser welding of 2024 aluminum alloy without filler.Here,we propose a short-pulsed,laser-induced,grain-refining method during continuous wave laser welding without filler.Bead-on-plate welding was performed on a 2024-T3 aluminum alloy at a welding speed of 1 m min−1 with a single mode fiber laser at a wavelength of 1070 nm and power of 1 kW.Areas in and around the molten pool were irradiated with nanosecond laser pulses at a wavelength of 1064 nm,pulse width of 10 ns,and pulse energy of 430 mJ.The grain-refinement effect was confirmed when laser pulses were irradiated on the molten pool.The grain-refinement region was formed in a semicircular shape along the solid–liquid interface.Results of the vertical section indicate that the grain-refinement region reached a depth of 1 mm along the solid–liquid interface.The Vickers hardness test results demonstrated that the hardness increased as a result of grain refinement and that the progress of solidification cracking was suppressed in the grain refinement region.
文摘The quasistatic axial magnetic fields in plasmas produced by ultrashort laser pulses were measured by measuring the Faraday rotation angle of the backscattered emission. The spatial distribution of the axial magnetic field was obtained with a peak value as high as 170 Tesla. Theory suggests that the axial magnetic field is generated by dynamo effect in laser-plasma interaction.
文摘The resonant third-harmonic generation of a tion was investigated. Because of self-focusing self-focusing laser in plasma with a density transi- of the fundamental laser pulse, a transverse intensity gradient was created, which generated a plasma wave at the fundamental wave frequency. Phase matching was satisfied by using a Wiggler magnetic field, which provided additional angular too- mentum to the third-harmonic photon to make the process resonant. An enhancement was observed in the resonant third-harmonic generation of an intense short-pulse laser in plasma embedded with a magnetic Wiggler with a density transition. A plasma density ramp played an important role in the self-focusing, enhancing the third-harmonic generation in plasma. We also examined the ef- fect of the Wiggler magnetic field on the pulse slippage of the third-harmonic pulse in plasma. The pulse slippage was due to the group-velocity mismatch between the fundamental and third-harmonic pulses.
文摘High-energy and high-intensity lasers are essential for pushing the boundaries of science.Their development has allowed leaps forward in basic research areas,including laser±plasma interaction,high-energy density science,metrology,biology and medical technology.The Helmholtz International Beamline for Extreme Fields user consortium contributes and operates two high-peak-power optical lasers using the high energy density instrument at the European X-ray free electron laser(EuXFEL)facility.These lasers will be used to generate transient extreme states of density and temperature to be probed by the X-ray beam.This paper introduces the ReLaX laser,a short-pulse high-intensity Ti:Sa laser system,and discusses its characteristics as available for user experiments.It will also present the first experimental commissioning results validating its successful integration into the EuXFEL infrastructure and viability as a relativisticintensity laser driver.
文摘Background:The treatment of port-wine stains(PWS)becomes extremely difficult due to age-related malformation of the vasculature.In this study,we used alternative methods to treat hypertrophic PWS.Methods:A short-pulsed CO_(2) laser was applied to ablate the hypertrophic vasculature of PWS.The ablation was ended when the wound was on the same plane as normal skin.The long-pulsed neodymium-doped yttriumaluminum-garnet(lpNd:YAG)laser was primarily applied to coagulate and subsequently liquefy the hypertrophic vasculature of the PWS.The therapeutic energy used in treating different lesions should be carefully regulated to significantly affect the treatment outcomes.Results:The two cases presented herein demonstrated substantial improvement in hypertrophic vasculature that was largely removed.The skin was resurfaced,although some scar formation and mild hypopigmentation occurred.Conclusion:We suggest the use of short-pulsed CO_(2) and lpNd:YAG lasers for treating certain cases of hypertrophic PWS.When using a short-pulsed CO_(2) laser,it is wise to judge the treatment endpoint and take appropriate precautions to avoid intraoperative bleeding.When using an lpNd:YAG laser,the therapeutic energy should be controlled according to the thickness of the lesion to reduce scar formation.
基金supported by the International Partnership Program of Chinese Academy of Sciences(Grant No.20XH1217)the National Natural Science Foundation of China(Grant Nos.61975216 and 62205356)the STCSM(Grant No.SKLSFO2022-02)。
文摘Ultrashort pulses at 920 nm are a highly desired light source in two-photon microscopy for the efficient excitation of green fluorescence protein.Although Nd3þ-doped fibers have been utilized for 920-nm ultrashort pulse generation,the competitive amplified spontaneous emission(ASE)at 1.06μm remains a significant challenge in improving their performance.Here,we demonstrate a coordination engineering strategy to tailor the properties of Nd3þ-doped silica glass and fiber.By elevating the covalency between Nd3þand bonded anions via sulfur incorporation,the fiber gain performance at 920 nm is enhanced,and 1.06-μm ASE intensity is suppressed simultaneously.As a result,the continuous-wave laser efficiencies and signal-to-noise ratio at 920 nm by this fiber are significantly enhanced.Importantly,the stable picosecond pulses at 920 nm are produced by a passive mode-locking technique with a fundamental repetition rate up to 207 MHz,which,to the best of our knowledge,is the highest reported repetition rate realized by Nd3þ-doped silica fibers.The presented strategy enriches the capacity of Nd3þ-doped silica fiber in generating 920-nm ultrashort pulses for application in biophotonics,and it also provides a promising way to tune the properties of rare-earth ion-doped silica glasses and fibers toward ultrafast lasers.
基金financially supported by the National Key Research and Development Program of China(2022YFB4600302)National Natural Science Foundation of China(52090041)+1 种基金National Natural Science Foundation of China(52104368)National Major Science and Technology Projects of China(J2019-VII-0010-0150)。
文摘Metal additive manufacturing(AM)has been extensively studied in recent decades.Despite the significant progress achieved in manufacturing complex shapes and structures,challenges such as severe cracking when using existing alloys for laser powder bed fusion(L-PBF)AM have persisted.These challenges arise because commercial alloys are primarily designed for conventional casting or forging processes,overlooking the fast cooling rates,steep temperature gradients and multiple thermal cycles of L-PBF.To address this,there is an urgent need to develop novel alloys specifically tailored for L-PBF technologies.This review provides a comprehensive summary of the strategies employed in alloy design for L-PBF.It aims to guide future research on designing novel alloys dedicated to L-PBF instead of adapting existing alloys.The review begins by discussing the features of the L-PBF processes,focusing on rapid solidification and intrinsic heat treatment.Next,the printability of the four main existing alloys(Fe-,Ni-,Al-and Ti-based alloys)is critically assessed,with a comparison of their conventional weldability.It was found that the weldability criteria are not always applicable in estimating printability.Furthermore,the review presents recent advances in alloy development and associated strategies,categorizing them into crack mitigation-oriented,microstructure manipulation-oriented and machine learning-assisted approaches.Lastly,an outlook and suggestions are given to highlight the issues that need to be addressed in future work.
基金supported by the 2021 Open Project Fund of Science and Technology on Electromechanical Dynamic Control Laboratory,grant number 212-C-J-F-QT-2022-0020China Postdoctoral Science Foundation,grant number 2021M701713+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province,grant number KYCX23_0511the Jiangsu Funding Program for Excellent Postdoctoral Talent,grant number 20220ZB245。
文摘The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.
基金supported by National Natural Science Foundation of China(No.62304249)a project funded by China Postdoctoral Science Foundation(No.2023M733704).
文摘Slicing and post-treatment of SiC crystals have been a significant challenge in the integrated circuit and microelectronics industry.To compete with wire-sawing and mechanical grinding technology,a promis-ing approach combining laser slicing and laser polishing technologies has been innovatively applied to increase utilization and decrease damage defects for single crystal 4H-SiC.Significant material utiliza-tion has been achieved in the hybrid laser processes,where material loss is reduced by 75%compared to that of conventional machining technologies.Without any special process control or additional treat-ment,an internally modified layer formed by laser slicing can easily separate the 4H-SiC crystals using an external force of about∼3.6 MPa.The modified layer has been characterized using a micro-Raman method to determine residual stress.The sliced surface exhibits a combination of smooth and coarse appearances around the fluvial morphology,with an average surface roughness of over S_(a) 0.89μm.An amorphous phase surrounds the SiC substrate,with two dimensions of lattice spacing,d=0.261 nm and d=0.265 nm,confirmed by high-resolution transmission electron microscopy(HRTEM).The creation of laser-induced periodic surface nanostructures in the laser-polished surface results in a flatter surface with an average roughness of less than S_(a) 0.22μm.Due to the extreme cooling rates and multiple thermal cy-cles,dissociation of Si-C bonding,and phase separation are identified on the laser-polished surface,which is much better than that of the machining surface.We anticipate that this approach will be applicable to other high-value crystals and will have promising viability in the aerospace and semiconductor industries.
基金supported by the National Basic Research Program of China(Grant No.2013CB328904)the NSAF of China(Grant No.U1330109)2012 Doctoral Innovation Funds of Southwest Jiaotong University
文摘The fluid model is proposed to investigate the gas breakdown driven by a short-pulse(such as a Gaussian pulse) highpower microwave at high pressures.However,the fluid model requires specification of the electron energy distribution function(EEDF);the common assumption of a Maxwellian EEDF can result in the inaccurate breakdown prediction when the electrons are not in equilibrium.We confirm that the influence of the incident pulse shape on the EEDF is tiny at high pressures by using the particle-in-cell Monte Carlo collision(PIC-MCC) model.As a result,the EEDF for a rectangular microwave pulse directly derived from the Boltzmann equation solver Bolsig+ is introduced into the fluid model for predicting the breakdown threshold of the non-rectangular pulse over a wide range of pressures,and the obtained results are very well matched with those of the PIC-MCC simulations.The time evolution of a non-rectangular pulse breakdown in gas,obtained by the fluid model with the EEDF from Bolsig+,is presented and analyzed at different pressures.In addition,the effect of the incident pulse shape on the gas breakdown is discussed.
文摘By analyzing the current distribution of Bow-Tie antenna used in short-pulse ground penetrating radar, the methods of antenna load and driving are presented in this paper to reduce strength of reflective wave both at antenna end and excitation point. The numerical simulation results show the strength of reflective wave is smaller than ?55 dB comparing with the driving wave when the methods are adopted. Key words short-pulse GPR - resistive loading - finite difference time domain method CLC number TN 820 Foundation item: Supported by the National Natural Science Foundation of China (49984001)Biography: LI Tai-quan (1961-), male, Ph. D candidate, research direction: antenna model and design
基金supported by the National Research Foundation of Korea(NRF)grants funded by the Ministry of Science and ICT(MSIT)(RS-2023-00251283,and 2022M3D1A2083618)by the Ministry of Education(2020R1A6A1A03040516).
文摘Advancements in sensor technology have significantly enhanced atmospheric monitoring.Notably,metal oxide and carbon(MO_(x)/C)hybrids have gained attention for their exceptional sensitivity and room-temperature sensing performance.However,previous methods of synthesizing MO_(x)/C composites suffer from problems,including inhomogeneity,aggregation,and challenges in micropatterning.Herein,we introduce a refined method that employs a metal–organic framework(MOF)as a precursor combined with direct laser writing.The inherent structure of MOFs ensures a uniform distribution of metal ions and organic linkers,yielding homogeneous MO_(x)/C structures.The laser processing facilitates precise micropatterning(<2μm,comparable to typical photolithography)of the MO_(x)/C crystals.The optimized MOF-derived MO_(x)/C sensor rapidly detected ethanol gas even at room temperature(105 and 18 s for response and recovery,respectively),with a broad range of sensing performance from 170 to 3,400 ppm and a high response value of up to 3,500%.Additionally,this sensor exhibited enhanced stability and thermal resilience compared to previous MOF-based counterparts.This research opens up promising avenues for practical applications in MOF-derived sensing devices.
基金supported by a grant from the National Natural Sciences Foundation of China (No 30500233)
文摘This study investigated whether the curative effect of short-pulse gastric electrical stimulation (GES) on the vasopressin-induced dyspeptic symptoms was mediated by central opioid peptide-producing neurons. Five female beagle dogs implanted with 1 pair of electrodes in gastric serosa were used in a two-experiment study. In experiment one, the brain was scanned by positron emission tomography in 3 dogs with and without short-pulse GES, and the radioactivity in nuclei of solitary tract (NST) and hypothalamus was detected. Experiment two was composed of 4 sessions. In session one, the dogs were injected with vasopressin in the absence of short-pulse GES. With session two, the short-pulse GES was simultaneously given via the electrodes with the injection of vasopressin. In sessions three and four, naloxone and naloxone methiodide was administered respectively in the presence of short-pulse GES. Motion sickness-like symptoms were scored and compared among the different sessions. The results showed that the short-pulse GES significantly increased the radioactivity in NST and hypothalamic nuclei (P〈0.05, vs control). The short-pulse GES could ameliorate the vasopressin-induced motion sickness-like symptoms in dogs. Naloxone, but not naloxone methiodide could attenuate the curative effects of short-pulse GES. It is concluded that NST and hypothalamic nuclei may participate in the mediation of the curative effects of short-pulse GES on dyspepsia-like symptoms. Central opioid peptide-containing neurons presumably mediate the therapeutic effect on dyspeptic symptoms of short-pulse GES.
基金supported by the National Science Foundation of China under Award Nos.12074353 and 12075227.
文摘The use of broadband laser technology is a novel approach for inhibiting processes related to laser plasma interactions(LPIs).In this study,several preliminary experiments into broadband-laser-driven LPIs are carried out using a newly established hundreds-of-joules broadband second-harmonic-generation laser facility.Through direct comparison with LPI results for a traditional narrowband laser,the actual LPI-suppression effect of the broadband laser is shown.The broadband laser had a clear suppressive effect on both back-stimulated Raman scattering and back-stimulated Brillouin scattering at laser intensities below 1×10^(15) W cm^(−2).An abnormal hot-electron phenomenon is also investigated,using targets of different thicknesses.
文摘AIM:To compare the short-term effectiveness of intelligent navigated laser photocoagulation and 577-nm subthreshold micropulse laser(SML)treatment in patients with chronic central serous chorioretinopathy(cCSC).METHODS:This observational retrospective cohort study included 60 consecutive patients who underwent intelligent navigated laser photocoagulation(n=30)or 577-nm SML treatment(n=30)for cCSC between Jan.2021 and Oct.2022.During 3mo follow-up,all patients underwent assessments of best correct visual acuity(BCVA)and optical coherence tomography(OCT).RESULTS:The operation of laser treatment was successful in all cases.At 1mo,BCVA improved significantly more in the intelligent navigated laser photocoagulation group compared to the SML group(P<0.05).The change was not significantly different at 3mo(P>0.05).Central macular thickness(CMT)in the intelligent navigated laser photocoagulation group was lower than in the SML group at 1mo(P<0.05).The subfoveal choroidal thickness(SFCT)in two groups were all significantly improved at 3mo(all P<0.05).The change between two groups was not significantly different at 1mo or at 3mo(P>0.05).CONCLUSION:Intelligent navigated laser photocoagulation is superior to SML for treating cCSC,leading to better improvements in vision and CMT for short term.
基金supported by the Fundamental Research Funds for the Central Universities (Grant No. AE89991/403)National Natural Science Foundation of China (Grant No. 52005262)+1 种基金Natural Science Foundation of Jiangsu Province (BK20202007)National Key Research and Development Program of China (2022YFB4600800)。
文摘Laser powder bed fusion(L-PBF) has attracted significant attention in both the industry and academic fields since its inception, providing unprecedented advantages to fabricate complex-shaped metallic components. The printing quality and performance of L-PBF alloys are infuenced by numerous variables consisting of feedstock powders, manufacturing process,and post-treatment. As the starting materials, metallic powders play a critical role in infuencing the fabrication cost, printing consistency, and properties. Given their deterministic roles, the present review aims to retrospect the recent progress on metallic powders for L-PBF including characterization, preparation, and reuse. The powder characterization mainly serves for printing consistency while powder preparation and reuse are introduced to reduce the fabrication costs.Various powder characterization and preparation methods are presented in the beginning by analyzing the measurement principles, advantages, and limitations. Subsequently, the effect of powder reuse on the powder characteristics and mechanical performance of L-PBF parts is analyzed, focusing on steels, nickel-based superalloys, titanium and titanium alloys, and aluminum alloys. The evolution trends of powders and L-PBF parts vary depending on specific alloy systems, which makes the proposal of a unified reuse protocol infeasible. Finally,perspectives are presented to cater to the increased applications of L-PBF technologies for future investigations. The present state-of-the-art work can pave the way for the broad industrial applications of L-PBF by enhancing printing consistency and reducing the total costs from the perspective of powders.