The ultrafine silver powders were prepared by liquid reduction method using Arabic gum as dispersant.The effects of different dispersants,pH values,and temperature on the morphology and particle size of silver powders...The ultrafine silver powders were prepared by liquid reduction method using Arabic gum as dispersant.The effects of different dispersants,pH values,and temperature on the morphology and particle size of silver powders were investigated.It is found that Arabic gum can better adsorb on silver particles via chemical adsorption,and it shows the best dispersive effect among all the selected dispersants.The particle size of silver powders can be finely tuned from 0.34 to 4.09μm by adjusting pH values,while the morphology of silver powders can be tuned by changing the temperature.The silver powders with high tap density higher than 4.0 g/cm3 were successfully prepared in a wide temperature range of 21.8-70°C.Especially,the tap density is higher than 5.0 g/cm3 when the temperature is optimized to be 50°C.The facile process and high silver concentration of this method make it a promising way to prepare high quality silver powders for electronic paste.展开更多
Silver powder was fabricated by spray pyrolysis, using 2%-20% AgNO3 solution, 336-500 mL/h flux of AgNO3 solution, 0.28-0.32 MPa flux of carrier gas and in the 620-820 ℃ temperature range. The effects of furnace set ...Silver powder was fabricated by spray pyrolysis, using 2%-20% AgNO3 solution, 336-500 mL/h flux of AgNO3 solution, 0.28-0.32 MPa flux of carrier gas and in the 620-820 ℃ temperature range. The effects of furnace set temperature, concentration of AgNO3 aqueous solution, flux of AgNO3 aqueous solution as well as carrier gas on the morphology and particle size distribution of silver powder, were investigated. The experimental results showed that with the high concentration of AgNO3 aqueous solution, the average grain size of silver decreased with the increasing of furnace set temperature. But the gain size distribution was not homogenous, the discontinuous grain growth occurred. With the low concentration of AgNO3 aqueous solution, the higher furnace set temperature made the nano sliver grains sintered together to grow. Nano silver powder about 100 nm was fabricated by spray pyrolysis, using 2wt% AgNO3 solutions, 336 mL/h flux of AgNO3 aqueous solution, 0.32 MPa flux of carrier gas at 720 ℃ furnace set temperature.展开更多
Maki-e is a traditional Japanese decorative technique that uses the natural lacquer Urushi and metal powders. In 2014, there exist only two companies that manufacture silver powder for the purpose of Maki-e, and this ...Maki-e is a traditional Japanese decorative technique that uses the natural lacquer Urushi and metal powders. In 2014, there exist only two companies that manufacture silver powder for the purpose of Maki-e, and this study focuses on comparing the powders manufactured by them. Gloss and color of each silver powder were measured after Maki-e decoration was finished, and EDS (energy-dispersive X-ray spectroscopy) was used to determine the differences in their chemical composition. In addition, to verify the effect of polishing, residual gloss after sulfuration and polishing was measured. The study revealed that the shapes of the silver powders (Maru-fun, No. 1) manufactured by the two companies are different and it affects the occupancy rate of Urushi and powder, which in turn affects their gloss and color. Wakou silver has a very strong resistance to sulfuration;however, owing to its Pd content, its chroma is much lower than that of other powders. It was shown that sulfuration on powder surface can be removed by polishing irrespective of the shape and chemical composition ratio of the particles.展开更多
Antibacterial powders of titanium dioxide/silver sulfate were produced by heat-treatment of the metatitanic acid, as precursor, into which the silver nitrate was added. The influences of heating temperature on the str...Antibacterial powders of titanium dioxide/silver sulfate were produced by heat-treatment of the metatitanic acid, as precursor, into which the silver nitrate was added. The influences of heating temperature on the structure and composition of the product were investigated through XRD and SEM. The results show that the powder is spherical in the phase of TiO2-Ag2SO4. The granularity of the particles increases from 10.7nm to 28.7nm with the temperature of heat-treatment increasing from 300℃ to 800℃. The antibacterial activity of the powder was judged in the way of the minimum inhibitory contents (MiCs). When the content of silver sulfate is less than 2%, the photocatalysis of titanium dioxide and silver ions cooperate to kill bacteria. And the MiCs decrease and keep around 1.0×10 -41.5×10 -4 constantly with the increase of silver content. Furthermore, the MiCs decrease with the increase of temperature of heat-treatment when the temperature is lower than 500℃. But when the temperature is beyond 600℃ the MiCs increase quickly, which shows the inferior antibacterial performance.展开更多
A novel wet-chemical method was presented for the preparation of the micro-sized and uniform spherical Ag powders on a mass-production scale.The well-defined particles were synthesized by mixing the iron(II) sulfate h...A novel wet-chemical method was presented for the preparation of the micro-sized and uniform spherical Ag powders on a mass-production scale.The well-defined particles were synthesized by mixing the iron(II) sulfate heptahydrate solution with silver nitrate solution directly by high-speed stirring at room temperature.It is found that a large number of micro-sized and uniform spherical particles with rough surfaces are obtained.The mass ratio of iron(II) sulfate heptahydrate to silver nitrate greatly affects the shape of particles,and when it is relatively low,spherical particles cannot be obtained.The reaction temperature has a great impact on the particle size.As the reaction temperature increases from 8 to 15°C,the mean diameter of particles decreases from 3.5 to 1.6 μm.The additive n-methyl-2-pyrrolidone improves the surface smoothness and compactness of the particles while the particle size is kept unchanged.Scanning electron microscopy,X-ray diffractometry and energy dispersive X-ray analysis were used to characterize the particle products.展开更多
基金Project(2014DFA90520)supported by the International Cooperation Program of Ministry of Science and Technology of ChinaProject(2013A090100003)supported by the Production,Teaching and Research Program of Guangdong Province,ChinaProject(2013DY048)supported by the Science and Technology Cooperation Program of Daye Nonferrous Metals Group,China
文摘The ultrafine silver powders were prepared by liquid reduction method using Arabic gum as dispersant.The effects of different dispersants,pH values,and temperature on the morphology and particle size of silver powders were investigated.It is found that Arabic gum can better adsorb on silver particles via chemical adsorption,and it shows the best dispersive effect among all the selected dispersants.The particle size of silver powders can be finely tuned from 0.34 to 4.09μm by adjusting pH values,while the morphology of silver powders can be tuned by changing the temperature.The silver powders with high tap density higher than 4.0 g/cm3 were successfully prepared in a wide temperature range of 21.8-70°C.Especially,the tap density is higher than 5.0 g/cm3 when the temperature is optimized to be 50°C.The facile process and high silver concentration of this method make it a promising way to prepare high quality silver powders for electronic paste.
文摘Silver powder was fabricated by spray pyrolysis, using 2%-20% AgNO3 solution, 336-500 mL/h flux of AgNO3 solution, 0.28-0.32 MPa flux of carrier gas and in the 620-820 ℃ temperature range. The effects of furnace set temperature, concentration of AgNO3 aqueous solution, flux of AgNO3 aqueous solution as well as carrier gas on the morphology and particle size distribution of silver powder, were investigated. The experimental results showed that with the high concentration of AgNO3 aqueous solution, the average grain size of silver decreased with the increasing of furnace set temperature. But the gain size distribution was not homogenous, the discontinuous grain growth occurred. With the low concentration of AgNO3 aqueous solution, the higher furnace set temperature made the nano sliver grains sintered together to grow. Nano silver powder about 100 nm was fabricated by spray pyrolysis, using 2wt% AgNO3 solutions, 336 mL/h flux of AgNO3 aqueous solution, 0.32 MPa flux of carrier gas at 720 ℃ furnace set temperature.
文摘Maki-e is a traditional Japanese decorative technique that uses the natural lacquer Urushi and metal powders. In 2014, there exist only two companies that manufacture silver powder for the purpose of Maki-e, and this study focuses on comparing the powders manufactured by them. Gloss and color of each silver powder were measured after Maki-e decoration was finished, and EDS (energy-dispersive X-ray spectroscopy) was used to determine the differences in their chemical composition. In addition, to verify the effect of polishing, residual gloss after sulfuration and polishing was measured. The study revealed that the shapes of the silver powders (Maru-fun, No. 1) manufactured by the two companies are different and it affects the occupancy rate of Urushi and powder, which in turn affects their gloss and color. Wakou silver has a very strong resistance to sulfuration;however, owing to its Pd content, its chroma is much lower than that of other powders. It was shown that sulfuration on powder surface can be removed by polishing irrespective of the shape and chemical composition ratio of the particles.
文摘Antibacterial powders of titanium dioxide/silver sulfate were produced by heat-treatment of the metatitanic acid, as precursor, into which the silver nitrate was added. The influences of heating temperature on the structure and composition of the product were investigated through XRD and SEM. The results show that the powder is spherical in the phase of TiO2-Ag2SO4. The granularity of the particles increases from 10.7nm to 28.7nm with the temperature of heat-treatment increasing from 300℃ to 800℃. The antibacterial activity of the powder was judged in the way of the minimum inhibitory contents (MiCs). When the content of silver sulfate is less than 2%, the photocatalysis of titanium dioxide and silver ions cooperate to kill bacteria. And the MiCs decrease and keep around 1.0×10 -41.5×10 -4 constantly with the increase of silver content. Furthermore, the MiCs decrease with the increase of temperature of heat-treatment when the temperature is lower than 500℃. But when the temperature is beyond 600℃ the MiCs increase quickly, which shows the inferior antibacterial performance.
基金Project(2006AA04A110) supported by the National High-tech Research and Development Program of ChinaProject(60976076) supported by the National Natural Science Foundation of China。
文摘A novel wet-chemical method was presented for the preparation of the micro-sized and uniform spherical Ag powders on a mass-production scale.The well-defined particles were synthesized by mixing the iron(II) sulfate heptahydrate solution with silver nitrate solution directly by high-speed stirring at room temperature.It is found that a large number of micro-sized and uniform spherical particles with rough surfaces are obtained.The mass ratio of iron(II) sulfate heptahydrate to silver nitrate greatly affects the shape of particles,and when it is relatively low,spherical particles cannot be obtained.The reaction temperature has a great impact on the particle size.As the reaction temperature increases from 8 to 15°C,the mean diameter of particles decreases from 3.5 to 1.6 μm.The additive n-methyl-2-pyrrolidone improves the surface smoothness and compactness of the particles while the particle size is kept unchanged.Scanning electron microscopy,X-ray diffractometry and energy dispersive X-ray analysis were used to characterize the particle products.