期刊文献+
共找到424篇文章
< 1 2 22 >
每页显示 20 50 100
The Antidepressant Mechanism of JiaWeiWenDan Decoction Regulating p38MAPK-ERK5 Signal Transduction Pathway
1
作者 Yue Gao Qi Zhang +1 位作者 Li Wu Jianye Dai 《Journal of Biosciences and Medicines》 2023年第4期199-207,共9页
Objective: To investigate the anti-depression mechanism of JiaWeiWenDan Decoction in regulating p38MAPK-ERK5 signal transduction pathway. Methods: Depression model rats were randomly divided into Blank Control Group, ... Objective: To investigate the anti-depression mechanism of JiaWeiWenDan Decoction in regulating p38MAPK-ERK5 signal transduction pathway. Methods: Depression model rats were randomly divided into Blank Control Group, Model Control Group, Chinese Medicine Treatment Group, and Western Medicine Treatment Group (hereinafter referred to as Blank Group, Model Group, Chinese Medicine Group, and Western Medicine Group), with 48 rats in each group. The mice were treated with p38MAPK-ERK5 on the 7th day, 14th day and 21st day, respectively, and the mice were treated for 28 days. The key targets and cytokines in p38MAPK-ERK5 signal transduction pathway were detected. Results: Compared with the Blank Group, the expression of p38MAPKmRNA in the hippocampus of the Model Group was increased. The Chinese Medicine Group and Western Medicine Group could reduce the expression of p38MAPK mRNA (P P P P Conclusion: The anti-inflammatory effect of JiaWeiWenDan Decoction may be related to the regulation of p38MAPK-ERK5 signaling pathway. With the advance of the treatment week, the best effect was obtained when the treatment was started on the 7th day of modeling. 展开更多
关键词 JiaWeiWenDan Decoction DEPRESSION p38MAPK-ERK5 signal transduction Pathway
下载PDF
Involvement of cAMP in ABA Signal Transduction in Tobacco Suspension Cells 被引量:2
2
作者 刘璞 孟令军 +2 位作者 张会霞 陈珈 王学臣 《Acta Botanica Sinica》 CSCD 2002年第12期1432-1437,共6页
Abscisic acid (ABA) plays an important role in plant growth and developmental processes. Although some ABA signal molecules, such as cADPR, Ca2+, etc., have been reported, there. was no evidence proving the involvemen... Abscisic acid (ABA) plays an important role in plant growth and developmental processes. Although some ABA signal molecules, such as cADPR, Ca2+, etc., have been reported, there. was no evidence proving the involvement of cAMP in A-B-A, signal transduction. In this present study, the constructed gene ( rd29A-GUS) was transformed into Nicotiana tabacum, and calli was induced from the transgenic plant. The suspension cells obtained from the callus grew well and uniformly. Treatment of the suspension cells with ABA led to an increase in GUS activity, indicating that these transgenic suspension cells are useful for the study of ABA signaling. Addition of nicotinamide (cADPR inhibitor) or U-73122 (phospholiphase C inhibitor) could only partially inhibit the increase of GUS activity elicited by ABA. The inhibitory effect of nicotinamide was enhanced by application of K252a (inhibitor of protein kinase). Treatment of the suspension cells with 8-Br-cAMP, a membrane-permeable analogue of cAMP, could partially replace the effect of ABA. Furthermore, intracellular addition of IBMX (phosphodiesterase inhibitor) mimicked die effect of exogenous cAMP on the deduction of expression of rd29A promoter. These results suggested that cAMP was an important messenger in ABA signal transduction in tobacco suspension cell. 展开更多
关键词 TOBACCO ABA CAMP beta-glucuronidase (GUS) report gene signal transduction
下载PDF
The roles of the proteasome pathway in signal transduction and neurodegenerative diseases 被引量:2
3
作者 陈皎皎 林芳 秦正红 《Neuroscience Bulletin》 SCIE CAS CSCD 2008年第3期183-194,共12页
There are two degradation systems in mammalian cells, autophagy/lysosomal pathway and ubiquitin-proteasome pathway. Proteasome is consist of multiple protein subunits and plays important roles in degradation of short-... There are two degradation systems in mammalian cells, autophagy/lysosomal pathway and ubiquitin-proteasome pathway. Proteasome is consist of multiple protein subunits and plays important roles in degradation of short-lived cellular proteins. Recent studies reveal that proteasomal degradation system is also involved in signal transduction and regulation of various cellular functions. Dysfunction or dysregulation of proteasomal function may thus be an important pathogenic mechanism in certain neurological disorders. This paper reviews the biological functions of proteasome in signal transduction and its potential roles in neurodegenerative diseases. 展开更多
关键词 PROTEASOME signal transduction protein misfolding neurodegenerative disease
下载PDF
Influence of CO_2 pneumoperitoneum on intracellular pH and signal transduction in cancer cells 被引量:18
4
作者 曹利平 丁国平 +1 位作者 阙日升 郑树 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE EI CAS CSCD 2005年第7期650-655,共6页
Object: The authors studied the influence of CO2 pneumoperitoneum on intracellular pH and signal transduction arising from cancer cell multiplication in laparoscopic tumor operation. Method: They set up a simulation o... Object: The authors studied the influence of CO2 pneumoperitoneum on intracellular pH and signal transduction arising from cancer cell multiplication in laparoscopic tumor operation. Method: They set up a simulation of pneumoperitoneum under different CO2 pressure, and then measured the variation of intracellular pH (pHi) at different time and the activity of protein kinase C (PKC) and protein phosphatase 2a (PP2a) at the end of the pneumoperitoneum. After 1 week, the concentration of cancer cells in the culture medium was calculated. Result: When the pressure of CO2 pneumoperitoneum was 0, 10, 20, 30 mmHg respectively, the average pHi was 7.273, 7.075, 6.783, 6.693 at the end of the pneumoperitoneum; PKC activity was 159.4, 168.5,178.0, 181.6 nmol/(g.min) and PP2a was 4158.3, 4066.9, 3984.0, 3878.5 nmol/(g.min) respectively. After 1 week, the cancer cells concentration was 2.15×105, 2.03×105, 2.20×105, 2.18×105 L-1. Conclusion: CO2 pneumoperitoneum could promote acidosis in cancer cells, inducing the activation of protein kinase C and deactivation of protein phosphatase 2a, but it could not accelerate the mitosis rate of the cancer cells. 展开更多
关键词 CANCER CO2 pneumoperitoneum Intracellular pH signal transduction
下载PDF
Molecular signal transduction in vascular cell apoptosis 被引量:20
5
作者 GENG YONG JIAN Center for Cardiovascular Biology and Atherosclerosis Research, Division of Cardiology, Department of Internal Medicine, University of Texas Houston Health Science Center Medical School, 6431 Fannin Street, MSB 6.045, Houston, TX 77030, USA 《Cell Research》 SCIE CAS CSCD 2001年第4期253-264,共12页
Apoptosis is a form of genetically programmed cell death, which plays a key role in regulation of cellularity in a variety of tissue and cell types including the cardiovascular tissues. Under both physiological and pa... Apoptosis is a form of genetically programmed cell death, which plays a key role in regulation of cellularity in a variety of tissue and cell types including the cardiovascular tissues. Under both physiological and pathophysiological conditions, various biophysiological and biochemical factors, including mechanical forces, reactive oxygen and nitrogen species, cytokines, growth factors, oxidized lipoproteins, etc., may influence apoptosis of vascular cells. The Fas/Fas ligand/caspase death-signaling pathway, Bcl-2 protein family/mitochondria, the tumor suppressive gene p53, and the proto-oncogene c-myc may be activated in atherosclerotic lesions, and mediates vascular apoptosis during the development of atherosclerosis. Abnormal expression and dysfunction of these apoptosis-regulating genes may attenuate or accelerate vascular cell apoptosis and affect the integrity and stability of atherosclerotic plaques. Clarification of the molecular mechanism that regulates apoptosis may help design a new strategy for treatment of atherosclerosis and its major complication, the acute vascular syndromes. 展开更多
关键词 Apoptosis signal transduction ARTERIOSCLEROSIS Comparative Study Endothelium Vascular Humans Models Biological Muscle Smooth Vascular Research Support U.S. Gov't P.H.S.
下载PDF
Influence on Cellular Signal Transduction Pathway in Dairy Cow Mammary Gland Epithelial Cells by Galactopoietic Compound Isolated from Vaccariae segetalis 被引量:11
6
作者 WAN Zhong-ying TONG Hui-li LI Qing-zhang GAO Xue-jun 《Agricultural Sciences in China》 CAS CSCD 2011年第4期619-630,共12页
The galactopoietic mechanism of Vaccaria segetalis is still unknown. Understanding dibutyl phthalate (DBP) separated from Vaccaria segetalis on the expression of lactation signal transduction genes of mammary gland ... The galactopoietic mechanism of Vaccaria segetalis is still unknown. Understanding dibutyl phthalate (DBP) separated from Vaccaria segetalis on the expression of lactation signal transduction genes of mammary gland epithelial cells, including prlr, erα, akt1, socs2, pparγ and elf5, will be helpful to reveal the molecular mechanism. Western blot and qRT- PCR were used to study the change of prlr, erα, akt, socs2, pparγ, and elf5 expression at mRNA and protein level. Co- localization expression of prolactin receptor (PRLR) and estrogen receptor α (ERα) was observed by immunofluorescence; the expression changes of miRNAs (21, 125b, 143, and 195) and the secretion of β-casein and lactose were detected by qRT-PCR and RP-HPLC. The results showed that Vaccaria segetalis active compound had similar fuctions as estrogen and/or prolactin (PRL) in dairy cow mammary gland epithelial cells (DCMECs), increased the expressions of prlr, erα, akt1, and elf5 genes, while repressed pparγ expressions. DBP promoted socs2 mRNA expression, but its protein expressions were repressed. Furthermore, both DBP and PRL could repress the expressions of miRNA-125b, miRNA-143 and miRNA- 195 in DCMECs. DBP could repress the expression of miRNA-21, while the influence of PRL on miRNA-21 was not certain. DBP could promote the lactation ability of DCMECs by regulating the ER and PRLR cellular signal transduction pathway. 展开更多
关键词 Vaccaria segetalis DBP dairy cow mammary gland epithelial cells signal transduction MIRNAS
下载PDF
Primary evidence for involvement of IP_(3) in heat-shock signal transduction in Arabidopsis 被引量:9
7
作者 Hong Tao Liu Fei Gao +3 位作者 Shu Juan Cui Jin Long Han Da Ye Sun Ren Gang Zhou 《Cell Research》 SCIE CAS CSCD 2006年第4期394-400,共7页
The role of inositol 1,4,5-trisphosphate (IP3) in transducing heat-shock (HS) signals was examined in Arabidopsis. The whole-plant IP3 level increased within 1 min of HS at 37℃. After 3 min of HS, the IP3 level r... The role of inositol 1,4,5-trisphosphate (IP3) in transducing heat-shock (HS) signals was examined in Arabidopsis. The whole-plant IP3 level increased within 1 min of HS at 37℃. After 3 min of HS, the IP3 level reached a maximum 2.5 fold increase. Using the transgenic Arabidopsis plants that have AtHsp 18.2 promoter-β-glucuronidase (GUS) fusion gene, it was found that the level of GUS activity was up-regulated by the addition of caged IP3 at both non-HS and HS temperatures and was down-regulated by the phospholipase C (PLC) inhibitors {1-[6-(( 1713-3-Methoxyestra-1,3,5(10)-trien- 7-yl)amino)hexyl]-2,5-pyrrolidinedione } (U-73122). The intracellular-free calcium ion concentration ([Ca^2+]i) increased during HS at 37℃ in suspension-cultured Arabidopsis cells expressing apoaequorin. Treatment with U-73122 prevented the increase of [Ca^2+]i to some extent. Above results provided primary evidence for the possible involvement of IP3 in HS signal transduction in higher plants. 展开更多
关键词 heat shock signal transduction IP3 PLC [Ca^2+]i ARABIDOPSIS
下载PDF
Raf kinase inhibitory protein: a signal transduction modulator and metastasis suppressor 被引量:10
8
作者 Alexey E Granovsky Marsha Rich Rosner 《Cell Research》 SCIE CAS CSCD 2008年第4期452-457,共6页
Cells have a multitude of controls to maintain their integrity and prevent random switching from one biological state to another. Raf Kinase Inhibitory Protein (RKIP), a member of the phosphatidylethanolamine bindin... Cells have a multitude of controls to maintain their integrity and prevent random switching from one biological state to another. Raf Kinase Inhibitory Protein (RKIP), a member of the phosphatidylethanolamine binding protein (PEBP) family, is representative of a new class of modulators of signaling cascades that function to maintain the “yin yang” or balance of biological systems. RKIP inhibits MAP kinase (Raf-MEK-ERK), G protein-coupled receptor (GPCR) kinase and NFkB signaling cascades. Because RKIP targets different kinases dependent upon its state ofphosphorylation, RKIP also acts to integrate crosstalk initiated by multiple environmental stimuli. Loss or depletion of RKIP results in disruption of the normal cellular stasis and can lead to chromosomal abnormalities and disease states such as cancer. Since RKIP and the PEBP family have been reviewed previously, the goal of this analysis is to provide an update and highlight some of the unique features of RKIP that make it a critical player in the regulation of cellular signaling processes. 展开更多
关键词 Raf Kinase METASTASIS signal transduction INHIBITOR
下载PDF
The brassinosteroid signal transduction pathway 被引量:8
9
作者 Zhi-Yong Wang Qiaomei Wang +4 位作者 Kang Chong Fengru Wang Lei Wang Mingyi Bai Chengguo Jia 《Cell Research》 SCIE CAS CSCD 2006年第5期427-434,共8页
Steroids function as signaling molecules in both animals and plants. While animal steroid hormones are perceived by nuclear receptor family of transcription factors, brassinosteroids (BR) in plants are perceived by ... Steroids function as signaling molecules in both animals and plants. While animal steroid hormones are perceived by nuclear receptor family of transcription factors, brassinosteroids (BR) in plants are perceived by a cell surface receptor kinase, BRI 1. Recent studies have demonstrated that BR binding to the extracellular domain of BRI 1 induces kinase activation and dimerization with another receptor kinase, BAKI. Activated BRI 1 or BAKI then regulate, possibly indirectly, the activities of BIN2 kinase and/or BSU 1 phosphatase, which directly regulate the phosphorylation status and nuclear accumulation of two homologous transcription factors, BZRI and BES 1. BZRI and BES 1 directly bind to promoters of BR responsive genes to regulate their expression. The BR signaling pathway has become a paradigm for both receptor kinase signaling in plants and steroid signaling by cell surface receptors in general. 展开更多
关键词 BRASSINOSTEROID receptor kinase LRR-RLK GSK3 signal transduction ARABIDOPSIS
下载PDF
Interaction of major genes predisposing to hepatocellular carcinoma with genes encoding signal transduction pathways influences tumor phenotype and prognosis 被引量:5
10
作者 Francesco Feo Maddalena Frau Rosa Maria Pascale 《World Journal of Gastroenterology》 SCIE CAS CSCD 2008年第43期6601-6615,共15页
Studies on rodents and humans demonstrate an inherited predisposition to hepatocellular carcinoma (HCC). Analysis of the molecular alterations involved in the acquisition of a phenotype resistant or susceptible to h... Studies on rodents and humans demonstrate an inherited predisposition to hepatocellular carcinoma (HCC). Analysis of the molecular alterations involved in the acquisition of a phenotype resistant or susceptible to hepatocarcinogenesis showed a deregulation of G1 and S phases in HCC of genetically susceptible F344 rats and a G1-S block in lesions of resistant Brown norway (BN) rats. Unrestrained extracellular signal-regulated kinase (ERK) activity linked to proteasomal degradation of dual-specificity phosphatase 1 (DUSP1), a specific ERK inhibitor, by the CKS1-SKP2 ubiquitin ligase complex occurs in more aggressive HCC of F344 rats and humans. This mechanism is less active in HCC of BN rats and human HCC with better prognosis. Upregulation of iNos cross-talk with IKK/NF-KB and RAS/ERK pathways occurs in rodent liver lesions at higher levels in the most aggressive models represented by HCC of F344 rats and c-Myc-TGF-α transgenic mice. iNOS, IKK/NF-κB, and RAS/ERK upregulation is highest in human HCC with a poorer prognosis and positively correlates with tumor proliferation, genomic instability and microvascularization, and negatively with apoptosis. Thus, cell cycle regulation and the activity of signal transduction pathways seem to be modulated by HCC modifier genes, and differences in their efficiency influence the susceptibility to hepatocarcinogenesis and probably the prognosis of human HCC. 展开更多
关键词 HEPATOCARCINOGENESIS Genetic predisposition Polygenic disease Redifferentiation signal transduction pathways Cell cycle Cell proliferation Apoptosis Proteasomal degradation
下载PDF
Role of transforming growth factor-beta1-smad signal transduction pathway in patients with hepatocellular carcinoma 被引量:26
11
作者 Guo-Zhong Ji Xue-Hao Wang +4 位作者 Lin Miao Zheng Liu Ping Zhang Fa-Ming Zhang Jian-Bing Yang 《World Journal of Gastroenterology》 SCIE CAS CSCD 2006年第4期644-648,共5页
AIM: To explore the role of transforming growth factorbeta1 (TGF-β1)-smad signal transduction pathway in patients with hepatocellular carcinoma. METHODS: Thirty-six hepatocellular carcinoma specimens were obtaine... AIM: To explore the role of transforming growth factorbeta1 (TGF-β1)-smad signal transduction pathway in patients with hepatocellular carcinoma. METHODS: Thirty-six hepatocellular carcinoma specimens were obtained from Qidong Liver Cancer Institute and Department of Pathology of the Second Affiliated Hospital of Nanjing Medical University. All primary antibodies (polyclonal antibodies) to TGF-β1, type H Transforming growth factor-beta receptor (TβR-Ⅱ), nuclear factor-kappaB (NF-KB), CD34, smad4 and smad7, secondary antibodies and immunohistochemical kit were purchased from Zhongshan Biotechnology Limited Company (Beijing, China). The expressions of TGF-β1, TβR-Ⅱ, NF- KB, smad4 and smad7 proteins in 36 specimens of hepatocellular carcinoma (HCC) and its adjacent tissue were separately detected by immunohistochemistry to observe the relationship between TGF-β1 and TβR-Ⅱ, between NF-KB and TGF-β1, between smad4 and smad7 and between TGF-β1 or TβR-Ⅱ and microvessel density (MVD). MVD was determined by labelling the vessel endothelial cells with CD34. RESULTS: The expression of TGF-β1, smad7 and MVD was higher in HCC tissue than in adjacent HCC tissue (P〈0.01, P〈0.05,P〈0.01 respectively). The expression of TβR-Ⅱ and smad4 was lower in HCC tissue than in its adjacent tissue (P〈0.01, P〈0.05 respectively). The expression of TGF-β1 protein and NF-KB protein was consistent in HCC tissue. The expression of TGF-β1 and MVD was also consistent in HCC tissue. The expression of TIER- Ⅱ was negatively correlated with that of MVD in HCC tissue. CONCLUSION: The expressions of TGF-IB1, TβR- Ⅱ, NF-KB, smad4 and smad7 in HCC tissue, which are major up and down stream factors of TGF-β1-smad signal transduction pathway, are abnormal. These factors are closely related with NVD and may play an important role in HCC angiogenesis. The inhibitory action of TGF-β1 is weakened in hepatic carcinoma cells because of abnormality of TGF-β1 receptors (such as TIBR- Ⅱ) and postreceptors (such as smad4 and smad7). NF-KB may cause activation and production of TGF-β1. 展开更多
关键词 TGF-β1 TβR-Ⅱ Smad4 Smad7 NF-kB MVD Hepatocellular carcinoma signal transduction
下载PDF
p38 MAPK is a Component of the Signal Transduction Pathway Triggering Cold Stress Response in the MED Cryptic Species of Bemisia tabaci 被引量:6
12
作者 LI Fang-fang XIA Jun +2 位作者 LI Jun-min LIU Shu-sheng WANG Xiao-wei 《Journal of Integrative Agriculture》 SCIE CSCD 2012年第2期303-311,共9页
Cold stress responses help insects to survive under low temperatures that would be lethal otherwise.This phenomenon might contribute to the invasion of some Bemisia tabaci cryptic species from subtropical areas to tem... Cold stress responses help insects to survive under low temperatures that would be lethal otherwise.This phenomenon might contribute to the invasion of some Bemisia tabaci cryptic species from subtropical areas to temperate regions.However,the molecular mechanisms regulating cold stress responses in whitefly are yet unclear.Mitogen-activated protein kinases(MAPKs)which including p38,ERK,and JNK,are well known for their roles in regulating metabolic responses to cold stress in many insects.In this study,we explored the possible roles of the MAPKs in response to low temperature stresses in the Mediterranean cryptic species(the Q-biotype)of the B.tabaci species complex.First,we cloned the p38 and ERK genes from the whitefly cDNA library.Next,we analyzed the activation of MAPKs during cold stress in the Mediterranean cryptic species by immuno-blotting.After cold stress,the level of phospho-p38 increased but no significant change was observed in the phosphorylation of ERK and JNK,thus suggesting that the p38 might be responsible for the defense response to low temperature stress.Furthermore,we demonstrated that:i)3 min chilling at 0°C was sufficient for the activation of p38 MAPK pathway in this whitefly;and ii)the amount of phosphorylated p38 increased significantly in the first 20 min of chilling,reversed by 60 min,and then returned to the original level by 120 min.Taken together,our results suggest that the p38 pathway is important during response to low temperature stress in the Mediterranean cryptic species of the B.tabaci species complex. 展开更多
关键词 Bemisia tabaci cold stress MAPK P38 PHOSPHORYLATION signal transduction
下载PDF
PrP^C-related signal transduction is influenced by copper, membrane integrity and the alpha cleavage site 被引量:4
13
作者 Cathryn L Haigh Victoria A Lewis +4 位作者 Laura J Vella Colin L Masters Andrew F Hill Victoria A Lawson Steven J Collins 《Cell Research》 SCIE CAS CSCD 2009年第9期1062-1078,共17页
The copper-binding, membrane-anchored, cellular prion protein (PrP~) has two constitutive cleavage sites producing distinct N- and C-terminal fragments (N1/C1 and N2/C2). Using RK13 cells expressing either human P... The copper-binding, membrane-anchored, cellular prion protein (PrP~) has two constitutive cleavage sites producing distinct N- and C-terminal fragments (N1/C1 and N2/C2). Using RK13 cells expressing either human PrPc, mouse PrPc or mouse PrP^C carrying the 3F4 epitope, this study explored the influence of the PrP^C primary sequence on endoproteolytic cleavage and one putative PrPc function, MAP kinase signal transduction, in response to exogenous copper with or without a perturbed membrane environment. PrPc primary sequence, especially that around the N1/C1 cleavage site, appeared to influence basal levels of proteolysis at this location and extracellular signal-regulat- ed kinase 1/2 (ERK1/2) phosphorylation, with increased processing demonstrating an inverse relationship with basal ERK1/2 activation. Human PrP^C showed increased N1/C1 cleavage in response to copper alone, accompanied by specific p38 and JNK/SAPK phosphorylation. Combined exposure to copper plus the cholesterol-sequestering antibiotic filipin resulted in a mouse PrP^C-specific substantial increase in signal protein phosphorylation, accompanied by an increase in N1/C1 cleavage. Mouse PrPc harboring the human N1/C1 cleavage site assumed more human-like profiles basally and in response to copper and altered membrane environments. Our results demonstrate that the PrPc pri- mary sequence around the N1/C1 cleavage site influences endoproteolytic processing at this location, which appears linked to MAP kinase signal transduction both basally and in response to copper. Further, the primary sequence appears to confer a mutual dependence of N1/C1 cleavage and membrane integrity on the fidelity of PrP^C-related signal transduction in response to exogenous stimuli. 展开更多
关键词 PRION COPPER endoproteolytic cleavage signal transduction lipid raft
下载PDF
Sericin can reduce hippocampal neuronal apoptosis by activating the Akt signal transduction pathway in a rat model of diabetes mellitus 被引量:4
14
作者 Zhihong Chen Yaqiang He +3 位作者 Chengjun Song Zhijun Dong Zhejun Su Jingfeng Xue 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第3期197-201,共5页
In the present study, a rat model of type 2 diabetes mellitus was established by continuous peritoneal injection of streptozotocin. Following intragastric perfusion of sericin for 35 days, blood glucose levels signifi... In the present study, a rat model of type 2 diabetes mellitus was established by continuous peritoneal injection of streptozotocin. Following intragastric perfusion of sericin for 35 days, blood glucose levels significantly reduced, neuronal apoptosis in the hippocampal CA1 region decreased, hippocampal phosphorylated Akt and nuclear factor kappa B expression were enhanced, but Bcl-xL/Bcl-2 associated death promoter expression decreased. Results demonstrated that sericin can reduce hippocampal neuronal apoptosis in a rat model of diabetes mellitus by regulating abnormal changes in the Akt signal transduction pathway. 展开更多
关键词 SERICIN type 2 diabetes mellitus HIPPOCAMPUS apoptosis Akt signal transduction pathway neural regeneration
下载PDF
Rho/Rock signal transduction pathway is required for MSC tenogenic differentiation 被引量:6
15
作者 Edward Maharam Miguel Yaport +5 位作者 Nathaniel L Villanueva Takintope Akinyibi Damien Laudier Zhiyong He Daniel J Leong Hui B Sun 《Bone Research》 SCIE CAS CSCD 2015年第3期173-181,共9页
Mesenchymal stem cell (MSC)-based treatments have shown promise for improving tendon healing and repair. MSCs have the potential to differentiate into multiple lineages in response to select chemical and physical st... Mesenchymal stem cell (MSC)-based treatments have shown promise for improving tendon healing and repair. MSCs have the potential to differentiate into multiple lineages in response to select chemical and physical stimuli, including into tenocytes. Cell elongation and cytoskeletal tension have been shown to be instrumental to the process of MSC differentiation. Previous studies have shown that inhibition of stress fiber formation leads MSCs to default toward an adipogenic lineage, which suggests that stress fibers are required for MSCs to sense the environmental factors that can induce differentiation into tenocytes. As the Rho/ROCK signal transduction pathway plays a critical role in both stress fiber formation and in cell sensation, we examined whether the activation of this pathway was required when inducing MSC tendon differentiation using rope-like silk scaffolds. To accomplish this, we employed a loss-of-function approach by knocking out ROCK, actin and myosin (two other components of the pathway) using the specific inhibitors Y-27632, Latrunculin A and blebbistatin, respectively. We demonstrated that independently disrupting the cytoskeleton and the Rho/ ROCK pathway abolished the expression of tendon differentiation markers and led to a loss of spindle morphology. Together, these studies suggest that the tension that is generated by MSC elongation is essential for MSC teno-differentiation and that the Rho/ROCK pathway is a critical mediator of tendon differentiation on rope-like silk scaffolds. 展开更多
关键词 MSCS FIGURE Rho/Rock signal transduction pathway is required for MSC tenogenic differentiation
下载PDF
Roles of ABA Signal Transduction during Higher Plant Seed Development and Germination 被引量:5
16
作者 Shao Hongbo Liang Zongsuo Shao Mingan 《Forestry Studies in China》 CAS 2003年第4期45-53,共9页
ABA is one of the 5 phytohormones in higher plants, which is also the most important hormone that regulates higher plants in response to environmental stress, by ABA signal transduction. Understanding ABA signal trans... ABA is one of the 5 phytohormones in higher plants, which is also the most important hormone that regulates higher plants in response to environmental stress, by ABA signal transduction. Understanding ABA signal transduction at the molecular level is crucial to biology and ecology, and rational breeding complied with corresponding eco-environmental changes. Great advancements have taken place over the past 10 years by application of the Arabidopsis experimental system. Many components involved in ABA signal transduction have been isolated and identified and a clear overall picture of gene expression and control for this transduction has become an accepted fact. On the basis of the work in our laboratory, in conjunction with the data available at the moment, the authors have attempted to integrate ABA signal transduction pathways into a common one and give some insights into the relationship between ABA signal transduction and other hormone signal transduction pathways, with an emphasis upon the ABA signal transduction during higher plant seed development. A future challenge in this field is that different experimental systems are applied and various receptors and genes need to be characterized through the utilization of microarray chips. 展开更多
关键词 molecular biology ABA signal transduction ABA-responsive genes seed development environmental stresses
下载PDF
Effects of Zhichan powder on signal transduction and apoptosis-associated gene expression in the substantia nigra of Parkinson's disease rats 被引量:1
17
作者 Jiajun Chen Jinshu Ma +6 位作者 Yafei Qiu Shihong Yi Yongmao Liu Qingwei Zhou PengguoZhang Quan Wan Ye Kuang 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第27期2115-2122,共8页
Previous studies have shown that Zhichan powder elevated immunity and suppressed oxidation in mice. Rat models of Parkinson's disease were induced by stereotaxically injecting 6-hydroxydopamine into the substantia ni... Previous studies have shown that Zhichan powder elevated immunity and suppressed oxidation in mice. Rat models of Parkinson's disease were induced by stereotaxically injecting 6-hydroxydopamine into the substantia nigra. The rat models were intragastrically treated with Zhichan powder, which is composed of milkvetch root, ginseng, bunge swallowwort root, himalayan teasel root. Magnolia officinalis, Ligustrum lucidum Ait. and szechwan Iovage rhizome. Immunohistochemistry and reverse transcription-PCR results demonstrated that mRNA and protein expression of tumor necrosis factor receptor 1, Fas, caspase-8, cvtochrome C, Bax, casDase-3, and p53 significantly increased, but Bcl-2 expression significantly decreased in the substantia nigra of rats with Parkinson's disease. Following Zhichan powder administration, mRNA and protein expression of tumor necrosis factor receptor 1, Fas, caspase-8, cytochrome C, Bax, caspase-3, and p53 diminished, but Bcl-2 expression increased in the rat substantia nigra. These results indicate that Zhichan powder regulates signal transduction protein expression, inhibits apoptosis, and exerts therapeutic effects on Parkinson's disease. 展开更多
关键词 Zhichan powder Parkinson's disease 6-HYDROXYDOPAMINE signal transduction APOPTOSIS substantia nigra traditional Chinese medicine degenerative disease neural regeneration
下载PDF
Influence of electroacupuncture on mitogen-activated protein kinase signal transduction in a rat model of cerebral ischemia/reperfusion 被引量:1
18
作者 Zhongren Li Meihong Shen +1 位作者 Wenmin Niu Xiaoren Xiang 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第30期2362-2366,共5页
Following electroacupuncture at Baihui (DU 20) and Dazhui (DU 14) in a rat model of cerebral ischemia/reperfusion, extracellular-signal-regulated kinase expression in cerebral cortex and corpus striatum, serum glu... Following electroacupuncture at Baihui (DU 20) and Dazhui (DU 14) in a rat model of cerebral ischemia/reperfusion, extracellular-signal-regulated kinase expression in cerebral cortex and corpus striatum, serum glutathione reductase, glutathione peroxidase activity, and serum glutathione content were elevated, and neurobehavioral scores improved. However, these effects were antagonized by mitogen-activated protein kinase inhibitor PD98059. Results indicated that electroacupuncture reversed free radical chain reactions and oxidative stress injury caused by cerebral ischemia/reperfusion, thereby providing neuroprotection. This process could correlate with the mitogen-activated protein kinase signal transduction pathway. 展开更多
关键词 anti-oxidative stress cerebral ischemia/reperfusion ELECTROACUPUNCTURE mitogen-activated protein kinase pathway signal transduction
下载PDF
Role of Toll-like receptor 4 and Janus kinase and signal transducer and activator of transcription signal transduction pathway in sepsis-induced brain damage 被引量:1
19
作者 Haiyan Yin Jianrui Wei +2 位作者 Rui Zhang Xiaoling Ye Youfeng Zhu 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第32期2511-2515,共5页
The Janus kinase and signal transducer and activator of transcription (JAK/STAT) signal transduction pathway is involved in sepsis-induced functional damage to the heart, liver, kidney, and other organs. However, th... The Janus kinase and signal transducer and activator of transcription (JAK/STAT) signal transduction pathway is involved in sepsis-induced functional damage to the heart, liver, kidney, and other organs. However, the cellular and molecular mechanisms underlying sepsis-induced brain damage remain elusive. In the present study, we found severe loss of neurons in the hippocampal CA1 region in rats with sepsis-induced brain damage following intraperitoneal injection of endotoxin, The expression of toll-like receptor 4, tumor necrosis factor a, and interleukin-6 was significantly increased in brain tissues following lipopolysaccharide exposure. AG490 (JAK2 antagonist) and rapamycin (STAT3 antagonist) significantly reduced neuronal loss and suppressed the increased expression of toll-like receptor 4, tumor necrosis factor a, and interleukin-6 in the hippocampal CA1 region in sepsis-induced brain damaged rats. Overall, these data suggest that blockade of the JAK/STAT signal transduction pathway is neuroprotective in sepsis-induced brain damage via the inhibition of toll-like receptor 4, tumor necrosis factor a, and interleukin-6 exoression. 展开更多
关键词 brain damage Janus kinase and signal transducer and activator of transcription SEPSIS signal transduction pathway Toll-like receptor 4
下载PDF
Expression Patterns of OsPIL11,a Phytochrome-Interacting Factor in Rice,and Preliminary Analysis of Its Roles in Light Signal Transduction 被引量:1
20
作者 LI Li PENG Wei-feng +3 位作者 LIU Qian-qian ZHOU Jin-jun LIANG Wei-hong XIE Xian-zhi 《Rice science》 SCIE 2012年第4期263-268,共6页
The expression patterns of OsPILll, one of six putative phytochrome-interacting factors, were analyzed in different organs of transgenic tobacco (Nicotiana tabacum). The expression of OsPIL 11 was organ-specific and... The expression patterns of OsPILll, one of six putative phytochrome-interacting factors, were analyzed in different organs of transgenic tobacco (Nicotiana tabacum). The expression of OsPIL 11 was organ-specific and was regulated by leaf development, abscisic acid (ABA), jasmonic acid (JA) and salicylic acid (SA). To further explore the role of OsPIL 11 in plant light signal transduction, a plant expression vector of OsPILll was constructed and introduced into tobacco. When grown under continuous red light, OsPILll-overexpressed transgenic tobacco exhibited shorter hypocotyls and larger cotyledons and leaves compared to wild-type seedlings. When grown under continuous far-red light, however, transgenic and wild-type seedlings showed similar phenotypes. These results indicate that OsPILll is involved in red light induced de-etiolation, but not in far-red light induced de-etiolation in transgenic tobacco, which lays the foundation for dissecting the function of OsPIL11 in phytochrome-mediated light signal transduction in rice. 展开更多
关键词 RICE phytochrome-interacting factor transgenic tobacco light signal transduction
下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部