期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
High Resolution Radar Real-Time Signal and Information Processing 被引量:7
1
作者 Teng Long Tao Zeng +8 位作者 Cheng Hu Xichao Dong Liang Chen Quanhua Liu Yizhuang Xie Zegang Ding Yang Li Yanhua Wang Yan Wang 《China Communications》 SCIE CSCD 2019年第2期105-133,共29页
Radar is an electronic device that uses radio waves to determine the range, angle, or velocity of objects. Real-time signal and information processor is an important module for real-time positioning, imaging, detectio... Radar is an electronic device that uses radio waves to determine the range, angle, or velocity of objects. Real-time signal and information processor is an important module for real-time positioning, imaging, detection and recognition of targets. With the development of ultra-wideband technology, synthetic aperture technology, signal and information processing technology, the radar coverage, detection accuracy and resolution have been greatly improved, especially in terms of one-dimensional(1D) high-resolution radar detection, tracking, recognition, and two-dimensional(2D) synthetic aperture radar imaging technology. Meanwhile, for the application of radar detection and remote sensing with high resolution and wide swath, the amount of data has been greatly increased. Therefore, the radar is required to have low-latency and real-time processing capability under the constraints of size, weight and power consumption. This paper systematically introduces the new technology of high resolution radar and real-time signal and information processing. The key problems and solutions are discussed, including the detection and tracking of 1D high-resolution radar, the accurate signal modeling and wide-swath imaging for geosynchronous orbit synthetic aperture radar, and real-time signal and information processing architecture and efficient algorithms. Finally, the latest research progress and representative results are presented, and the development trends are prospected. 展开更多
关键词 1D high resolutionradar geosynchronous synthetic aperture radar real-time signal and information processing
下载PDF
WiFi CSI Gesture Recognition Based on Parallel LSTM-FCN Deep Space-Time Neural Network 被引量:2
2
作者 Zhiling Tang Qianqian Liu +2 位作者 Minjie Wu Wenjing Chen Jingwen Huang 《China Communications》 SCIE CSCD 2021年第3期205-215,共11页
In this study,we developed a system based on deep space–time neural networks for gesture recognition.When users change or the number of gesture categories increases,the accuracy of gesture recognition decreases consi... In this study,we developed a system based on deep space–time neural networks for gesture recognition.When users change or the number of gesture categories increases,the accuracy of gesture recognition decreases considerably because most gesture recognition systems cannot accommodate both user differentiation and gesture diversity.To overcome the limitations of existing methods,we designed a onedimensional parallel long short-term memory–fully convolutional network(LSTM–FCN)model to extract gesture features of different dimensions.LSTM can learn complex time dynamic information,whereas FCN can predict gestures efficiently by extracting the deep,abstract features of gestures in the spatial dimension.In the experiment,50 types of gestures of five users were collected and evaluated.The experimental results demonstrate the effectiveness of this system and robustness to various gestures and individual changes.Statistical analysis of the recognition results indicated that an average accuracy of approximately 98.9% was achieved. 展开更多
关键词 signal and information processing parallel LSTM-FCN neural network deep learning gesture recognition wireless channel state information
下载PDF
Image Thresholding Using Two-Dimensional Tsallis Cross Entropy Based on Either Chaotic Particle Swarm Optimization or Decomposition
3
作者 吴一全 张晓杰 吴诗婳 《China Communications》 SCIE CSCD 2011年第7期111-121,共11页
The segmentation effect of Tsallis entropy method is superior to that of Shannon entropy method, and the computation speed of two-dimensional Shannon cross entropy method can be further improved by optimization. The e... The segmentation effect of Tsallis entropy method is superior to that of Shannon entropy method, and the computation speed of two-dimensional Shannon cross entropy method can be further improved by optimization. The existing two-dimensional Tsallis cross entropy method is not the strict two-dimensional extension. Thus two new methods of image thresholding using two-dimensional Tsallis cross entropy based on either Chaotic Particle Swarm Optimization (CPSO) or decomposition are proposed. The former uses CPSO to find the optimal threshold. The recursive algorithm is adopted to avoid the repetitive computation of fitness function in iterative procedure. The computing speed is improved greatly. The latter converts the two-dimensional computation into two one-dimensional spaces, which makes the computational complexity further reduced from O(L2) to O(L). The experimental results show that, compared with the proposed recently two-dimensional Shannon or Tsallis cross entropy method, the two new methods can achieve superior segmentation results and reduce running time greatly. 展开更多
关键词 signal and information processing image segmentation threshold selection two-dimensional Tsallis cross entropy chaotic particle swarm optimization DECOMPOSITION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部