Single-pixel imaging(SPI)can transform 2D or 3D image data into 1D light signals,which offers promising prospects for image compression and transmission.However,during data communication these light signals in public ...Single-pixel imaging(SPI)can transform 2D or 3D image data into 1D light signals,which offers promising prospects for image compression and transmission.However,during data communication these light signals in public channels will easily draw the attention of eavesdroppers.Here,we introduce an efficient encryption method for SPI data transmission that uses the 3D Arnold transformation to directly disrupt 1D single-pixel light signals and utilizes the elliptic curve encryption algorithm for key transmission.This encryption scheme immediately employs Hadamard patterns to illuminate the scene and then utilizes the 3D Arnold transformation to permutate the 1D light signal of single-pixel detection.Then the transformation parameters serve as the secret key,while the security of key exchange is guaranteed by an elliptic curve-based key exchange mechanism.Compared with existing encryption schemes,both computer simulations and optical experiments have been conducted to demonstrate that the proposed technique not only enhances the security of encryption but also eliminates the need for complicated pattern scrambling rules.Additionally,this approach solves the problem of secure key transmission,thus ensuring the security of information and the quality of the decrypted images.展开更多
Motion blur restoration is essential for the imaging of moving objects,especially for single-pixel imaging(SPI),which requires multiple measurements.To reconstruct the image of a moving object with multiple motion mod...Motion blur restoration is essential for the imaging of moving objects,especially for single-pixel imaging(SPI),which requires multiple measurements.To reconstruct the image of a moving object with multiple motion modes,we propose a novel motion blur restoration method of SPI using geometric moment patterns.We design a novel localization method that uses normalized differential first-order moments and central moment patterns to determine the object's translational position and rotation angle information.Then,we perform motion compensation by using shifting Hadamard patterns.Our method effectively improves the detection accuracy of multiple motion modes and enhances the quality of the reconstructed image.We perform simulations and experiments,and the results validate the effectiveness of the proposed method.展开更多
We propose a method of complex-amplitude Fourier single-pixel imaging(CFSI)with coherent structured illumination to acquire both the amplitude and phase of an object.In the proposed method,an object is illustrated by ...We propose a method of complex-amplitude Fourier single-pixel imaging(CFSI)with coherent structured illumination to acquire both the amplitude and phase of an object.In the proposed method,an object is illustrated by a series of coherent structured light fields,which are generated by a phase-only spatial light modulator,the complex Fourier spectrum of the object can be acquired sequentially by a single-pixel photodetector.Then the desired complex-amplitude image can be retrieved directly by applying an inverse Fourier transform.We experimentally implemented this CFSI with several different types of objects.The experimental results show that the proposed method provides a promising complex-amplitude imaging approach with high quality and a stable configuration.Thus,it might find broad applications in optical metrology and biomedical science.展开更多
We propose a single-pixel imaging(SPI)method to achieve a higher-resolution image via the Hadamard transform matrix.Unlike traditional SPI schemes,this new method recovers images by correlating single-pixel signals wi...We propose a single-pixel imaging(SPI)method to achieve a higher-resolution image via the Hadamard transform matrix.Unlike traditional SPI schemes,this new method recovers images by correlating single-pixel signals with synchronized transformed patterns of Hadamard bases that are actually projected onto the digital micromirror device.Each transform pattern is obtained through the inverse Fourier transform of the pattern acquired by Gaussian filtering of each Hadamard basis in the frequency domain.The proposed scheme is based on a typical SPI experimental setup and does not add any hardware complexity,enabling the transformation of Hadamard matrices and image reconstruction through data processing alone.Therefore,this approach could be considered as an alternative option for achieving fast SPI in a diffraction-limited imaging system,without the need for additional hardware.展开更多
The single-pixel imaging(SPI) technique is able to capture two-dimensional(2 D) images without conventional array sensors by using a photodiode. As a novel scheme, Fourier single-pixel imaging(FSI) has been proven cap...The single-pixel imaging(SPI) technique is able to capture two-dimensional(2 D) images without conventional array sensors by using a photodiode. As a novel scheme, Fourier single-pixel imaging(FSI) has been proven capable of reconstructing high-quality images. Due to the fact that the Fourier basis patterns(also known as grayscale sinusoidal patterns)cannot be well displayed on the digital micromirror device(DMD), a fast FSI system is proposed to solve this problem by binarizing Fourier pattern through a dithering algorithm. However, the traditional dithering algorithm leads to low quality as the extra noise is inevitably induced in the reconstructed images. In this paper, we report a better dithering algorithm to binarize Fourier pattern, which utilizes the Sierra–Lite kernel function by a serpentine scanning method. Numerical simulation and experiment demonstrate that the proposed algorithm is able to achieve higher quality under different sampling ratios.展开更多
Single-pixel imaging (SPI) captures two-dimensional images utilizing a sequence of modulation patterns and measurements recorded by a single-pixel detector. However, the sequential measurement of a scene is time-consu...Single-pixel imaging (SPI) captures two-dimensional images utilizing a sequence of modulation patterns and measurements recorded by a single-pixel detector. However, the sequential measurement of a scene is time-consuming, especially for high-spatial-resolution imaging. Furthermore, for spectral SPI, the enormous data storage and processing time requirements substantially diminish imaging efficiency. To reduce the required number of patterns, we propose a strategy by optimizing a Hadamard pattern sequence via Morton frequency domain scanning to enhance the quality of a reconstructed spectral cube at low sampling rates. Additionally, we expedite spectral cube reconstruction, eliminating the necessity for a large Hadamard matrix. We demonstrate the effectiveness of our approach through both simulation and experiment,achieving sub-Nyquist sampling of a three-dimensional spectral cube with a spatial resolution of 256×256 pixels and181 spectral bands and a reduction in reconstruction time by four orders of magnitude. Consequently, our method offers an efficient solution for compressed spectral imaging.展开更多
A two-stage training method is proposed to enhance imaging quality and reduce reconstruction time in datadriven single-pixel imaging(SPI)under undersampling conditions.This approach leverages a deep learning algorithm...A two-stage training method is proposed to enhance imaging quality and reduce reconstruction time in datadriven single-pixel imaging(SPI)under undersampling conditions.This approach leverages a deep learning algorithm to simulate single-pixel detection and image reconstruction.During the initial training stage,an L2 regularization constraint is imposed on convolution modulation patterns to determine the optimal initial network weights.In the subsequent stage,a coupled deep learning method integrating coded-aperture design and SPI is adopted,which utilizes backpropagation of the loss function to iteratively optimize both the binarized modulation patterns and imaging network parameters.By reducing the binarization errors introduced by the dithering algorithm,this approach improves the quality of data-driven SPI.Compared with traditional deep-learning SPI methods,the proposed method significantly reduces computational complexity,resulting in accelerated image reconstruction.Experimental and simulation results demonstrate the advantages of the method,including high imaging quality,short image reconstruction time,and simplified training.For an image size of 64×64 pixels and 10%sampling rate,the proposed method achieves a peak signal-to-noise ratio of 23.22 dB,structural similarity index of 0.76,and image reconstruction time of approximately 2.57×10^(−4) seconds.展开更多
Depth measurement and three-dimensional(3D)imaging under complex reflection and transmission conditions are challenging and even impossible for traditional structured light techniques,owing to the precondition of poin...Depth measurement and three-dimensional(3D)imaging under complex reflection and transmission conditions are challenging and even impossible for traditional structured light techniques,owing to the precondition of point-to-point triangulation.Despite recent progress in addressing this problem,there is still no efficient and general solution.Herein,a Fourier dual-slice projection with depth-constrained localization is presented to separate and utilize different illumination and reflection components efficiently,which can significantly decrease the number of projection patterns in each sequence from thousands to fifteen.Subsequently,multi-scale parallel single-pixel imaging(MS-PSI)is proposed based on the established and proven position-invariant theorem,which breaks the local regional assumption and enables dynamic 3D reconstruction.Our methodology successfully unveils unseen-before capabilities such as(1)accurate depth measurement under interreflection and subsurface scattering conditions,(2)dynamic measurement of the time-varying high-dynamic-range scene and through thin volumetric scattering media at a rate of 333 frames per second;(3)two-layer 3D imaging of the semitransparent surface and the object hidden behind it.The experimental results confirm that the proposed method paves the way for dynamic 3D reconstruction under complex optical field reflection and transmission conditions,benefiting imaging and sensing applications in advanced manufacturing,autonomous driving,and biomedical imaging.展开更多
In this Letter,we innovatively present general analytical expressions for arbitrary n-step phase-shifting Fourier single-pixel imaging(FSI).We also design experiments capable of implementing arbitrary n-step phase-shi...In this Letter,we innovatively present general analytical expressions for arbitrary n-step phase-shifting Fourier single-pixel imaging(FSI).We also design experiments capable of implementing arbitrary n-step phase-shifting FSI and compare the experimental results,including the image quality,for 3-to 6-step phase-shifting cases without loss of generality.These results suggest that,compared to the 4-step method,these FSI approaches with a larger number of steps exhibit enhanced robustness against noise while ensuring no increase in data-acquisition time.These approaches provide us with more strategies to perform FSI for different steps,which could offer guidance in balancing the tradeoff between the image quality and the number of steps encountered in the application of FSI.展开更多
The array spatial light field is an effective means for improving imaging speed in single-pixel imaging.However,distinguishing the intensity values of each sub-light field in the array spatial light field requires the...The array spatial light field is an effective means for improving imaging speed in single-pixel imaging.However,distinguishing the intensity values of each sub-light field in the array spatial light field requires the help of the array detector or the time-consuming deep-learning algorithm.Aiming at this problem,we propose measurable speckle gradation Hadamard single-pixel imaging(MSG-HSI),which makes most of the refresh mechanism of the device generate the Hadamard speckle patterns and the high sampling rate of the bucket detector and is capable of measuring the light intensity fluctuation of the array spatial light field only by a simple bucket detector.The numerical and experimental results indicate that data acquisition in MSG-HSI is 4 times faster than in traditional Hadamard single-pixel imaging.Moreover,imaging quality in MSG-HSI can be further improved by image stitching technology.Our approach may open a new perspective for single-pixel imaging to improve imaging speed.展开更多
We propose pattern self-referenced single-pixel common-path holography(PSSCH),which can be realized using either the digital-micromirror-device(DMD)based off-axis scheme or the DMD-based phaseshifting approach,sharing...We propose pattern self-referenced single-pixel common-path holography(PSSCH),which can be realized using either the digital-micromirror-device(DMD)based off-axis scheme or the DMD-based phaseshifting approach,sharing the same experimental setup,to do wavefront reconstructions.In this method,each modulation pattern is elaborately encoded to be utilized to not only sample the target wavefront but also to dynamically introduce the reference light for single-pixel common-path holographic detection.As such,it does not need to intentionally introduce a static reference light,resulting in it making full use of the pixel resolution of the modulation patterns and suppressing dynamically varying noises.Experimental demonstrations show that the proposed method can not only obtain a larger field of view than the peripheral-referenced approach but also achieve a higher imaging resolution than the checkerboardreferenced approach.The phase-shifting-based PSSCH performs better than the off-axis-based PSSCH on imaging fidelity,while the imaging speed of the latter is several times faster.Further,we demonstrate our method to do wavefront imaging of a biological sample as well as to do phase detection of a physical lens.The experimental results suggest its effectiveness in applications.展开更多
Historically,psychiatric diagnoses have been made based on patient’s reported symptoms applying the criteria from diagnostic and statistical manual of mental disorders.The utilization of neuroimaging or biomarkers to...Historically,psychiatric diagnoses have been made based on patient’s reported symptoms applying the criteria from diagnostic and statistical manual of mental disorders.The utilization of neuroimaging or biomarkers to make the diagnosis and manage psychiatric disorders remains a distant goal.There have been several studies that examine brain imaging in psychiatric disorders,but more work is needed to elucidate the complexities of the human brain.In this editorial,we examine two articles by Xu et al and Stoyanov et al,that show developments in the direction of using neuroimaging to examine the brains of people with schizo-phrenia and depression.Xu et al used magnetic resonance imaging to examine the brain structure of patients with schizophrenia,in addition to examining neurotransmitter levels as biomarkers.Stoyanov et al used functional magnetic resonance imaging to look at modulation of different neural circuits by diagnostic-specific scales in patients with schizophrenia and depression.These two studies provide crucial evidence in advancing our understanding of the brain in prevalent psychiatric disorders.展开更多
BACKGROUND Pancreatic cancer remains one of the most lethal malignancies worldwide,with a poor prognosis often attributed to late diagnosis.Understanding the correlation between pathological type and imaging features ...BACKGROUND Pancreatic cancer remains one of the most lethal malignancies worldwide,with a poor prognosis often attributed to late diagnosis.Understanding the correlation between pathological type and imaging features is crucial for early detection and appropriate treatment planning.AIM To retrospectively analyze the relationship between different pathological types of pancreatic cancer and their corresponding imaging features.METHODS We retrospectively analyzed the data of 500 patients diagnosed with pancreatic cancer between January 2010 and December 2020 at our institution.Pathological types were determined by histopathological examination of the surgical spe-cimens or biopsy samples.The imaging features were assessed using computed tomography,magnetic resonance imaging,and endoscopic ultrasound.Statistical analyses were performed to identify significant associations between pathological types and specific imaging characteristics.RESULTS There were 320(64%)cases of pancreatic ductal adenocarcinoma,75(15%)of intraductal papillary mucinous neoplasms,50(10%)of neuroendocrine tumors,and 55(11%)of other rare types.Distinct imaging features were identified in each pathological type.Pancreatic ductal adenocarcinoma typically presents as a hypodense mass with poorly defined borders on computed tomography,whereas intraductal papillary mucinous neoplasms present as characteristic cystic lesions with mural nodules.Neuroendocrine tumors often appear as hypervascular lesions in contrast-enhanced imaging.Statistical analysis revealed significant correlations between specific imaging features and pathological types(P<0.001).CONCLUSION This study demonstrated a strong association between the pathological types of pancreatic cancer and imaging features.These findings can enhance the accuracy of noninvasive diagnosis and guide personalized treatment approaches.展开更多
BACKGROUND Focal nodular hyperplasia(FNH)-like lesions are hyperplastic formations in patients with micronodular cirrhosis and a history of alcohol abuse.Although pathologically similar to hepatocellular carcinoma(HCC...BACKGROUND Focal nodular hyperplasia(FNH)-like lesions are hyperplastic formations in patients with micronodular cirrhosis and a history of alcohol abuse.Although pathologically similar to hepatocellular carcinoma(HCC)lesions,they are benign.As such,it is important to develop methods to distinguish between FNH-like lesions and HCC.AIM To evaluate diagnostically differential radiological findings between FNH-like lesions and HCC.METHODS We studied pathologically confirmed FNH-like lesions in 13 patients with alco-holic cirrhosis[10 men and 3 women;mean age:54.5±12.5(33-72)years]who were negative for hepatitis-B surface antigen and hepatitis-C virus antibody and underwent dynamic computed tomography(CT)and magnetic resonance imaging(MRI),including superparamagnetic iron oxide(SPIO)and/or gadoxetic acid-enhanced MRI.Seven patients also underwent angiography-assisted CT.RESULTS The evaluated lesion features included arterial enhancement pattern,washout appearance(low density compared with that of surrounding liver parenchyma),signal intensity on T1-weighted image(T1WI)and T2-weighted image(T2WI),central scar presence,chemical shift on in-and out-of-phase images,and uptake pattern on gadoxetic acid-enhanced MRI hepatobiliary phase and SPIO-enhanced MRI.Eleven patients had multiple small lesions(<1.5 cm).Radiological features of FNH-like lesions included hypervascularity despite small lesions,lack of“corona-like”enhancement in the late phase on CT during hepatic angiography(CTHA),high-intensity on T1WI,slightly high-or iso-intensity on T2WI,no signal decrease in out-of-phase images,and complete SPIO uptake or incomplete/partial uptake of gadoxetic acid.Pathologically,similar to HCC,FNH-like lesions showed many unpaired arteries and sinusoidal capillarization.CONCLUSION Overall,the present study showed that FNH-like lesions have unique radiological findings useful for differential diagnosis.Specifically,SPIO-and/or gadoxetic acid-enhanced MRI and CTHA features might facilitate differential diagnosis of FNH-like lesions and HCC.展开更多
BACKGROUND The liver,as the main target organ for hematogenous metastasis of colorectal cancer,early and accurate prediction of liver metastasis is crucial for the diagnosis and treatment of patients.Herein,this study...BACKGROUND The liver,as the main target organ for hematogenous metastasis of colorectal cancer,early and accurate prediction of liver metastasis is crucial for the diagnosis and treatment of patients.Herein,this study aims to investigate the application value of a combined machine learning(ML)based model based on the multiparameter magnetic resonance imaging for prediction of rectal metachronous liver metastasis(MLM).AIM To investigate the efficacy of radiomics based on multiparametric magnetic resonance imaging images of preoperative first diagnosed rectal cancer in predicting MLM from rectal cancer.METHODS We retrospectively analyzed 301 patients with rectal cancer confirmed by surgical pathology at Jingzhou Central Hospital from January 2017 to December 2023.All participants were randomly assigned to the training or validation queue in a 7:3 ratio.We first apply generalized linear regression model(GLRM)and random forest model(RFM)algorithm to construct an MLM prediction model in the training queue,and evaluate the discriminative power of the MLM prediction model using area under curve(AUC)and decision curve analysis(DCA).Then,the robustness and generalizability of the MLM prediction model were evaluated based on the internal validation set between the validation queue groups.RESULTS Among the 301 patients included in the study,16.28%were ultimately diagnosed with MLM through pathological examination.Multivariate analysis showed that carcinoembryonic antigen,and magnetic resonance imaging radiomics were independent predictors of MLM.Then,the GLRM prediction model was developed with a comprehensive nomogram to achieve satisfactory differentiation.The prediction performance of GLRM in the training and validation queue was 0.765[95%confidence interval(CI):0.710-0.820]and 0.767(95%CI:0.712-0.822),respectively.Compared with GLRM,RFM achieved superior performance with AUC of 0.919(95%CI:0.868-0.970)and 0.901(95%CI:0.850-0.952)in the training and validation queue,respectively.The DCA indicated that the predictive ability and net profit of clinical RFM were improved.CONCLUSION By combining multiparameter magnetic resonance imaging with the effectiveness and robustness of ML-based predictive models,the proposed clinical RFM can serve as an insight tool for preoperative assessment of MLM risk stratification and provide important information for individual diagnosis and treatment of rectal cancer patients.展开更多
Moderate to severe perinatal hypoxic-ischemic encephalopathy occurs in~1 to 3/1000 live births in high-income countries and is associated with a significant risk of death or neurodevelopmental disability.Detailed asse...Moderate to severe perinatal hypoxic-ischemic encephalopathy occurs in~1 to 3/1000 live births in high-income countries and is associated with a significant risk of death or neurodevelopmental disability.Detailed assessment is important to help identify highrisk infants,to help families,and to support appropriate interventions.A wide range of monitoring tools is available to assess changes over time,including urine and blood biomarkers,neurological examination,and electroencephalography.At present,magnetic resonance imaging is unique as although it is expensive and not suited to monitoring the early evolution of hypoxic-ischemic encephalopathy by a week of life it can provide direct insight into the anatomical changes in the brain after hypoxic-ischemic encephalopathy and so offers strong prognostic information on the long-term outcome after hypoxic-ischemic encephalopathy.This review investigated the temporal dynamics of neonatal hypoxic-ischemic encephalopathy injuries,with a particular emphasis on exploring the correlation between the prognostic implications of magnetic resonance imaging scans in the first week of life and their relationship to long-term outcome prediction,particularly for infants treated with therapeutic hypothermia.A comprehensive literature search,from 2016 to 2024,identified 20 pertinent articles.This review highlights that while the optimal timing of magnetic resonance imaging scans is not clear,overall,it suggests that magnetic resonance imaging within the first week of life provides strong prognostic accuracy.Many challenges limit the timing consistency,particularly the need for intensive care and clinical monitoring.Conversely,although most reports examined the prognostic value of scans taken between 4 and 10 days after birth,there is evidence from small numbers of cases that,at times,brain injury may continue to evolve for weeks after birth.This suggests that in the future it will be important to explore a wider range of times after hypoxic-ischemic encephalopathy to fully understand the optimal timing for predicting long-term outcomes.展开更多
Sotos syndrome is characterized by overgrowth features and is caused by alterations in the nuclear receptor binding SET domain protein 1 gene.Attentiondeficit/hyperactivity disorder(ADHD)is considered a neurodevelopme...Sotos syndrome is characterized by overgrowth features and is caused by alterations in the nuclear receptor binding SET domain protein 1 gene.Attentiondeficit/hyperactivity disorder(ADHD)is considered a neurodevelopment and psychiatric disorder in childhood.Genetic characteristics and clinical presentation could play an important role in the diagnosis of Sotos syndrome and ADHD.Magnetic resonance imaging(MRI)has been used to assess medical images in Sotos syndrome and ADHD.The images process is considered to display in MRI while wavelet fusion has been used to integrate distinct images for achieving more complete information in single image in this editorial.In the future,genetic mechanisms and artificial intelligence related to medical images could be used in the clinical diagnosis of Sotos syndrome and ADHD.展开更多
Diabetes mellitus(DM)is a debilitating disorder that impacts all systems of the body and has been increasing in prevalence throughout the globe.DM represents a significant clinical challenge to care for individuals an...Diabetes mellitus(DM)is a debilitating disorder that impacts all systems of the body and has been increasing in prevalence throughout the globe.DM represents a significant clinical challenge to care for individuals and prevent the onset of chronic disability and ultimately death.Underlying cellular mechanisms for the onset and development of DM are multi-factorial in origin and involve pathways associated with the production of reactive oxygen species and the generation of oxidative stress as well as the dysfunction of mitochondrial cellular organelles,programmed cell death,and circadian rhythm impairments.These pathways can ultimately involve failure in the glymphatic pathway of the brain that is linked to circadian rhythms disorders during the loss of metabolic homeostasis.New studies incorporate a number of promising techniques to examine patients with metabolic disorders that can include machine learning and artificial intelligence pathways to potentially predict the onset of metabolic dysfunction.展开更多
Nowadays,presynaptic dopaminergic positron emission tomography,which assesses deficiencies in dopamine synthesis,storage,and transport,is widely utilized for early diagnosis and differential diagnosis of parkinsonism....Nowadays,presynaptic dopaminergic positron emission tomography,which assesses deficiencies in dopamine synthesis,storage,and transport,is widely utilized for early diagnosis and differential diagnosis of parkinsonism.This review provides a comprehensive summary of the latest developments in the application of presynaptic dopaminergic positron emission tomography imaging in disorders that manifest parkinsonism.We conducted a thorough literature search using reputable databases such as PubMed and Web of Science.Selection criteria involved identifying peer-reviewed articles published within the last 5 years,with emphasis on their relevance to clinical applications.The findings from these studies highlight that presynaptic dopaminergic positron emission tomography has demonstrated potential not only in diagnosing and differentiating various Parkinsonian conditions but also in assessing disease severity and predicting prognosis.Moreover,when employed in conjunction with other imaging modalities and advanced analytical methods,presynaptic dopaminergic positron emission tomography has been validated as a reliable in vivo biomarker.This validation extends to screening and exploring potential neuropathological mechanisms associated with dopaminergic depletion.In summary,the insights gained from interpreting these studies are crucial for enhancing the effectiveness of preclinical investigations and clinical trials,ultimately advancing toward the goals of neuroregeneration in parkinsonian disorders.展开更多
The source's energy fluctuation has a great effect on the quality of single-pixel imaging(SPI).When the method of complementary detection is introduced into an SPI camera system and the echo signal is corrected wi...The source's energy fluctuation has a great effect on the quality of single-pixel imaging(SPI).When the method of complementary detection is introduced into an SPI camera system and the echo signal is corrected with the summation of the light intensities recorded by two complementary detectors,we demonstrate,by both experiments and simulations,that complementary single-pixel imaging(CSPI)is robust to the source's energy fluctuation.The superiority of the CSPI structure is also discussed in comparison with previous SPI via signal monitoring.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.62075241).
文摘Single-pixel imaging(SPI)can transform 2D or 3D image data into 1D light signals,which offers promising prospects for image compression and transmission.However,during data communication these light signals in public channels will easily draw the attention of eavesdroppers.Here,we introduce an efficient encryption method for SPI data transmission that uses the 3D Arnold transformation to directly disrupt 1D single-pixel light signals and utilizes the elliptic curve encryption algorithm for key transmission.This encryption scheme immediately employs Hadamard patterns to illuminate the scene and then utilizes the 3D Arnold transformation to permutate the 1D light signal of single-pixel detection.Then the transformation parameters serve as the secret key,while the security of key exchange is guaranteed by an elliptic curve-based key exchange mechanism.Compared with existing encryption schemes,both computer simulations and optical experiments have been conducted to demonstrate that the proposed technique not only enhances the security of encryption but also eliminates the need for complicated pattern scrambling rules.Additionally,this approach solves the problem of secure key transmission,thus ensuring the security of information and the quality of the decrypted images.
文摘Motion blur restoration is essential for the imaging of moving objects,especially for single-pixel imaging(SPI),which requires multiple measurements.To reconstruct the image of a moving object with multiple motion modes,we propose a novel motion blur restoration method of SPI using geometric moment patterns.We design a novel localization method that uses normalized differential first-order moments and central moment patterns to determine the object's translational position and rotation angle information.Then,we perform motion compensation by using shifting Hadamard patterns.Our method effectively improves the detection accuracy of multiple motion modes and enhances the quality of the reconstructed image.We perform simulations and experiments,and the results validate the effectiveness of the proposed method.
基金Project supported by the Natural Science Foundation of Hebei Province,China(Grant Nos.A2022201039 and F2019201446)the MultiYear Research Grant of University of Macao,China(Grant No.MYRG2020-00082-IAPME)+2 种基金the Science and Technology Development Fund from Macao SAR(FDCT),China(Grant No.0062/2020/AMJ)the Advanced Talents Incubation Program of the Hebei University(Grant No.8012605)the National Natural Science Foundation of China(Grant Nos.11204062,61774053,and 11674273)。
文摘We propose a method of complex-amplitude Fourier single-pixel imaging(CFSI)with coherent structured illumination to acquire both the amplitude and phase of an object.In the proposed method,an object is illustrated by a series of coherent structured light fields,which are generated by a phase-only spatial light modulator,the complex Fourier spectrum of the object can be acquired sequentially by a single-pixel photodetector.Then the desired complex-amplitude image can be retrieved directly by applying an inverse Fourier transform.We experimentally implemented this CFSI with several different types of objects.The experimental results show that the proposed method provides a promising complex-amplitude imaging approach with high quality and a stable configuration.Thus,it might find broad applications in optical metrology and biomedical science.
基金Project supported by the National Key Research and Development Program of China (Grant No.2018YFB0504302)。
文摘We propose a single-pixel imaging(SPI)method to achieve a higher-resolution image via the Hadamard transform matrix.Unlike traditional SPI schemes,this new method recovers images by correlating single-pixel signals with synchronized transformed patterns of Hadamard bases that are actually projected onto the digital micromirror device.Each transform pattern is obtained through the inverse Fourier transform of the pattern acquired by Gaussian filtering of each Hadamard basis in the frequency domain.The proposed scheme is based on a typical SPI experimental setup and does not add any hardware complexity,enabling the transformation of Hadamard matrices and image reconstruction through data processing alone.Therefore,this approach could be considered as an alternative option for achieving fast SPI in a diffraction-limited imaging system,without the need for additional hardware.
基金Project supported by the National Natural Science Foundation of China(Grant No.61271376)the Anhui Provincial Natural Science Foundation,China(Grant No.1208085MF114)
文摘The single-pixel imaging(SPI) technique is able to capture two-dimensional(2 D) images without conventional array sensors by using a photodiode. As a novel scheme, Fourier single-pixel imaging(FSI) has been proven capable of reconstructing high-quality images. Due to the fact that the Fourier basis patterns(also known as grayscale sinusoidal patterns)cannot be well displayed on the digital micromirror device(DMD), a fast FSI system is proposed to solve this problem by binarizing Fourier pattern through a dithering algorithm. However, the traditional dithering algorithm leads to low quality as the extra noise is inevitably induced in the reconstructed images. In this paper, we report a better dithering algorithm to binarize Fourier pattern, which utilizes the Sierra–Lite kernel function by a serpentine scanning method. Numerical simulation and experiment demonstrate that the proposed algorithm is able to achieve higher quality under different sampling ratios.
文摘Single-pixel imaging (SPI) captures two-dimensional images utilizing a sequence of modulation patterns and measurements recorded by a single-pixel detector. However, the sequential measurement of a scene is time-consuming, especially for high-spatial-resolution imaging. Furthermore, for spectral SPI, the enormous data storage and processing time requirements substantially diminish imaging efficiency. To reduce the required number of patterns, we propose a strategy by optimizing a Hadamard pattern sequence via Morton frequency domain scanning to enhance the quality of a reconstructed spectral cube at low sampling rates. Additionally, we expedite spectral cube reconstruction, eliminating the necessity for a large Hadamard matrix. We demonstrate the effectiveness of our approach through both simulation and experiment,achieving sub-Nyquist sampling of a three-dimensional spectral cube with a spatial resolution of 256×256 pixels and181 spectral bands and a reduction in reconstruction time by four orders of magnitude. Consequently, our method offers an efficient solution for compressed spectral imaging.
文摘A two-stage training method is proposed to enhance imaging quality and reduce reconstruction time in datadriven single-pixel imaging(SPI)under undersampling conditions.This approach leverages a deep learning algorithm to simulate single-pixel detection and image reconstruction.During the initial training stage,an L2 regularization constraint is imposed on convolution modulation patterns to determine the optimal initial network weights.In the subsequent stage,a coupled deep learning method integrating coded-aperture design and SPI is adopted,which utilizes backpropagation of the loss function to iteratively optimize both the binarized modulation patterns and imaging network parameters.By reducing the binarization errors introduced by the dithering algorithm,this approach improves the quality of data-driven SPI.Compared with traditional deep-learning SPI methods,the proposed method significantly reduces computational complexity,resulting in accelerated image reconstruction.Experimental and simulation results demonstrate the advantages of the method,including high imaging quality,short image reconstruction time,and simplified training.For an image size of 64×64 pixels and 10%sampling rate,the proposed method achieves a peak signal-to-noise ratio of 23.22 dB,structural similarity index of 0.76,and image reconstruction time of approximately 2.57×10^(−4) seconds.
基金supported by the National Natural Science Foundation of China(62205226,62075143)the National Postdoctoral Program for Innovative Talents of China(BX2021199)+2 种基金the General Financial Grant from the China Postdoctoral Science Foundation(2022M722290)the Key Science and Technology Research and Development Program of Jiangxi Province(20224AAC01011)the Fundamental Research Funds for Central Universities(2022SCU12010).
文摘Depth measurement and three-dimensional(3D)imaging under complex reflection and transmission conditions are challenging and even impossible for traditional structured light techniques,owing to the precondition of point-to-point triangulation.Despite recent progress in addressing this problem,there is still no efficient and general solution.Herein,a Fourier dual-slice projection with depth-constrained localization is presented to separate and utilize different illumination and reflection components efficiently,which can significantly decrease the number of projection patterns in each sequence from thousands to fifteen.Subsequently,multi-scale parallel single-pixel imaging(MS-PSI)is proposed based on the established and proven position-invariant theorem,which breaks the local regional assumption and enables dynamic 3D reconstruction.Our methodology successfully unveils unseen-before capabilities such as(1)accurate depth measurement under interreflection and subsurface scattering conditions,(2)dynamic measurement of the time-varying high-dynamic-range scene and through thin volumetric scattering media at a rate of 333 frames per second;(3)two-layer 3D imaging of the semitransparent surface and the object hidden behind it.The experimental results confirm that the proposed method paves the way for dynamic 3D reconstruction under complex optical field reflection and transmission conditions,benefiting imaging and sensing applications in advanced manufacturing,autonomous driving,and biomedical imaging.
基金financially supported by the National Natural Science Foundation of China(No.11604243)Natural Science FoundationofTianjin(Nos.23JCYBJC00150and 16JCQNJC01600)State Key Laboratory of Quantum Optics and Quantum Optics Devices(No.KF202206)。
文摘In this Letter,we innovatively present general analytical expressions for arbitrary n-step phase-shifting Fourier single-pixel imaging(FSI).We also design experiments capable of implementing arbitrary n-step phase-shifting FSI and compare the experimental results,including the image quality,for 3-to 6-step phase-shifting cases without loss of generality.These results suggest that,compared to the 4-step method,these FSI approaches with a larger number of steps exhibit enhanced robustness against noise while ensuring no increase in data-acquisition time.These approaches provide us with more strategies to perform FSI for different steps,which could offer guidance in balancing the tradeoff between the image quality and the number of steps encountered in the application of FSI.
基金supported by the National Natural Science Foundation of China(Nos.62101187,61971184,and 62001162)the Hunan Provincial Natural Science Foundation(No.2022JJ40091)the Fundamental Research Funds for the Central Universities(No.531118010757)。
文摘The array spatial light field is an effective means for improving imaging speed in single-pixel imaging.However,distinguishing the intensity values of each sub-light field in the array spatial light field requires the help of the array detector or the time-consuming deep-learning algorithm.Aiming at this problem,we propose measurable speckle gradation Hadamard single-pixel imaging(MSG-HSI),which makes most of the refresh mechanism of the device generate the Hadamard speckle patterns and the high sampling rate of the bucket detector and is capable of measuring the light intensity fluctuation of the array spatial light field only by a simple bucket detector.The numerical and experimental results indicate that data acquisition in MSG-HSI is 4 times faster than in traditional Hadamard single-pixel imaging.Moreover,imaging quality in MSG-HSI can be further improved by image stitching technology.Our approach may open a new perspective for single-pixel imaging to improve imaging speed.
基金supported by the National Natural Science Foundation of China(Grant No.62275188)the Central Guidance on Local Science and Technology Development Fund(Grant No.YDZJSX2024D019)+1 种基金the International Scientific and Technological Cooperative Project in Shanxi Province(Grant No.202104041101009)the Natural Science Foundation of Shanxi Province of China through Research Project(Grant No.20210302123195).
文摘We propose pattern self-referenced single-pixel common-path holography(PSSCH),which can be realized using either the digital-micromirror-device(DMD)based off-axis scheme or the DMD-based phaseshifting approach,sharing the same experimental setup,to do wavefront reconstructions.In this method,each modulation pattern is elaborately encoded to be utilized to not only sample the target wavefront but also to dynamically introduce the reference light for single-pixel common-path holographic detection.As such,it does not need to intentionally introduce a static reference light,resulting in it making full use of the pixel resolution of the modulation patterns and suppressing dynamically varying noises.Experimental demonstrations show that the proposed method can not only obtain a larger field of view than the peripheral-referenced approach but also achieve a higher imaging resolution than the checkerboardreferenced approach.The phase-shifting-based PSSCH performs better than the off-axis-based PSSCH on imaging fidelity,while the imaging speed of the latter is several times faster.Further,we demonstrate our method to do wavefront imaging of a biological sample as well as to do phase detection of a physical lens.The experimental results suggest its effectiveness in applications.
文摘Historically,psychiatric diagnoses have been made based on patient’s reported symptoms applying the criteria from diagnostic and statistical manual of mental disorders.The utilization of neuroimaging or biomarkers to make the diagnosis and manage psychiatric disorders remains a distant goal.There have been several studies that examine brain imaging in psychiatric disorders,but more work is needed to elucidate the complexities of the human brain.In this editorial,we examine two articles by Xu et al and Stoyanov et al,that show developments in the direction of using neuroimaging to examine the brains of people with schizo-phrenia and depression.Xu et al used magnetic resonance imaging to examine the brain structure of patients with schizophrenia,in addition to examining neurotransmitter levels as biomarkers.Stoyanov et al used functional magnetic resonance imaging to look at modulation of different neural circuits by diagnostic-specific scales in patients with schizophrenia and depression.These two studies provide crucial evidence in advancing our understanding of the brain in prevalent psychiatric disorders.
文摘BACKGROUND Pancreatic cancer remains one of the most lethal malignancies worldwide,with a poor prognosis often attributed to late diagnosis.Understanding the correlation between pathological type and imaging features is crucial for early detection and appropriate treatment planning.AIM To retrospectively analyze the relationship between different pathological types of pancreatic cancer and their corresponding imaging features.METHODS We retrospectively analyzed the data of 500 patients diagnosed with pancreatic cancer between January 2010 and December 2020 at our institution.Pathological types were determined by histopathological examination of the surgical spe-cimens or biopsy samples.The imaging features were assessed using computed tomography,magnetic resonance imaging,and endoscopic ultrasound.Statistical analyses were performed to identify significant associations between pathological types and specific imaging characteristics.RESULTS There were 320(64%)cases of pancreatic ductal adenocarcinoma,75(15%)of intraductal papillary mucinous neoplasms,50(10%)of neuroendocrine tumors,and 55(11%)of other rare types.Distinct imaging features were identified in each pathological type.Pancreatic ductal adenocarcinoma typically presents as a hypodense mass with poorly defined borders on computed tomography,whereas intraductal papillary mucinous neoplasms present as characteristic cystic lesions with mural nodules.Neuroendocrine tumors often appear as hypervascular lesions in contrast-enhanced imaging.Statistical analysis revealed significant correlations between specific imaging features and pathological types(P<0.001).CONCLUSION This study demonstrated a strong association between the pathological types of pancreatic cancer and imaging features.These findings can enhance the accuracy of noninvasive diagnosis and guide personalized treatment approaches.
文摘BACKGROUND Focal nodular hyperplasia(FNH)-like lesions are hyperplastic formations in patients with micronodular cirrhosis and a history of alcohol abuse.Although pathologically similar to hepatocellular carcinoma(HCC)lesions,they are benign.As such,it is important to develop methods to distinguish between FNH-like lesions and HCC.AIM To evaluate diagnostically differential radiological findings between FNH-like lesions and HCC.METHODS We studied pathologically confirmed FNH-like lesions in 13 patients with alco-holic cirrhosis[10 men and 3 women;mean age:54.5±12.5(33-72)years]who were negative for hepatitis-B surface antigen and hepatitis-C virus antibody and underwent dynamic computed tomography(CT)and magnetic resonance imaging(MRI),including superparamagnetic iron oxide(SPIO)and/or gadoxetic acid-enhanced MRI.Seven patients also underwent angiography-assisted CT.RESULTS The evaluated lesion features included arterial enhancement pattern,washout appearance(low density compared with that of surrounding liver parenchyma),signal intensity on T1-weighted image(T1WI)and T2-weighted image(T2WI),central scar presence,chemical shift on in-and out-of-phase images,and uptake pattern on gadoxetic acid-enhanced MRI hepatobiliary phase and SPIO-enhanced MRI.Eleven patients had multiple small lesions(<1.5 cm).Radiological features of FNH-like lesions included hypervascularity despite small lesions,lack of“corona-like”enhancement in the late phase on CT during hepatic angiography(CTHA),high-intensity on T1WI,slightly high-or iso-intensity on T2WI,no signal decrease in out-of-phase images,and complete SPIO uptake or incomplete/partial uptake of gadoxetic acid.Pathologically,similar to HCC,FNH-like lesions showed many unpaired arteries and sinusoidal capillarization.CONCLUSION Overall,the present study showed that FNH-like lesions have unique radiological findings useful for differential diagnosis.Specifically,SPIO-and/or gadoxetic acid-enhanced MRI and CTHA features might facilitate differential diagnosis of FNH-like lesions and HCC.
文摘BACKGROUND The liver,as the main target organ for hematogenous metastasis of colorectal cancer,early and accurate prediction of liver metastasis is crucial for the diagnosis and treatment of patients.Herein,this study aims to investigate the application value of a combined machine learning(ML)based model based on the multiparameter magnetic resonance imaging for prediction of rectal metachronous liver metastasis(MLM).AIM To investigate the efficacy of radiomics based on multiparametric magnetic resonance imaging images of preoperative first diagnosed rectal cancer in predicting MLM from rectal cancer.METHODS We retrospectively analyzed 301 patients with rectal cancer confirmed by surgical pathology at Jingzhou Central Hospital from January 2017 to December 2023.All participants were randomly assigned to the training or validation queue in a 7:3 ratio.We first apply generalized linear regression model(GLRM)and random forest model(RFM)algorithm to construct an MLM prediction model in the training queue,and evaluate the discriminative power of the MLM prediction model using area under curve(AUC)and decision curve analysis(DCA).Then,the robustness and generalizability of the MLM prediction model were evaluated based on the internal validation set between the validation queue groups.RESULTS Among the 301 patients included in the study,16.28%were ultimately diagnosed with MLM through pathological examination.Multivariate analysis showed that carcinoembryonic antigen,and magnetic resonance imaging radiomics were independent predictors of MLM.Then,the GLRM prediction model was developed with a comprehensive nomogram to achieve satisfactory differentiation.The prediction performance of GLRM in the training and validation queue was 0.765[95%confidence interval(CI):0.710-0.820]and 0.767(95%CI:0.712-0.822),respectively.Compared with GLRM,RFM achieved superior performance with AUC of 0.919(95%CI:0.868-0.970)and 0.901(95%CI:0.850-0.952)in the training and validation queue,respectively.The DCA indicated that the predictive ability and net profit of clinical RFM were improved.CONCLUSION By combining multiparameter magnetic resonance imaging with the effectiveness and robustness of ML-based predictive models,the proposed clinical RFM can serve as an insight tool for preoperative assessment of MLM risk stratification and provide important information for individual diagnosis and treatment of rectal cancer patients.
基金supported by a grant from the Health Research New Zealand(HRC)22/559(to AJG and LB)。
文摘Moderate to severe perinatal hypoxic-ischemic encephalopathy occurs in~1 to 3/1000 live births in high-income countries and is associated with a significant risk of death or neurodevelopmental disability.Detailed assessment is important to help identify highrisk infants,to help families,and to support appropriate interventions.A wide range of monitoring tools is available to assess changes over time,including urine and blood biomarkers,neurological examination,and electroencephalography.At present,magnetic resonance imaging is unique as although it is expensive and not suited to monitoring the early evolution of hypoxic-ischemic encephalopathy by a week of life it can provide direct insight into the anatomical changes in the brain after hypoxic-ischemic encephalopathy and so offers strong prognostic information on the long-term outcome after hypoxic-ischemic encephalopathy.This review investigated the temporal dynamics of neonatal hypoxic-ischemic encephalopathy injuries,with a particular emphasis on exploring the correlation between the prognostic implications of magnetic resonance imaging scans in the first week of life and their relationship to long-term outcome prediction,particularly for infants treated with therapeutic hypothermia.A comprehensive literature search,from 2016 to 2024,identified 20 pertinent articles.This review highlights that while the optimal timing of magnetic resonance imaging scans is not clear,overall,it suggests that magnetic resonance imaging within the first week of life provides strong prognostic accuracy.Many challenges limit the timing consistency,particularly the need for intensive care and clinical monitoring.Conversely,although most reports examined the prognostic value of scans taken between 4 and 10 days after birth,there is evidence from small numbers of cases that,at times,brain injury may continue to evolve for weeks after birth.This suggests that in the future it will be important to explore a wider range of times after hypoxic-ischemic encephalopathy to fully understand the optimal timing for predicting long-term outcomes.
基金Supported by Natural Science Foundation of Shanghai,No.17ZR1431400National Key R and D Program of China,No.2017YFA0103902.
文摘Sotos syndrome is characterized by overgrowth features and is caused by alterations in the nuclear receptor binding SET domain protein 1 gene.Attentiondeficit/hyperactivity disorder(ADHD)is considered a neurodevelopment and psychiatric disorder in childhood.Genetic characteristics and clinical presentation could play an important role in the diagnosis of Sotos syndrome and ADHD.Magnetic resonance imaging(MRI)has been used to assess medical images in Sotos syndrome and ADHD.The images process is considered to display in MRI while wavelet fusion has been used to integrate distinct images for achieving more complete information in single image in this editorial.In the future,genetic mechanisms and artificial intelligence related to medical images could be used in the clinical diagnosis of Sotos syndrome and ADHD.
基金Supported by American Diabetes AssociationAmerican Heart Association+3 种基金NIH NIEHSNIH NIANIH NINDSand NIH ARRA.
文摘Diabetes mellitus(DM)is a debilitating disorder that impacts all systems of the body and has been increasing in prevalence throughout the globe.DM represents a significant clinical challenge to care for individuals and prevent the onset of chronic disability and ultimately death.Underlying cellular mechanisms for the onset and development of DM are multi-factorial in origin and involve pathways associated with the production of reactive oxygen species and the generation of oxidative stress as well as the dysfunction of mitochondrial cellular organelles,programmed cell death,and circadian rhythm impairments.These pathways can ultimately involve failure in the glymphatic pathway of the brain that is linked to circadian rhythms disorders during the loss of metabolic homeostasis.New studies incorporate a number of promising techniques to examine patients with metabolic disorders that can include machine learning and artificial intelligence pathways to potentially predict the onset of metabolic dysfunction.
基金supported by the Research Project of the Shanghai Health Commission,No.2020YJZX0111(to CZ)the National Natural Science Foundation of China,Nos.82021002(to CZ),82272039(to CZ),82171252(to FL)+1 种基金a grant from the National Health Commission of People’s Republic of China(PRC),No.Pro20211231084249000238(to JW)Medical Innovation Research Project of Shanghai Science and Technology Commission,No.21Y11903300(to JG).
文摘Nowadays,presynaptic dopaminergic positron emission tomography,which assesses deficiencies in dopamine synthesis,storage,and transport,is widely utilized for early diagnosis and differential diagnosis of parkinsonism.This review provides a comprehensive summary of the latest developments in the application of presynaptic dopaminergic positron emission tomography imaging in disorders that manifest parkinsonism.We conducted a thorough literature search using reputable databases such as PubMed and Web of Science.Selection criteria involved identifying peer-reviewed articles published within the last 5 years,with emphasis on their relevance to clinical applications.The findings from these studies highlight that presynaptic dopaminergic positron emission tomography has demonstrated potential not only in diagnosing and differentiating various Parkinsonian conditions but also in assessing disease severity and predicting prognosis.Moreover,when employed in conjunction with other imaging modalities and advanced analytical methods,presynaptic dopaminergic positron emission tomography has been validated as a reliable in vivo biomarker.This validation extends to screening and exploring potential neuropathological mechanisms associated with dopaminergic depletion.In summary,the insights gained from interpreting these studies are crucial for enhancing the effectiveness of preclinical investigations and clinical trials,ultimately advancing toward the goals of neuroregeneration in parkinsonian disorders.
基金supported by the Natural Science Research of Jiangsu Higher Education Institutions of China(No.21KJA140001)the Aeronautical Science Foundation of China(No.2020Z073012001)the Startup Funding of Soochow University(No.NH15901123)。
文摘The source's energy fluctuation has a great effect on the quality of single-pixel imaging(SPI).When the method of complementary detection is introduced into an SPI camera system and the echo signal is corrected with the summation of the light intensities recorded by two complementary detectors,we demonstrate,by both experiments and simulations,that complementary single-pixel imaging(CSPI)is robust to the source's energy fluctuation.The superiority of the CSPI structure is also discussed in comparison with previous SPI via signal monitoring.