期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
Pyramid Separable Channel Attention Network for Single Image Super-Resolution
1
作者 Congcong Ma Jiaqi Mi +1 位作者 Wanlin Gao Sha Tao 《Computers, Materials & Continua》 SCIE EI 2024年第9期4687-4701,共15页
Single Image Super-Resolution(SISR)technology aims to reconstruct a clear,high-resolution image with more information from an input low-resolution image that is blurry and contains less information.This technology has... Single Image Super-Resolution(SISR)technology aims to reconstruct a clear,high-resolution image with more information from an input low-resolution image that is blurry and contains less information.This technology has significant research value and is widely used in fields such as medical imaging,satellite image processing,and security surveillance.Despite significant progress in existing research,challenges remain in reconstructing clear and complex texture details,with issues such as edge blurring and artifacts still present.The visual perception effect still needs further enhancement.Therefore,this study proposes a Pyramid Separable Channel Attention Network(PSCAN)for the SISR task.Thismethod designs a convolutional backbone network composed of Pyramid Separable Channel Attention blocks to effectively extract and fuse multi-scale features.This expands the model’s receptive field,reduces resolution loss,and enhances the model’s ability to reconstruct texture details.Additionally,an innovative artifact loss function is designed to better distinguish between artifacts and real edge details,reducing artifacts in the reconstructed images.We conducted comprehensive ablation and comparative experiments on the Arabidopsis root image dataset and several public datasets.The experimental results show that the proposed PSCAN method achieves the best-known performance in both subjective visual effects and objective evaluation metrics,with improvements of 0.84 in Peak Signal-to-Noise Ratio(PSNR)and 0.017 in Structural Similarity Index(SSIM).This demonstrates that the method can effectively preserve high-frequency texture details,reduce artifacts,and have good generalization performance. 展开更多
关键词 Deep learning single image super-resolution ARTIFACTS texture details
下载PDF
PSMFNet:Lightweight Partial Separation and Multiscale Fusion Network for Image Super-Resolution
2
作者 Shuai Cao Jianan Liang +2 位作者 Yongjun Cao Jinglun Huang Zhishu Yang 《Computers, Materials & Continua》 SCIE EI 2024年第10期1491-1509,共19页
The employment of deep convolutional neural networks has recently contributed to significant progress in single image super-resolution(SISR)research.However,the high computational demands of most SR techniques hinder ... The employment of deep convolutional neural networks has recently contributed to significant progress in single image super-resolution(SISR)research.However,the high computational demands of most SR techniques hinder their applicability to edge devices,despite their satisfactory reconstruction performance.These methods commonly use standard convolutions,which increase the convolutional operation cost of the model.In this paper,a lightweight Partial Separation and Multiscale Fusion Network(PSMFNet)is proposed to alleviate this problem.Specifically,this paper introduces partial convolution(PConv),which reduces the redundant convolution operations throughout the model by separating some of the features of an image while retaining features useful for image reconstruction.Additionally,it is worth noting that the existing methods have not fully utilized the rich feature information,leading to information loss,which reduces the ability to learn feature representations.Inspired by self-attention,this paper develops a multiscale feature fusion block(MFFB),which can better utilize the non-local features of an image.MFFB can learn long-range dependencies from the spatial dimension and extract features from the channel dimension,thereby obtaining more comprehensive and rich feature information.As the role of the MFFB is to capture rich global features,this paper further introduces an efficient inverted residual block(EIRB)to supplement the local feature extraction ability of PSMFNet.A comprehensive analysis of the experimental results shows that PSMFNet maintains a better performance with fewer parameters than the state-of-the-art models. 展开更多
关键词 Deep learning single image super-resolution lightweight network multiscale fusion
下载PDF
Research on single image super-resolution based on very deep super-resolution convolutional neural network
3
作者 HUANG Zhangyu 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第3期276-283,共8页
Single image super-resolution(SISR)is a fundamentally challenging problem because a low-resolution(LR)image can correspond to a set of high-resolution(HR)images,while most are not expected.Recently,SISR can be achieve... Single image super-resolution(SISR)is a fundamentally challenging problem because a low-resolution(LR)image can correspond to a set of high-resolution(HR)images,while most are not expected.Recently,SISR can be achieved by a deep learning-based method.By constructing a very deep super-resolution convolutional neural network(VDSRCNN),the LR images can be improved to HR images.This study mainly achieves two objectives:image super-resolution(ISR)and deblurring the image from VDSRCNN.Firstly,by analyzing ISR,we modify different training parameters to test the performance of VDSRCNN.Secondly,we add the motion blurred images to the training set to optimize the performance of VDSRCNN.Finally,we use image quality indexes to evaluate the difference between the images from classical methods and VDSRCNN.The results indicate that the VDSRCNN performs better in generating HR images from LR images using the optimized VDSRCNN in a proper method. 展开更多
关键词 single image super-resolution(SIsr) very deep super-resolution convolutional neural network(VDsrCNN) motion blurred image image quality index
下载PDF
Fast image super-resolution algorithm based on multi-resolution dictionary learning and sparse representation 被引量:3
4
作者 ZHAO Wei BIAN Xiaofeng +2 位作者 HUANG Fang WANG Jun ABIDI Mongi A. 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第3期471-482,共12页
Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artif... Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artifact suppression. We propose a multi-resolution dictionary learning(MRDL) model to solve this contradiction, and give a fast single image SR method based on the MRDL model. To obtain the MRDL model, we first extract multi-scale patches by using our proposed adaptive patch partition method(APPM). The APPM divides images into patches of different sizes according to their detail richness. Then, the multiresolution dictionary pairs, which contain structural primitives of various resolutions, can be trained from these multi-scale patches.Owing to the MRDL strategy, our SR algorithm not only recovers details well, with less jag and noise, but also significantly improves the computational efficiency. Experimental results validate that our algorithm performs better than other SR methods in evaluation metrics and visual perception. 展开更多
关键词 single image super-resolution(sr) sparse representation multi-resolution dictionary learning(MRDL) adaptive patch partition method(APPM)
下载PDF
Image Super-Resolution Based on Generative Adversarial Networks: A Brief Review 被引量:3
5
作者 Kui Fu Jiansheng Peng +2 位作者 Hanxiao Zhang Xiaoliang Wang Frank Jiang 《Computers, Materials & Continua》 SCIE EI 2020年第9期1977-1997,共21页
Single image super resolution(SISR)is an important research content in the field of computer vision and image processing.With the rapid development of deep neural networks,different image super-resolution models have ... Single image super resolution(SISR)is an important research content in the field of computer vision and image processing.With the rapid development of deep neural networks,different image super-resolution models have emerged.Compared to some traditional SISR methods,deep learning-based methods can complete the super-resolution tasks through a single image.In addition,compared with the SISR methods using traditional convolutional neural networks,SISR based on generative adversarial networks(GAN)has achieved the most advanced visual performance.In this review,we first explore the challenges faced by SISR and introduce some common datasets and evaluation metrics.Then,we review the improved network structures and loss functions of GAN-based perceptual SISR.Subsequently,the advantages and disadvantages of different networks are analyzed by multiple comparative experiments.Finally,we summarize the paper and look forward to the future development trends of GAN-based perceptual SISR. 展开更多
关键词 single image super-resolution generative adversarial networks deep learning computer vision
下载PDF
Better Visual Image Super-Resolution with Laplacian Pyramid of Generative Adversarial Networks 被引量:2
6
作者 Ming Zhao Xinhong Liu +1 位作者 Xin Yao Kun He 《Computers, Materials & Continua》 SCIE EI 2020年第9期1601-1614,共14页
Although there has been a great breakthrough in the accuracy and speed of super-resolution(SR)reconstruction of a single image by using a convolutional neural network,an important problem remains unresolved:how to res... Although there has been a great breakthrough in the accuracy and speed of super-resolution(SR)reconstruction of a single image by using a convolutional neural network,an important problem remains unresolved:how to restore finer texture details during image super-resolution reconstruction?This paper proposes an Enhanced Laplacian Pyramid Generative Adversarial Network(ELSRGAN),based on the Laplacian pyramid to capture the high-frequency details of the image.By combining Laplacian pyramids and generative adversarial networks,progressive reconstruction of super-resolution images can be made,making model applications more flexible.In order to solve the problem of gradient disappearance,we introduce the Residual-in-Residual Dense Block(RRDB)as the basic network unit.Network capacity benefits more from dense connections,is able to capture more visual features with better reconstruction effects,and removes BN layers to increase calculation speed and reduce calculation complexity.In addition,a loss of content driven by perceived similarity is used instead of content loss driven by spatial similarity,thereby enhancing the visual effect of the super-resolution image,making it more consistent with human visual perception.Extensive qualitative and quantitative evaluation of the baseline datasets shows that the proposed algorithm has higher mean-sort-score(MSS)than any state-of-the-art method and has better visual perception. 展开更多
关键词 single image super-resolution generative adversarial networks Laplacian pyramid
下载PDF
A brief survey on deep learning based image super-resolution 被引量:1
7
作者 Zhu Xiaobin Li Shanshan Wang Lei 《High Technology Letters》 EI CAS 2021年第3期294-302,共9页
Image super-resolution(SR)is an important technique for improving the resolution and quality of images.With the great progress of deep learning,image super-resolution achieves remarkable improvements recently.In this ... Image super-resolution(SR)is an important technique for improving the resolution and quality of images.With the great progress of deep learning,image super-resolution achieves remarkable improvements recently.In this work,a brief survey on recent advances of deep learning based single image super-resolution methods is systematically described.The existing studies of SR techniques are roughly grouped into ten major categories.Besides,some other important issues are also introduced,such as publicly available benchmark datasets and performance evaluation metrics.Finally,this survey is concluded by highlighting four future trends. 展开更多
关键词 image super-resolution(sr) deep learning convolutional neural network(CNN)
下载PDF
Channel attention based wavelet cascaded network for image super-resolution
8
作者 CHEN Jian HUANG Detian HUANG Weiqin 《High Technology Letters》 EI CAS 2022年第2期197-207,共11页
Convolutional neural networks(CNNs) have shown great potential for image super-resolution(SR).However,most existing CNNs only reconstruct images in the spatial domain,resulting in insufficient high-frequency details o... Convolutional neural networks(CNNs) have shown great potential for image super-resolution(SR).However,most existing CNNs only reconstruct images in the spatial domain,resulting in insufficient high-frequency details of reconstructed images.To address this issue,a channel attention based wavelet cascaded network for image super-resolution(CWSR) is proposed.Specifically,a second-order channel attention(SOCA) mechanism is incorporated into the network,and the covariance matrix normalization is utilized to explore interdependencies between channel-wise features.Then,to boost the quality of residual features,the non-local module is adopted to further improve the global information integration ability of the network.Finally,taking the image loss in the spatial and wavelet domains into account,a dual-constrained loss function is proposed to optimize the network.Experimental results illustrate that CWSR outperforms several state-of-the-art methods in terms of both visual quality and quantitative metrics. 展开更多
关键词 image super-resolution(sr) wavelet transform convolutional neural network(CNN) second-order channel attention(SOCA) non-local self-similarity
下载PDF
Contrastive Learning for Blind Super-Resolution via A Distortion-Specific Network 被引量:1
9
作者 Xinya Wang Jiayi Ma Junjun Jiang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第1期78-89,共12页
Previous deep learning-based super-resolution(SR)methods rely on the assumption that the degradation process is predefined(e.g.,bicubic downsampling).Thus,their performance would suffer from deterioration if the real ... Previous deep learning-based super-resolution(SR)methods rely on the assumption that the degradation process is predefined(e.g.,bicubic downsampling).Thus,their performance would suffer from deterioration if the real degradation is not consistent with the assumption.To deal with real-world scenarios,existing blind SR methods are committed to estimating both the degradation and the super-resolved image with an extra loss or iterative scheme.However,degradation estimation that requires more computation would result in limited SR performance due to the accumulated estimation errors.In this paper,we propose a contrastive regularization built upon contrastive learning to exploit both the information of blurry images and clear images as negative and positive samples,respectively.Contrastive regularization ensures that the restored image is pulled closer to the clear image and pushed far away from the blurry image in the representation space.Furthermore,instead of estimating the degradation,we extract global statistical prior information to capture the character of the distortion.Considering the coupling between the degradation and the low-resolution image,we embed the global prior into the distortion-specific SR network to make our method adaptive to the changes of distortions.We term our distortion-specific network with contrastive regularization as CRDNet.The extensive experiments on synthetic and realworld scenes demonstrate that our lightweight CRDNet surpasses state-of-the-art blind super-resolution approaches. 展开更多
关键词 Blind super-resolution contrastive learning deep learning image super-resolution(sr)
下载PDF
A Novel AlphaSRGAN for Underwater Image Super Resolution
10
作者 Aswathy K.Cherian E.Poovammal 《Computers, Materials & Continua》 SCIE EI 2021年第11期1537-1552,共16页
Obtaining clear images of underwater scenes with descriptive details is an arduous task.Conventional imaging techniques fail to provide clear cut features and attributes that ultimately result in object recognition er... Obtaining clear images of underwater scenes with descriptive details is an arduous task.Conventional imaging techniques fail to provide clear cut features and attributes that ultimately result in object recognition errors.Consequently,a need for a system that produces clear images for underwater image study has been necessitated.To overcome problems in resolution and to make better use of the Super-Resolution(SR)method,this paper introduces a novel method that has been derived from the Alpha Generative Adversarial Network(AlphaGAN)model,named Alpha Super Resolution Generative Adversarial Network(AlphaSRGAN).The model put forth in this paper helps in enhancing the quality of underwater imagery and yields images with greater resolution and more concise details.Images undergo pre-processing before they are fed into a generator network that optimizes and reforms the structure of the network while enhancing the stability of the network that acts as the generator.After the images are processed by the generator network,they are passed through an adversarial method for training models.The dataset used in this paper to learn Single Image Super Resolution(SISR)is the USR 248 dataset.Training supervision is performed by an unprejudiced function that simultaneously scrutinizes and improves the image quality.Appraisal of images is done with reference to factors like local style information,global content and color.The dataset USR 248 which has a huge collection of images has been used for the study is composed of three collections of images—high(640×480)and low(80×60,160×120,and 320×240).Paired instances of different sizes—2×,4×and 8×—are also present in the dataset.Parameters like Mean Opinion Score(MOS),Peak Signal-to-Noise Ratio(PSNR),Structural Similarity(SSIM)and Underwater Image Quality Measure(UIQM)scores have been compared to validate the improved efficiency of our model when compared to existing works. 展开更多
关键词 Underwater imagery single image super-resolution perceptual quality generative adversarial network image super resolution
下载PDF
Adaptive deep residual network for single image super-resolution 被引量:4
11
作者 Shuai Liu Ruipeng Gang +1 位作者 Chenghua Li Ruixia Song 《Computational Visual Media》 CSCD 2019年第4期391-401,共11页
In recent years,deep learning has achieved great success in the field of image processing.In the single image super-resolution(SISR)task,the convolutional neural network(CNN)extracts the features of the image through ... In recent years,deep learning has achieved great success in the field of image processing.In the single image super-resolution(SISR)task,the convolutional neural network(CNN)extracts the features of the image through deeper layers,and has achieved impressive results.In this paper,we propose a single image super-resolution model based on Adaptive Deep Residual named as ADR-SR,which uses the Input Output Same Size(IOSS)structure,and releases the dependence of upsampling layers compared with the existing SR methods.Specifically,the key element of our model is the Adaptive Residual Block(ARB),which replaces the commonly used constant factor with an adaptive residual factor.The experiments prove the effectiveness of our ADR-SR model,which can not only reconstruct images with better visual effects,but also get better objective performances. 展开更多
关键词 single image super-resolution(SIsr) ADAPTIVE DEEP RESIDUAL network DEEP learning
原文传递
RFCNet:Remote Sensing Image Super-Resolution Using Residual Feature Calibration Network 被引量:1
12
作者 Yuan Xue Liangliang Li +5 位作者 Zheyuan Wang Chenchen Jiang Minqin Liu Jiawen Wang Kaipeng Sun Hongbing Ma 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2023年第3期475-485,共11页
In the field of single remote sensing image Super-Resolution(SR),deep Convolutional Neural Networks(CNNs)have achieved top performance.To further enhance convolutional module performance in processing remote sensing i... In the field of single remote sensing image Super-Resolution(SR),deep Convolutional Neural Networks(CNNs)have achieved top performance.To further enhance convolutional module performance in processing remote sensing images,we construct an efficient residual feature calibration block to generate expressive features.After harvesting residual features,we first divide them into two parts along the channel dimension.One part flows to the Self-Calibrated Convolution(SCC)to be further refined,and the other part is rescaled by the proposed Two-Path Channel Attention(TPCA)mechanism.SCC corrects local features according to their expressions under the deep receptive field,so that the features can be refined without increasing the number of calculations.The proposed TPCA uses the means and variances of feature maps to obtain accurate channel attention vectors.Moreover,a region-level nonlocal operation is introduced to capture long-distance spatial contextual information by exploring pixel dependencies at the region level.Extensive experiments demonstrate that the proposed residual feature calibration network is superior to other SR methods in terms of quantitative metrics and visual quality. 展开更多
关键词 Convolutional Neural Network(CNN) remote sensing image super-resolution(sr) attention mechanism
原文传递
SRResNet Performance Enhancement Using Patch Inputs and Partial Convolution-Based Padding
13
作者 Safi Ullah Seong-Ho Song 《Computers, Materials & Continua》 SCIE EI 2023年第2期2999-3014,共16页
Due to highly underdetermined nature of Single Image Super-Resolution(SISR)problem,deep learning neural networks are required to be more deeper to solve the problem effectively.One of deep neural networks successful i... Due to highly underdetermined nature of Single Image Super-Resolution(SISR)problem,deep learning neural networks are required to be more deeper to solve the problem effectively.One of deep neural networks successful in the Super-Resolution(SR)problem is ResNet which can render the capability of deeper networks with the help of skip connections.However,zero padding(ZP)scheme in the network restricts benefits of skip connections in SRResNet and its performance as the ratio of the number of pure input data to that of zero padded data increases.In this paper.we consider the ResNet with Partial Convolution based Padding(PCP)instead of ZP to solve SR problem.Since training of deep neural networks using patch images is advantageous in many aspects such as the number of training image data and network complexities,patch image based SR performance is compared with single full image based one.The experimental results show that patch based SRResNet SR results are better than single full image based ones and the performance of deep SRResNet with PCP is better than the one with ZP. 展开更多
关键词 single image super-resolution srResNet patch inputs zero padding partial convolution based padding
下载PDF
Edge preserving super-resolution infrared image reconstruction based on L1-and L2-norms 被引量:1
14
作者 Shaosheng DAI Dezhou ZHANG +2 位作者 Junjie CUI Xiaoxiao ZHANG Jinsong LIU 《Frontiers of Optoelectronics》 EI CSCD 2017年第2期189-194,共6页
Super-resolution (SR) is a widely used tech- nology that increases image resolution using algorithmic methods. However, preserving the local edge structure and visual quality in infrared (IR) SR images is challeng... Super-resolution (SR) is a widely used tech- nology that increases image resolution using algorithmic methods. However, preserving the local edge structure and visual quality in infrared (IR) SR images is challenging because of their disadvantages, such as lack of detail, poor contrast, and blurry edges. Traditional and advanced methods maintain the quantitative measures, but they mostly fail to preserve edge and visual quality. This paper proposes an algorithm based on high frequency layer features. This algorithm focuses on the IR image edge texture in the reconstruction process. Experimental results show that the mean gradient of the IR image reconstructed by the proposed algorithm increased by 1.5, 1.4, and 1.2 times than that of the traditional algorithm based on L1- norm, L2-norm, and traditional mixed norm, respectively. The peak signal-to-noise ratio, structural similarity index, and visual effect of the reconstructed image also improved. 展开更多
关键词 infrared (IR) super-resolution (sr image reconstruction high frequency layer edge texture
原文传递
Super-resolution reconstruction of astronomical images using time-scale adaptive normalized convolution
15
作者 Rui GUO Xiaoping SHI +1 位作者 Yi ZHU Ting YU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第8期1752-1763,共12页
In this work, we describe a new multiframe Super-Resolution(SR) framework based on time-scale adaptive Normalized Convolution(NC), and apply it to astronomical images. The method mainly uses the conceptual basis o... In this work, we describe a new multiframe Super-Resolution(SR) framework based on time-scale adaptive Normalized Convolution(NC), and apply it to astronomical images. The method mainly uses the conceptual basis of NC where each neighborhood of a signal is expressed in terms of the corresponding subspace expanded by the chosen polynomial basis function. Instead of the conventional NC, the introduced spatially adaptive filtering kernel is utilized as the applicability function of shape-adaptive NC, which fits the local image structure information including shape and orientation. This makes it possible to obtain image patches with the same modality,which are collected for polynomial expansion to maximize the signal-to-noise ratio and suppress aliasing artifacts across lines and edges. The robust signal certainty takes the confidence value at each point into account before a local polynomial expansion to minimize the influence of outliers.Finally, the temporal scale applicability is considered to omit accurate motion estimation since it is easy to result in annoying registration errors in real astronomical applications. Excellent SR reconstruction capability of the time-scale adaptive NC is demonstrated through fundamental experiments on both synthetic images and real astronomical images when compared with other SR reconstruction methods. 展开更多
关键词 Astronomical image processing Motion estimation Normalized Convolution(NC) Polynomial expansion Signal-to-noise ratio super-resolution (sr)reconstruction
原文传递
Single-Molecule Fluorescence Imaging of Nanocatalysis 被引量:3
16
作者 Yi Xiao Weilin Xu 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2021年第6期1459-1470,共12页
Single-molecule fluorescence microscopy(SMFM)has been considered as a powerful tool to study nanocatalysis of single nanoparticles,due to its single-molecule sensitivity and high spatiotemporal resolution.In this revi... Single-molecule fluorescence microscopy(SMFM)has been considered as a powerful tool to study nanocatalysis of single nanoparticles,due to its single-molecule sensitivity and high spatiotemporal resolution.In this review,we discuss recent progresses on investigating nanocatalysis at single-mol-ecule/particle level by using SMFM.The discussion focuses on the applications of single-molecule methods in probing the chemocatalysis,electrocatalysis,photocatalysis and photoelectrocatalysis.Finally,we provide our opinions on limitations and prospects of the single-molecule fluorescence approach for investigating nanocatalysis. 展开更多
关键词 single-molecule studies FLUORESCENCE single nanoparticles super-resolution imaging Heterogeneous catalysis
原文传递
基于交叉耦合字典与随机森林的单帧超分辨率算法 被引量:1
17
作者 何常胜 夏晓峰 徐平平 《计算机工程》 CAS CSCD 北大核心 2016年第3期266-271,277,共7页
针对一般单帧图像超分辨率算法运行速度较慢和参数冗余问题,提出一种基于交叉耦合字典,并给出利用随机森林算法解决多元回归问题的单帧超分辨率算法。引出耦合字典中最核心的问题,即从LR图像块到HR图像块的映射问题,得到单帧超分辨率与... 针对一般单帧图像超分辨率算法运行速度较慢和参数冗余问题,提出一种基于交叉耦合字典,并给出利用随机森林算法解决多元回归问题的单帧超分辨率算法。引出耦合字典中最核心的问题,即从LR图像块到HR图像块的映射问题,得到单帧超分辨率与局部线性回归的关系,设计新的正则化目标函数,并利用随机森林算法优化该目标函数。实验结果表明,与广义相似最近邻域算法、基于实例的邻域回归超分辨率算法等相比,该算法能获得较高的峰值信噪比和结构相似性指标,且所得结果图像纹理更加丰富自然。 展开更多
关键词 单帧图像 超分辨率 随机森林 回归矩阵 正则化
下载PDF
增强的单幅图像自学习超分辨方法 被引量:4
18
作者 黄凤 王晓明 《计算机应用》 CSCD 北大核心 2017年第9期2636-2642,2699,共8页
针对图像超分辨率方法构建图像块的稀疏表示(SR)系数存在的主要问题,利用加权思想提出一种增强的单幅图像自学习超分辨方法。首先,通过自学习建立高低分辨率图像金字塔;然后,分别提取低分辨率图像的图像块特征和对应高分辨率图像块的中... 针对图像超分辨率方法构建图像块的稀疏表示(SR)系数存在的主要问题,利用加权思想提出一种增强的单幅图像自学习超分辨方法。首先,通过自学习建立高低分辨率图像金字塔;然后,分别提取低分辨率图像的图像块特征和对应高分辨率图像块的中心像素,并给图像块中不同像素点赋予不同的权重,强调中心像素点在构建图像块稀疏系数时的作用;最后,结合SR理论和支持向量回归(SVR)技术建立超分辨率图像重建模型。实验结果表明,与单幅图像自学习超分辨率方法(SLSR)相比,所提方法的峰值信噪比(PSNR)平均提高了0.39 dB,无参考图像质量评价标准(BRISQUE)分数平均降低了9.7。从主观视角和客观数值证明了所提超分辨率方法更有效。 展开更多
关键词 数字图像处理 单幅图像超分辨率 稀疏表达 支持向量回归 权重系数
下载PDF
Optical super-resolution microscopy and its applications in nano-catalysis 被引量:3
19
作者 Wenhui Wang Junnan Gu +7 位作者 Ting He Yangbin Shen Shaobo Xi Lei Tian Feifei Li Haoyuan Li Liuming Yan Xiaochun Zhou 《Nano Research》 SCIE EI CAS CSCD 2015年第2期441-455,共15页
The resolution of conventional optical microscopy is only -200 nm, which is becoming less and less sufficient for a variety of applications. In order to surpass the diffraction limited resolution, super-resolution mic... The resolution of conventional optical microscopy is only -200 nm, which is becoming less and less sufficient for a variety of applications. In order to surpass the diffraction limited resolution, super-resolution microscopy (SRM) has been developed to achieve a high resolution of one to tens of nanometers. The techniques involved in SRM can be assigned into two broad categories, namely "true" super-resolution techniques and "functional" super-resolution techniques. In "functional" super-resolution techniques, stochastic super-resolution microscopy (SSRM) is widely used due to its low expense, simple operation, and high resolution. The principle process in SSRM is to accumulate the coordinates of many diffraction-limited emitters (e.g., single fluorescent molecules) on the object by localizing the centroids of the point spread functions (PSF), and then reconstruct the image of the object using these coordinates. When the diffraction-limited emitters take part in a catalytic reaction, the activity distribution and kinetic information about the catalysis by nanoparticles can be obtained by SSRM. SSRM has been applied and exhibited outstanding advantages in several fields of catalysis, such as metal nanoparticle catalysis, molecular sieve catalysis, and photocatalysis. Since SSRM is able to resolve the catalytic activity within one nanoparticle, it promises to accelerate the development and discovery of new and better catalysts. This review will present a brief introduction to SRM, and a detailed description of SSRM and its applications in nano-catalysis. 展开更多
关键词 super-resolution imaging single molecule CATALYSIS MICROSCOPY NANOPARTICLE
原文传递
Color centers in wide-bandgap semiconductors for subdiffraction imaging:a review
20
作者 Stefania Castelletto Alberto Boretti 《Advanced Photonics》 EI CSCD 2021年第5期2-21,共20页
Solid-state atomic-sized color centers in wide-band-gap semiconductors,such as diamond,silicon carbide,and hexagonal boron nitride,are important platforms for quantum technologies,specifically for single-photon source... Solid-state atomic-sized color centers in wide-band-gap semiconductors,such as diamond,silicon carbide,and hexagonal boron nitride,are important platforms for quantum technologies,specifically for single-photon sources and quantum sensing.One of the emerging applications of these quantum emitters is subdiffraction imaging.This capability is provided by the specific photophysical properties of color centers,such as high dipole moments,photostability,and a variety of spectral ranges of the emitters with associated optical and microwave control of their quantum states.We review applications of color centers in traditional super-resolution microscopy and quantum imaging methods,and compare relative performance.The current state and perspectives of their applications in biomedical,chemistry,and material science imaging are outlined. 展开更多
关键词 color centers quantum optics single photon emitters super-resolution imaging transparent semiconductors
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部