期刊文献+
共找到4,480篇文章
< 1 2 224 >
每页显示 20 50 100
Ultra-broadband microwave absorber and high-performance pressure sensor based on aramid nanofiber,polypyrrole and nickel porous aerogel 被引量:1
1
作者 Leyi Zhang Hongyu Jin +7 位作者 Hanxin Liao Rao Zhang Bochong Wang Jianyong Xiang Congpu Mu Kun Zhai Tianyu Xue Fusheng Wen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第8期1912-1921,共10页
Electronic devices have become ubiquitous in our daily lives,leading to a surge in the use of microwave absorbers and wearable sensor devices across various sectors.A prime example of this trend is the aramid nanofibe... Electronic devices have become ubiquitous in our daily lives,leading to a surge in the use of microwave absorbers and wearable sensor devices across various sectors.A prime example of this trend is the aramid nanofibers/polypyrrole/nickel(APN)aerogels,which serve dual roles as both microwave absorbers and pressure sensors.In this work,we focused on the preparation of aramid nanofibers/polypyrrole(AP15)aerogels,where the mass ratio of aramid nanofibers to pyrrole was 1:5.We employed the oxidative polymerization method for the preparation process.Following this,nickel was thermally evaporated onto the surface of the AP15 aerogels,resulting in the creation of an ultralight(9.35 mg·cm^(-3)).This aerogel exhibited a porous structure.The introduction of nickel into the aerogel aimed to enhance magnetic loss and adjust impedance matching,thereby improving electromagnetic wave absorption performance.The minimum reflection loss value achieved was-48.7 dB,and the maximum effective absorption bandwidth spanned 8.42 GHz with a thickness of 2.9 mm.These impressive metrics can be attributed to the three-dimensional network porous structure of the aerogel and perfect impedance matching.Moreover,the use of aramid nanofibers and a three-dimensional hole structure endowed the APN aerogels with good insulation,flame-retardant properties,and compression resilience.Even under a compression strain of 50%,the aerogel maintained its resilience over 500 cycles.The incorporation of polypyrrole and nickel particles further enhanced the conductivity of the aerogel.Consequently,the final APN aerogel sensor demonstrated high sensitivity(10.78 kPa-1)and thermal stability.In conclusion,the APN aerogels hold significant promise as ultra-broadband microwave absorbers and pressure sensors. 展开更多
关键词 porous aerogel aramid nanofibers microwave absorbers pressure sensor porous structure
下载PDF
Flexible capacitive pressure sensor based on interdigital electrodes with porous microneedle arrays for physiological signal monitoring
2
作者 Jiahui Xu Minghao Wang +9 位作者 Minyi Jin Siyan Shang Chuner Ni Yili Hu Xun Sun Jun Xu Bowen Ji Le Li Yuhua Cheng Gaofeng Wang 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第1期18-31,共14页
Flexible pressure sensors have many potential applications in the monitoring of physiological signals because of their good biocompatibil-ity and wearability.However,their relatively low sensitivity,linearity,and stab... Flexible pressure sensors have many potential applications in the monitoring of physiological signals because of their good biocompatibil-ity and wearability.However,their relatively low sensitivity,linearity,and stability have hindered their large-scale commercial application.Herein,aflexible capacitive pressure sensor based on an interdigital electrode structure with two porous microneedle arrays(MNAs)is pro-posed.The porous substrate that constitutes the MNA is a mixed product of polydimethylsiloxane and NaHCO3.Due to its porous and interdigital structure,the maximum sensitivity(0.07 kPa-1)of a porous MNA-based pressure sensor was found to be seven times higher than that of an imporous MNA pressure sensor,and it was much greater than that of aflat pressure sensor without a porous MNA structure.Finite-element analysis showed that the interdigital MNA structure can greatly increase the strain and improve the sensitivity of the sen-sor.In addition,the porous MNA-based pressure sensor was found to have good stability over 1500 loading cycles as a result of its bilayer parylene-enhanced conductive electrode structure.Most importantly,it was found that the sensor could accurately monitor the motion of afinger,wrist joint,arm,face,abdomen,eye,and Adam’s apple.Furthermore,preliminary semantic recognition was achieved by monitoring the movement of the Adam’s apple.Finally,multiple pressure sensors were integrated into a 33 array to detect a spatial pressure distribu-×tion.Compared to the sensors reported in previous works,the interdigital electrode structure presented in this work improves sensitivity and stability by modifying the electrode layer rather than the dielectric layer. 展开更多
关键词 Capacitive pressure sensor Microneedle array Porous PDMS Interdigital electrode
下载PDF
Flexible polydimethylsiloxane pressure sensor with micro-pyramid structures and embedded silver nanowires:A novel application in urinary flow measurement
3
作者 Ben-Song Wang Ang Gao +4 位作者 Song-Wei Huang Qi-Hong Ning Cheng Zhou Qi-Xiang Song Da-XiangCui 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第3期1-12,共12页
Flexible pressure sensors are lightweight and highly sensitive,making them suitable for use in small portable devices to achieve precise measurements of tiny forces.This article introduces a low-cost and easy-fabricat... Flexible pressure sensors are lightweight and highly sensitive,making them suitable for use in small portable devices to achieve precise measurements of tiny forces.This article introduces a low-cost and easy-fabrication strategy for piezoresistive flexible pressure sensors.By embedding silver nanowires into a polydimethylsiloxane layer with micro-pyramids on its surface,a flexible pressure sensor is created that can detect low pressure (17.3 Pa) with fast response (<20 ms) and high sensitivity (69.6 mA kPa-1).Furthermore,the pressure sensor exhibits a sensitive and stable response to a small amount of water flowing on its surface.On this basis,the flexible pressure sensor is innovatively combined with a micro-rotor to fabricate a novel urinary flow-rate meter (uroflowmeter),and results from a simulated human urination experiment show that the uroflowmeter accurately captured all the essential shape characteristics that were present in the pump-simulated urination curves.Looking ahead,this research provides a new reference for using flexible pressure sensors in urinary flow-rate monitoring. 展开更多
关键词 Flexible pressure sensor Silver nanowires Portable device Uroflowmeter Healthcare
下载PDF
Blade-Coated Porous 3D Carbon Composite Electrodes Coupled with Multiscale Interfaces for Highly Sensitive All-Paper Pressure Sensors
4
作者 Bowen Zheng Ruisheng Guo +4 位作者 Xiaoqiang Dou Yueqing Fu Bingjun Yang Xuqing Liu Feng Zhou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期217-232,共16页
Flexible and wearable pressure sensors hold immense promise for health monitoring,covering disease detection and postoperative rehabilitation.Developing pressure sensors with high sensitivity,wide detection range,and ... Flexible and wearable pressure sensors hold immense promise for health monitoring,covering disease detection and postoperative rehabilitation.Developing pressure sensors with high sensitivity,wide detection range,and cost-effectiveness is paramount.By leveraging paper for its sustainability,biocompatibility,and inherent porous structure,herein,a solution-processed all-paper resistive pressure sensor is designed with outstanding performance.A ternary composite paste,comprising a compressible 3D carbon skeleton,conductive polymer poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate),and cohesive carbon nanotubes,is blade-coated on paper and naturally dried to form the porous composite electrode with hierachical micro-and nano-structured surface.Combined with screen-printed Cu electrodes in submillimeter finger widths on rough paper,this creates a multiscale hierarchical contact interface between electrodes,significantly enhancing sensitivity(1014 kPa-1)and expanding the detection range(up to 300 kPa)of as-resulted all-paper pressure sensor with low detection limit and power consumption.Its versatility ranges from subtle wrist pulses,robust finger taps,to large-area spatial force detection,highlighting its intricate submillimetermicrometer-nanometer hierarchical interface and nanometer porosity in the composite electrode.Ultimately,this all-paper resistive pressure sensor,with its superior sensing capabilities,large-scale fabrication potential,and cost-effectiveness,paves the way for next-generation wearable electronics,ushering in an era of advanced,sustainable technological solutions. 展开更多
关键词 Micro-and nano-structures PEDOT:PSS Flexible pressure sensors Health monitoring Multiscale interfaces
下载PDF
A bellow pressure fiber optic sensor for static ice pressure measurements 被引量:2
5
作者 崔丽琴 龙欣 秦建敏 《Applied Geophysics》 SCIE CSCD 2015年第2期255-262,276,共9页
Static ice pressure affects safe operation of hydraulic structures. However, current detection methods are hindered by the following limitations: poor real-time performance and errors owing to the partial pressure of... Static ice pressure affects safe operation of hydraulic structures. However, current detection methods are hindered by the following limitations: poor real-time performance and errors owing to the partial pressure of the surrounding wall on traditional electrical resistance strain bellow pressure sensors. We developed a fiber optic sensor with a special pressure bellow to monitor the static ice pressure on hydraulic structures and used the sensor to measure static pressure in laboratory ice growth and melting tests from -30℃ to 5℃. The sensor resolution is 0.02 kPa and its sensitivity is 2.74 × 10-4/kPa. The experiments suggest that the static ice pressure peaks twice during ice growth and melting. The first peak appears when the ice temperature drops to -15℃ owing to the liquid water to solid ice transition. The second peak appears at 0℃ owing to the thermal expansion of the ice during ice melting. The novel fiber optic sensor exhibits stable performance, high resolution, and high sensitivity and it can be used to monitor the static ice pressure during ice growth and melting. 展开更多
关键词 Static ice pressure pressure bellow fiber optic sensor improved Y-type fiber bundle
下载PDF
A personalized electronic textile for ultrasensitive pressure sensing enabled by biocompatible MXene/ PEDOT:PSS composite 被引量:1
6
作者 Yahua Li Wentao Cao +3 位作者 Zhi Liu Yue Zhang Ziyan Chen Xianhong Zheng 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期224-238,共15页
Flexible,breathable,and highly sensitive pressure sensors have increasingly become a focal point of interest due to their pivotal role in healthcare monitoring,advanced electronic skin applications,and disease diagnos... Flexible,breathable,and highly sensitive pressure sensors have increasingly become a focal point of interest due to their pivotal role in healthcare monitoring,advanced electronic skin applications,and disease diagnosis.However,traditional methods,involving elastomer film-based substrates or encapsulation techniques,often fall short due to mechanical mismatches,discomfort,lack of breathability,and limitations in sensing abilities.Consequently,there is a pressing need,yet it remains a significant challenge to create pressure sensors that are not only highly breathable,flexible,and comfortable but also sensitive,durable,and biocompatible.Herein,we present a biocompatible and breathable fabric-based pressure sensor,using nonwoven fabrics as both the sensing electrode(coated with MXene/poly(3,4-ethylenedioxythiophene):polystyrene sulfonate[PEDOT:PSS])and the interdigitated electrode(printed with MXene pattern)via a scalable spray-coating and screen-coating technique.The resultant device exhibits commendable air permeability,biocompatibility,and pressure sensing performance,including a remarkable sensitivity(754.5 kPa^(−1)),rapid response/recovery time(180/110 ms),and robust cycling stability.Furthermore,the integration of PEDOT:PSS plays a crucial role in protecting the MXene nanosheets from oxidation,significantly enhancing the device's long-term durability.These outstanding features make this sensor highly suitable for applications in fullrange human activities detection and disease diagnosis.Our study underscores the promising future of flexible pressure sensors in the realm of intelligent wearable electronics,setting a new benchmark for the industry. 展开更多
关键词 BIOCOMPATIBILITY MXene pressure sensor screen printing TEXTILE
下载PDF
Dynamic compensation and its application of shock wave pressure sensor 被引量:3
7
作者 夏永乐 翟永 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2016年第1期48-53,共6页
In order to correct the test error caused by the dynamic characteristics of pressure sensor and avoid the influence of the error of sensor's dynamic model on compensation results,a dynamic compensation method of the ... In order to correct the test error caused by the dynamic characteristics of pressure sensor and avoid the influence of the error of sensor's dynamic model on compensation results,a dynamic compensation method of the pressure sensor is presented,which is based on quantum-behaved particle swarm optimization(QPSO)algorithm and the mean square error(MSE).By using this method,the inverse model of the sensor is built and optimized and then the coefficients of the optimal compensator are got.This method is verified by the dynamic calibration with shock tube and the dynamic characteristics of the sensor before and after compensation are analyzed in time domain and frequency domain.The results show that the working bandwidth of the sensor is extended effectively.This method can reduce dynamic measuring error and improve test accuracy in actual measurement experiments. 展开更多
关键词 pressure sensor dynamic compensation quantum-behaved particle swarm optimization(QPSO) shock wave test band expansion
下载PDF
Silver Nanowire Electrodes: Conductivity Improvement Without Post-treatment and Application in Capacitive Pressure Sensors 被引量:11
8
作者 Jun Wang Jinting Jiu +6 位作者 Teppei Araki Masaya Nogi Tohru Sugahara Shijo Nagao Hirotaka Koga Peng He Katsuaki Suganuma 《Nano-Micro Letters》 SCIE EI CAS 2015年第1期51-58,共8页
Transparent electrode based on silver nanowires(Ag NWs) emerges as an outstanding alternative of indium tin oxide film especially for flexible electronics. However, the conductivity of Ag NWs transparent electrode is ... Transparent electrode based on silver nanowires(Ag NWs) emerges as an outstanding alternative of indium tin oxide film especially for flexible electronics. However, the conductivity of Ag NWs transparent electrode is still dramatically limited by the contact resistance between nanowires at high transmittance. Polyvinylpyrrolidone(PVP) layer adsorbed on the nanowire surface acts as an electrically insulating barrier at wire–wire junctions, and some devastating post-treatment methods are proposed to reduce or eliminate PVP layer, which usually limit the application of the substrates susceptible to heat or pressure and burden the fabrication with high-cost, time-consuming, or inefficient processes. In this work, a simple and rapid pre-treatment washing method was proposed to reduce the thickness of PVP layer from 13.19 to0.96 nm and improve the contact between wires. Ag NW electrodes with sheet resistances of 15.6 and 204 X sq-1have been achieved at transmittances of 90 and 97.5 %, respectively. This method avoided any post-treatments and popularized the application of high-performance Ag NW transparent electrode on more substrates. The improved Ag NWs were successfully employed in a capacitive pressure sensor with high transparency, sensitivity, and reproducibility. 展开更多
关键词 Silver nanowire Pre-treatment Transparent electrode pressure sensor
下载PDF
Nanocellulose-Assisted Construction of Multifunctional MXene-Based Aerogels with Engineering Biomimetic Texture for Pressure Sensor and Compressible Electrode 被引量:10
9
作者 Ting Xu Qun Song +9 位作者 Kun Liu Huayu Liu Junjie Pan Wei Liu Lin Dai Meng Zhang Yaxuan Wang Chuanling Si Haishun Du Kai Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第7期122-135,共14页
Multifunctional architecture with intriguing structural design is highly desired for realizing the promising performances in wearable sensors and flexible energy storage devices.Cellulose nanofiber(CNF)is employed for... Multifunctional architecture with intriguing structural design is highly desired for realizing the promising performances in wearable sensors and flexible energy storage devices.Cellulose nanofiber(CNF)is employed for assisting in building conductive,hyperelastic,and ultralight Ti_(3)C_(2)T_(x)MXene hybrid aerogels with oriented tracheid-like texture.The biomimetic hybrid aerogels are constructed by a facile bidirectional freezing strategy with CNF,carbon nanotube(CNT),and MXene based on synergistic electrostatic interaction and hydrogen bonding.Entangled CNF and CNT“mortars”bonded with MXene“bricks”of the tracheid structure produce good interfacial binding,and superior mechanical strength(up to 80%compressibility and extraordinary fatigue resistance of 1000 cycles at 50%strain).Benefiting from the biomimetic texture,CNF/CNT/MXene aerogel shows ultralow density of 7.48 mg cm^(-3)and excellent electrical conductivity(~2400 S m^(-1)).Used as pressure sensors,such aerogels exhibit appealing sensitivity performance with the linear sensitivity up to 817.3 kPa^(-1),which affords their application in monitoring body surface information and detecting human motion.Furthermore,the aerogels can also act as electrode materials of compressive solid-state supercapacitors that reveal satisfactory electrochemical performance(849.2 mF cm^(-2)at 0.8 mA cm^(-2))and superior long cycle compression performance(88%after 10,000 cycles at a compressive strain of 30%). 展开更多
关键词 NANOCELLULOSE AEROGELS MXene SUPERCAPACITORS pressure sensors
下载PDF
Non-destructive Evaluation of Composite Pressure Vessel by Using FBG Sensors 被引量:5
10
作者 HAO Jun-cai LENG Jin-song WEI Zhang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第2期120-123,共4页
In recent years, advanced composite structures are used extensively in many industries such as aerospace, aircraft, automobile, pipeline and civil engineering. Reliability and safety are crucial requirements posed by ... In recent years, advanced composite structures are used extensively in many industries such as aerospace, aircraft, automobile, pipeline and civil engineering. Reliability and safety are crucial requirements posed by them to the advanced composite structures be- cause of their harsh working conditions. Therefore, as a very important measure, structural health monitoring (SHM) in-service is deft- nitely demanded for ensuring their safe working in-situ. In this paper, fiber Bragg grating (FBG) sensors are surface-mounted on the hoop and in the axial directions of a FRP pressure vessel to monitor the strain status during its pressurization. The experimental results show that the FBG sensors could be used to monitor the strain development and determine the ultimate failure strain of the composite pressure vessel. 展开更多
关键词 fiber optic sensor fiber Bragg grating composite pressure vessel non-destructive evaluation
下载PDF
Morphological Engineering of Sensing Materials for Flexible Pressure Sensors and Artificial Intelligence Applications 被引量:13
11
作者 Zhengya Shi Lingxian Meng +6 位作者 Xinlei Shi Hongpeng Li Juzhong Zhang Qingqing Sun Xuying Liu Jinzhou Chen Shuiren Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第9期1-48,共48页
As an indispensable branch of wearable electronics,flexible pressure sensors are gaining tremendous attention due to their extensive applications in health monitoring,human-machine interaction,artificial intelligence,... As an indispensable branch of wearable electronics,flexible pressure sensors are gaining tremendous attention due to their extensive applications in health monitoring,human-machine interaction,artificial intelligence,the internet of things,and other fields.In recent years,highly flexible and wearable pressure sensors have been developed using various materials/structures and transduction mechanisms.Morphological engineering of sensing materials at the nanometer and micrometer scales is crucial to obtaining superior sensor performance.This review focuses on the rapid development of morphological engineering technologies for flexible pressure sensors.We discuss different architectures and morphological designs of sensing materials to achieve high performance,including high sensitivity,broad working range,stable sensing,low hysteresis,high transparency,and directional or selective sensing.Additionally,the general fabrication techniques are summarized,including self-assembly,patterning,and auxiliary synthesis methods.Furthermore,we present the emerging applications of high-performing microengineered pressure sensors in healthcare,smart homes,digital sports,security monitoring,and machine learning-enabled computational sensing platform.Finally,the potential challenges and prospects for the future developments of pressure sensors are discussed comprehensively. 展开更多
关键词 Flexible pressure sensor Morphological engineering Sensing performance Manufacturing technique Artificial intelligence
下载PDF
Application and analysis of functionally graded piezoelectrical rotating cylinder as mechanical sensor subjected to pressure and thermal loads 被引量:4
12
作者 G.H.RAHIMI M.AREFI M.J.KHOSHGOFTAR 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第8期997-1008,共12页
The exact thermoelastic analysis of a functionally graded piezoelectrical (FGP) rotating cylinder is investigated analytically. The cylinder is subjected to a com- bination of electrical, thermal, and mechanical loa... The exact thermoelastic analysis of a functionally graded piezoelectrical (FGP) rotating cylinder is investigated analytically. The cylinder is subjected to a com- bination of electrical, thermal, and mechanical loads simultaneously. The structure is a simplified model of a rotational sensor or actuator. The basic governing differential equation of the system is obtained by using the energy method. A novel term, named as the additional energy, is introduced to exact the evaluation of the energy functional. The solution to the governing differential equation is presented for two types of boundary conditions including free rotating and rotating cylinders exposed to the inner pressure. The effect of the angular velocity is investigated on the radial distribution of various components. The mentioned structure can be considered as a sensor for measuring the angular velocity of the cylinder subjected to the pressure and temperature. The obtained results indicate that the electrical potential is proportional to the angular velocity. 展开更多
关键词 functionally graded piezoelectric (FGP) material sensor rotating cylinder angular velocity pressure temperature
下载PDF
State-of-the-art and recent developments in micro/nanoscale pressure sensors for smart wearable devices and health monitoring systems 被引量:4
13
作者 Ye Chang Jingjing Zuo +1 位作者 Hainan Zhang Xuexin Duan 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2020年第1期43-52,共10页
Small-sized,low-cost,and high-sensitivity sensors are required for pressure-sensing applications because of their critical role in consumer electronics,automotive applications,and industrial environments.Thus,micro/na... Small-sized,low-cost,and high-sensitivity sensors are required for pressure-sensing applications because of their critical role in consumer electronics,automotive applications,and industrial environments.Thus,micro/nanoscale pressure sensors based on micro/nanofabrication and micro/nanoelectromechanical system technologies have emerged as a promising class of pressure sensors on account of their remarkable miniaturization and performance.These sensors have recently been developed to feature multifunctionality and applicability to novel scenarios,such as smart wearable devices and health monitoring systems.In this review,we summarize the major sensing principles used in micro/nanoscale pressure sensors and discuss recent progress in the development of four major categories of these sensors,namely,novel material-based,flexible,implantable,and selfpowered pressure sensors. 展开更多
关键词 M/NEMS pressure sensor Flexible sensor PIEZORESISTIVE sensor Capacitive sensor Piezoelectric sensor Resonant sensor 2D material
下载PDF
Pressure effects in AlAs/Inx Ga1-xAs/GaAs resonant tunnelling diodes for application in micromachined sensors 被引量:3
14
作者 王建 张文栋 +3 位作者 薛晨阳 熊继军 刘俊 谢斌 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第4期1150-1154,共5页
This paper reports the current-voltage characteristics of [001]-oriented AlAs/InxGa1-xAs/GaAs resonant tunnelling diodes (RTDs) as a function of uniaxial external stress applied parallel to the [110] and the [1^-10]... This paper reports the current-voltage characteristics of [001]-oriented AlAs/InxGa1-xAs/GaAs resonant tunnelling diodes (RTDs) as a function of uniaxial external stress applied parallel to the [110] and the [1^-10] orientations, and the output characteristics of the GaAs pressure sensor based on the pressure effect on the RTDs. Under [110] stress, the resonance peak voltages of the RTDs shift to more positive voltages. For [1^-10] stress, the peaks shift toward more negative voltages. The resonance peak voltage is linearly dependent on the [110] and [1^-0] stresses and the linear sensitivities are up to 0.69 mV/MPa, -0.69 mV/MPa respectively. For the pressure sensor, the linear sensitivity is up to 0.37 mV/kPa. 展开更多
关键词 pressure effects RTDS micromachined sensors
下载PDF
On the Temperature Profile of the Thermally Excited Resonant Silicon Micro Structural Pressure Sensor 被引量:2
15
作者 樊尚春 贾振宏 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2002年第3期156-160,共5页
According to the sensing structure of a practical silicon resonant pressure micro sensor whose preliminary sensing unit is a square silicon diaphragm and the final sensing unit is a silicon beam resonator, its operati... According to the sensing structure of a practical silicon resonant pressure micro sensor whose preliminary sensing unit is a square silicon diaphragm and the final sensing unit is a silicon beam resonator, its operating mechanism is analyzed. The thermal resistor acts as the excited unit, and the piezoresistive unit acts as the detector, for the above micro sensor. By using the amplitude and phase conditions, the self exciting closed loop system is investigated based on the operating mechanism for the abov... 展开更多
关键词 thermal excitation resonant sensor silicon microstructure pressure sensor
下载PDF
Bioinspired flexible piezoresistive sensor for high-sensitivity detection of broad pressure range 被引量:4
16
作者 Meng Wang Hao Zhang +5 位作者 Han Wu Suqian Ma Lei Ren Yunhong Liang Chunbao Liu Zhiwu Han 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2023年第3期243-254,共12页
The human skin has the ability to sense tactile touch and a great range of pressures.Therefore,in prosthetic or robotic systems,it is necessary to prepare pressure sensors with high sensitivity in a wide measurement r... The human skin has the ability to sense tactile touch and a great range of pressures.Therefore,in prosthetic or robotic systems,it is necessary to prepare pressure sensors with high sensitivity in a wide measurement range to provide human-like tactile sensation.Herein,we developed a flexible piezoresistive pressure sensor that is highly sensitive in a broad pressure range by using lotus leaf micropatterned polydimethylsiloxane and multilayer superposition.By superposing four layers of micropatterned constructive substrates,the multilayer piezoresistive pressure sensor achieves a broad pressure range of 312 kPa,a high sensitivity of 2.525 kPa^(−1),a low limit of detection(LOD)of<12 Pa,and a fast response time of 45 ms.Compared with the traditional flexible pressure sensor,the pressure range of this sensor can be increased by at least an order of magnitude.The flexible piezoresistive pressure sensor also shows high robustness:after testing for at least 1000 cycles,it shows no sign of fatigue.More importantly,these sensors can be potentially applied in various human motion detection scenarios,including tiny pulse monitoring,throat vibration detection,and large under-feet pressure sensing.The proposed fabrication strategy may guide the design of other kinds of multifunctional sensors to improve the detection performance. 展开更多
关键词 BIONIC Piezoresistive pressure sensor Microstructure MULTILAYER Wide pressure range
下载PDF
Highly Sensitive Pseudocapacitive Iontronic Pressure Sensor with Broad Sensing Range 被引量:8
17
作者 Libo Gao Meng Wang +6 位作者 Weidong Wang Hongcheng Xu Yuejiao Wang Haitao Zhao Ke Cao Dandan Xu Lei Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第9期209-222,共14页
Flexible pressure sensors are unprecedentedly studied on monitoring human physical activities and robotics.Simultaneously,improving the response sensitivity and sensing range of flexible pressure sensors is a great ch... Flexible pressure sensors are unprecedentedly studied on monitoring human physical activities and robotics.Simultaneously,improving the response sensitivity and sensing range of flexible pressure sensors is a great challenge,which hinders the devices’practical application.Targeting this obstacle,we developed a Ti_(3)C_(2)T_(x)-derived iontronic pressure sensor(TIPS)by taking the advantages of the high intercalation pseudocapacitance under high pressure and rationally designed structural configuration.TIPS achieved an ultrahigh sen-sitivity(S_(min)>200 kPa^(−1),S_(max)>45,000 kPa^(−1))in a broad sensing range of over 1.4 MPa and low limit of detection of 20 Pa as well as stable long-term working durability for 10,000 cycles.The practical application of TIPS in physical activity monitoring and flexible robot manifested its versatile potential.This study provides a demonstration for exploring pseudocapacitive materials for building flexible iontronic sensors with ultrahigh sensitivity and sensing range to advance the development of high-performance wearable electronics. 展开更多
关键词 Iontronic sensor Flexible electronics pressure sensor PSEUDOCAPACITANCE Ti_(3)C_(2)T_(x)MXene
下载PDF
Self-Assembly 3D Porous Crumpled MXene Spheres as Efficient Gas and Pressure Sensing Material for Transient All-MXene Sensors 被引量:9
18
作者 Zijie Yang Siyuan Lv +9 位作者 Yueying Zhang Jing Wang Li Jiang Xiaoteng Jia Chenguang Wang Xu Yan Peng Sun Yu Duan Fangmeng Liu Geyu Lu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第4期1-14,共14页
Environmentally friendly degradable sensors with both hazardous gases and pressure efficient sensing capabilities are highly desired for various promising applications,including environmental pollution monitoring/prev... Environmentally friendly degradable sensors with both hazardous gases and pressure efficient sensing capabilities are highly desired for various promising applications,including environmental pollution monitoring/prevention,wisdom medical,wearable smart devices,and artificial intelligence.However,the transient gas and pressure sensors based on only identical sensing material that concurrently meets the above detection needs have not been reported.Here,we present transient all-MXene NO_(2) and pressure sensors employing three-dimensional porous crumpled MXene spheres prepared by ultrasonic spray pyrolysis technology as the sensing layer,accompanied with water-soluble polyvinyl alcohol substrates embedded with patterned MXene electrodes.The gas sensor achieves a ppb-level of highly selective NO_(2) sensing,with a response of up to 12.11%at 5 ppm NO_(2) and a detection range of 50 ppb-5 ppm,while the pressure sensor has an extremely wide linear pressure detection range of 0.14-22.22 kPa and fast response time of 34 ms.In parallel,all-MXene NO_(2) and pressure sensors can be rapidly degraded in medical H_(2)O_(2) within 6 h.This work provides a new avenue toward environmental monitoring,human physiological signal monitoring,and recyclable transient electronics. 展开更多
关键词 All-MXene 3D porous crumpled MXene sphere TRANSIENT NO2 and pressure sensor
下载PDF
An Optical Pressure Sensor Based on MEMS 被引量:2
19
作者 Tong Zhang Sheng Qiang +2 位作者 Frank Lewis Yalin Wu Xiaozhu Chi 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2006年第A03期476-478,共3页
An optical fiber pressure sensor has been developed for the measurement in human body.The sensing element is possessed of a membrane structure,which is fabricated by micromachining.The fabrication process includes ani... An optical fiber pressure sensor has been developed for the measurement in human body.The sensing element is possessed of a membrane structure,which is fabricated by micromachining.The fabrication process includes anisotropic wet etching on the silicon wafer.For the transmitting source and signal light,a multimode optical fiber 50/125 μm (core/clad)in diameter was used.The intensity of the light reflected back into the fiber varies with the membrane deflection,which is s function of pressure.The deflection of the membrane by applied pressure can be mathematically described. 展开更多
关键词 optical fiber pressure sensor MEMS
下载PDF
Artificial Tactile Sense Technique for Predicting Beef Tenderness Based on FS Pressure Sensor 被引量:2
20
作者 Xiao-dan Wang~1,Yong-hai Sun~1,Ying Wang~2,Tie-jun Hu~3,Min-hua Chen~1,Bing He~31.School of Biological and Agricultural Engineering,Jilin University,Changchun 130022,P.R.China2.School of Food Science and Engineer,Qingdao Agricultural University,Qingdao 266109,P.R.China3.Jilin Province Changchun Haoyue Halal Meat Co.,Ltd,Changchun 130013,P.R.China 《Journal of Bionic Engineering》 SCIE EI CSCD 2009年第2期196-201,共6页
We present a rapid system for predicting beef tenderness by mimicking the human tactile sense. The detection system includes a FS pressure sensor, a power supply conversion circuit, a signal amplifier and a box in whi... We present a rapid system for predicting beef tenderness by mimicking the human tactile sense. The detection system includes a FS pressure sensor, a power supply conversion circuit, a signal amplifier and a box in which the sample is mounted. A sample of raw Longissimus dorsi (LD) muscle is placed in the measuring box; then a rod connected to the pressure sensor is pressed into the beef sample to a given depth; the reaction force of the beef sample is measured and used to predict the tenderness. Sensory evaluation and Warner-Bratzler Shear Force (WBSF) evaluation of samples from the same LD muscle are used for comparison. The new detection system agrees with established procedure 95% of the time, and the time to test a sample is less than 5 minutes. 展开更多
关键词 BIONICS tactile sense beef tenderness detection FS pressure sensor
下载PDF
上一页 1 2 224 下一页 到第
使用帮助 返回顶部