This paper addresses the micro wind-hydrogen coupled system,aiming to improve the power tracking capability of micro wind farms,the regulation capability of hydrogen storage systems,and to mitigate the volatility of w...This paper addresses the micro wind-hydrogen coupled system,aiming to improve the power tracking capability of micro wind farms,the regulation capability of hydrogen storage systems,and to mitigate the volatility of wind power generation.A predictive control strategy for the micro wind-hydrogen coupled system is proposed based on the ultra-short-term wind power prediction,the hydrogen storage state division interval,and the daily scheduled output of wind power generation.The control strategy maximizes the power tracking capability,the regulation capability of the hydrogen storage system,and the fluctuation of the joint output of the wind-hydrogen coupled system as the objective functions,and adaptively optimizes the control coefficients of the hydrogen storage interval and the output parameters of the system by the combined sigmoid function and particle swarm algorithm(sigmoid-PSO).Compared with the real-time control strategy,the proposed predictive control strategy can significantly improve the output tracking capability of the wind-hydrogen coupling system,minimize the gap between the actual output and the predicted output,significantly enhance the regulation capability of the hydrogen storage system,and mitigate the power output fluctuation of the wind-hydrogen integrated system,which has a broad practical application prospect.展开更多
In Dynamic Economic Load Dispatch (DELD), optimization and evolution computation become a major part with the strategy for solving the issues. From various algorithms Differential Evolution (DE) and Particle Swarm Opt...In Dynamic Economic Load Dispatch (DELD), optimization and evolution computation become a major part with the strategy for solving the issues. From various algorithms Differential Evolution (DE) and Particle Swarm Optimization (PSO) algorithms are used to encode in a vector form and in sharing information and both approaches are based on the master-apprentice mechanism for the Dual Evolution Strategy. In order to overcome the challenges like the clustering of PSO, optimization problems and maximum and minimum searching, a new approach is developed with the improvement of searching and efficient process. In this paper, an Enhanced Hybrid Differential Evolution and Particle Swarm Optimization (EHDE-PSO) is proposed with Dynamic Sigmoid Weight using parallel procedures. A hybrid form of the proposed approach combines the optimizing algorithm of Enhanced PSO with the Differential Evolution (DE) for the improvement of computation using parallel process. The implementation and the parallel process are analyzed and discussed to gather relevant data to show the performance enhancement which is better than the existing algorithm.展开更多
基金the Key Research&Development Program of Xinjiang(Grant Number 2022B01003).
文摘This paper addresses the micro wind-hydrogen coupled system,aiming to improve the power tracking capability of micro wind farms,the regulation capability of hydrogen storage systems,and to mitigate the volatility of wind power generation.A predictive control strategy for the micro wind-hydrogen coupled system is proposed based on the ultra-short-term wind power prediction,the hydrogen storage state division interval,and the daily scheduled output of wind power generation.The control strategy maximizes the power tracking capability,the regulation capability of the hydrogen storage system,and the fluctuation of the joint output of the wind-hydrogen coupled system as the objective functions,and adaptively optimizes the control coefficients of the hydrogen storage interval and the output parameters of the system by the combined sigmoid function and particle swarm algorithm(sigmoid-PSO).Compared with the real-time control strategy,the proposed predictive control strategy can significantly improve the output tracking capability of the wind-hydrogen coupling system,minimize the gap between the actual output and the predicted output,significantly enhance the regulation capability of the hydrogen storage system,and mitigate the power output fluctuation of the wind-hydrogen integrated system,which has a broad practical application prospect.
文摘In Dynamic Economic Load Dispatch (DELD), optimization and evolution computation become a major part with the strategy for solving the issues. From various algorithms Differential Evolution (DE) and Particle Swarm Optimization (PSO) algorithms are used to encode in a vector form and in sharing information and both approaches are based on the master-apprentice mechanism for the Dual Evolution Strategy. In order to overcome the challenges like the clustering of PSO, optimization problems and maximum and minimum searching, a new approach is developed with the improvement of searching and efficient process. In this paper, an Enhanced Hybrid Differential Evolution and Particle Swarm Optimization (EHDE-PSO) is proposed with Dynamic Sigmoid Weight using parallel procedures. A hybrid form of the proposed approach combines the optimizing algorithm of Enhanced PSO with the Differential Evolution (DE) for the improvement of computation using parallel process. The implementation and the parallel process are analyzed and discussed to gather relevant data to show the performance enhancement which is better than the existing algorithm.