The optical fiber based on silicon materials has a smaller thermal expansion coefficient, therefore it can be used for the preparation of sensor devices which are insensitive to temperature but sensitive to refracti...The optical fiber based on silicon materials has a smaller thermal expansion coefficient, therefore it can be used for the preparation of sensor devices which are insensitive to temperature but sensitive to refractive index, strain, stress, etc. For example, we can use optical fiber Fabry-Perot (F-P) sensor to achieve high sensitivity stress sensing. In this paper, we design an optical fiber F-P sensor with low cost and high sensitivity based on chemical etching method and analyze the stress sensing properties. Hydrofluoric acid is used to prepare the end face concave hole of the optical fiber first, and then the hollow struc-ture of the fiber F-P sensor is obtained by melting and discharge. This preparation method contributes greatly to enhancing the stress sensing properties and temperature insensitivity of the optical fiber device. The experimental results show that interference spectrum peak change is proportional to the stress change of optical fiber F-P sensor, stress sensitivity can reach 5. 2, and the cost is relatively low. Based on this,it has a certain application value in the stress sensing field.展开更多
Wood nondestructive testing (NDT) is one of the high efficient methods in utilizing wood. This paper explained the principle of log defect testing by using stress wave, and analyzed the effects of sensor quantity on...Wood nondestructive testing (NDT) is one of the high efficient methods in utilizing wood. This paper explained the principle of log defect testing by using stress wave, and analyzed the effects of sensor quantity on defect testing results by using stress wave in terms of image fitting degree and error rate. The results showed that for logs with diameter ranging from 20 to 40 cm, at least 12 sensors were needed to meet the requirement which ensure a high testing accuracy of roughly 90% of fitness with 0.1 of error rate. And 10 sensors were recommended to judge the possible locations of defects and 6 sensors were sufficient to decide whether there were defects or not.展开更多
In this paper we propose an analyzing of the response of a stress optical fiber sensor of which we proposed several design. We show that an optical fiber sensor with these designs can covenanting allow the measuring t...In this paper we propose an analyzing of the response of a stress optical fiber sensor of which we proposed several design. We show that an optical fiber sensor with these designs can covenanting allow the measuring the force/stress applied to a mechanical structure or which it is linked, by optimizing the uses of appropriate materials for constituting the sensor support. The experiment that we introduce to validate our approach based in principles includes design with a support bearing a multimode optical fiber organized in such a way that the transmitted light is attenuated when the fiber-bending angle coming from stitching in holes of the support is modified by the effects of the force/stress applied to the optical fiber sensor realized in this way. The tests realized concern the most relevant parameters that define the performances of the stress sensor that we propose. We present the problems that we to solved for the optimization of the sensor for selecting the more efficient material for the optical fiber sensor support related to a relevant choice of optical fibers.展开更多
In the last decade, microelectromechanical systems(MEMS) SU-8 polymeric cantilevers with piezoresistive readout combined with the advances in molecular recognition techniques have found versatile applications,especial...In the last decade, microelectromechanical systems(MEMS) SU-8 polymeric cantilevers with piezoresistive readout combined with the advances in molecular recognition techniques have found versatile applications,especially in the field of chemical and biological sensing.Compared to conventional solid-state semiconductor-based piezoresistive cantilever sensors, SU-8 polymeric cantilevers have advantages in terms of better sensitivity along with reduced material and fabrication cost. In recent times,numerous researchers have investigated their potential as a sensing platform due to high performance-to-cost ratio of SU-8 polymer-based cantilever sensors. In this article, we critically review the design, fabrication, and performance aspects of surface stress-based piezoresistive SU-8 polymeric cantilever sensors. The evolution of surface stress-based piezoresistive cantilever sensors from solid-state semiconductor materials to polymers, especially SU-8 polymer, is discussed in detail. Theoretical principles of surface stress generation and their application in cantilever sensing technology are also devised. Variants of SU-8 polymeric cantilevers with different composition of materials in cantilever stacks are explained. Furthermore, the interdependence of the material selection, geometrical design parameters, and fabrication process of piezoresistive SU-8 polymeric cantilever sensors and their cumulative impact on the sensor response are also explained in detail.In addition to the design-, fabrication-, and performancerelated factors, this article also describes various challenges in engineering SU-8 polymeric cantilevers as a universal sensing platform such as temperature and moisture vulnerability. This review article would serve as a guideline for researchers to understand specifics and functionality of surface stress-based piezoresistive SU-8 cantilever sensors.展开更多
This paper describes a micro thermal shear stress sensor with a cavity underneath, based on vacuum anodic bonding and bulk micromachined technology. A Ti/Pt alloy strip, 2μm×100μm, is deposited on the top of a ...This paper describes a micro thermal shear stress sensor with a cavity underneath, based on vacuum anodic bonding and bulk micromachined technology. A Ti/Pt alloy strip, 2μm×100μm, is deposited on the top of a thin silicon nitride diaphragm and functioned as the thermal sensor element. By using vacuum anodic bonding and bulk-si anisotropic wet etching process instead of the sacrificial-layer technique, a cavity, functioned as the adiabatic vacuum chamber, 200μm×200μm×400μm, is placed between the silicon nitride diaphragm and glass (Corning 7740). This method totally avoid adhesion problem which is a major issue of the sacrificial-layer technique.展开更多
To help comfort for an amputee, it is important to understand the load distribution between the residual limb and the prosthetic socket for a prosthetic socket system. An interfacial stress sensor was presented which ...To help comfort for an amputee, it is important to understand the load distribution between the residual limb and the prosthetic socket for a prosthetic socket system. An interfacial stress sensor was presented which was capable of measuring compressive pressure and shear stress simultaneously. A mathematical model was built and an experiment was conducted to obtain the transfer function of interfacial stress sensor to compressive pressure. The results show that the sensor is capable of measuring a range of 30-217 kPa compressive pressure with a relative error of 32.15% in lower range and 6.22% in upper range.展开更多
A landslide monitoring application is presented by using a high-resolution distributed fiber optic stress sensor. The sensor is used to monitor the intra-stress distribution and variations in landslide bodies, and can...A landslide monitoring application is presented by using a high-resolution distributed fiber optic stress sensor. The sensor is used to monitor the intra-stress distribution and variations in landslide bodies, and can be used for the early warning of the occurrence of the landslides. The principle of distributed fiber optic stress sensing and the intra-stress monitoring method for landslides are described in detail. By measuring the distributed polarization mode coupling in the polarization-maintaining fiber, the distributed fiber stress sensor with stress measuring range 0 to 15 MPa, spatial resolution 10 cm and measuring range 0.5 km, is designed. The warning system is also investigated experimentally in the field trial.展开更多
The endoplasmic reticulum plays an extremely important role in the process of cellular protein secretion.The cyclic AMP-responsive element-binding protein 3(CREB3)transcription factor family is closely associated with...The endoplasmic reticulum plays an extremely important role in the process of cellular protein secretion.The cyclic AMP-responsive element-binding protein 3(CREB3)transcription factor family is closely associated with the secretion and transport of proteins within the endoplasmic reticulum.As a member of the CREB3 transcription factor family,cyclic AMP-responsive element-binding protein 3-like protein 2(CREB3L2)stands out as a non-classical sensor within the endoplasmic reticulum.CREB3L2 can detect and regulate endoplasmic reticulum pressure,exert control over the processes of protein transport and secretion,participate in the development of tumor cells,and is also closely linked to the development of certain human tissues and organs.This article aims to review the role of CREB3L2 in tissue development and disease,shedding light on the related mechanisms of CREB3L2 in cancer development.The goal is to provide insights and directions for further analysis of CREB3L2.展开更多
The object of present study is to investigate the bed shear stress on a slope under regular breaking waves by a novel instrument named Micro-Electro-Mechanical System (MEMS) flexible hot-film shear stress sensor. Th...The object of present study is to investigate the bed shear stress on a slope under regular breaking waves by a novel instrument named Micro-Electro-Mechanical System (MEMS) flexible hot-film shear stress sensor. The sensors were calibrated before application, and then a wave flume experiment was conducted to study the bed shear stress for the case of regular waves spilling and plunging on a 1 : 15 smooth PVC slope. The experiment shows that the sensor is feasible for the measurement of the bed shear stress under breaking waves. For regular incident waves, the bed shear stress is mainly periodic in both outside and inside the breaking point. The fluctuations of the bed shear stress increase significantly after waves breaking due to the turbulence and vortexes generated by breaking waves. For plunging breaker, the extreme value of the mean maximum bed shear stress appears after the plunging point, and the more violent the wave breaks, the more dramatic increase of the maximum bed shear stress will occur. For spilling breaker, the increase of the maximum bed shear stress along the slope is gradual compared with the plunging breaker. At last, an empirical equation about the relationship between the maximum bed shear stress and the surf similarity parameter is given, which can be used to estimate the maximum bed shear stress under breaking waves in practice.展开更多
Based on Hartmann-Shack sensor technique, an online thin film stress measuring system was introduced to measure the film stresses of TiO2 and SiO2, and comparison was made between the film stresses prepared respective...Based on Hartmann-Shack sensor technique, an online thin film stress measuring system was introduced to measure the film stresses of TiO2 and SiO2, and comparison was made between the film stresses prepared respectively by the conventional process and the ion-beam assisted deposition. The effect of ion-beam assisted deposition on the film stresses of TiO2 and SiO2 was investigated in details, and the stress control methodologies using on-line adjustment and film doping were put forward. The results show that the film stress value of TiO2 prepared by ion-beam assisted deposition is 40 MPa lower than that prepared by conventional process, and the stress of TiO2 film changes gradually from tensile stress into compressive stress with increasing ion energy; while the film stress of SiO2 is a tensile stress under ion-beam assisted deposition because of the ion-beam sputtering effect, and the film refractive index decreases with increasing ion energy. A dynamic film stress control can be achieved through in-situ adjustment of the processing parameters based on the online film stress measuring technique, and the intrinsic stress of film can be effectively changed through film doping.展开更多
Developing surface-enhanced microcantilevers with improved sensitivities is of longstanding interest. In this paper, the design of surface-enhanced cantilever sensors using nano- (micro-) porous films as surface lay...Developing surface-enhanced microcantilevers with improved sensitivities is of longstanding interest. In this paper, the design of surface-enhanced cantilever sensors using nano- (micro-) porous films as surface layers is proposed. The static deformation and resonance frequencies of these surface-enhanced sensors with the simultaneous effects of the eigenstrain, the surface stress and the adsorption mass are analyzed. It is shown that the sensitivities of these novel cantilever sensors for the static deformation and resonance frequencies can be tuned by the porosity, the size of the pores and the structure of the porous films. For the three kinds of cantilever consisting of solid films, films with aligned cylindrical micro-scale pores, and those with nano-scale pores, the nano-porous one has the highest static and dynamic sensitivities, whereas the solid one has the lowest.展开更多
The stress on a test specimen during tensile testing is generally measured by a strain gauge. This method has some problems in that it would influence the measurement conditions of the tensile test and can evaluate on...The stress on a test specimen during tensile testing is generally measured by a strain gauge. This method has some problems in that it would influence the measurement conditions of the tensile test and can evaluate only the position at which the strain gauge is attached. The acoustoelastic method is proposed as a method replacing the strain gauge method. However, an ultrasonic sensor with a piezoelectric oscillator requires a coupling medium to inject an ultrasonic wave into a solid material. This condition, due to the error factor of the stress measurement, makes it difficult for the ultrasonic sensor to move on the specimen. We then tried to develop a non-contact stress measurement system during tensile testing using an electromagnetic acoustic transducer (EMAT) with an SH0-plate wave and S0-Lamb wave. The EMAT can measure the propagation time in which the ultrasonic wave travels between a receiver and a transmitter without a coupling medium during the tensile testing and can move easily. The interval between the transmitter and the receiver is 10mm and can be moved along the parallel direction or the vertical direction of the tensile load. The transit time was measured by a cross-correlation method and converted into the stress on the test specimen using the acoustoelastic method. We confirmed that the stress measurement using an SH0-plate wave was superior to that with an S0-Lamb wave.展开更多
A novel instrument named Micro-Electro-Mechanical System(MEMS) flexible hot-film shear stress sensor was used to study the boundary shear stress distribution in the generalized natural meandering open channel, and the...A novel instrument named Micro-Electro-Mechanical System(MEMS) flexible hot-film shear stress sensor was used to study the boundary shear stress distribution in the generalized natural meandering open channel, and the mean sidewall shear stress distribution along the meandering channel, and the lateral boundary shear stress distribution in the typical cross-section of the meandering channel was analysed. Based on the measurement of the boundary shear stress, a semi-empirical semi-theoretical computing approach of the boundary shear stress was derived including the effects of the secondary flow, sidewall roughness factor, eddy viscosity and the additional Reynolds stress, and more importantly, for the first time, it combined the effects of the cross-section central angle and the Reynolds number into the expressions. Afterwards, a comparison between the previous research and this study was developed. Following the result, we found that the semi-empirical semi-theoretical boundary shear stress distribution algorithm can predict the boundary shear stress distribution precisely. Finally, a single factor analysis was conducted on the relationship between the average sidewall shear stress on the convex and concave bank and the flow rate, water depth, slope ratio,or the cross-section central angle of the open channel bend. The functional relationship with each of the above factors was established, and then the distance from the location of the extreme sidewall shear stress to the bottom of the open channel was deduced based on the statistical theory.展开更多
In this paper, we describe a new silicon-die thermal monitoring approach using spatiotemporal signal processing technique for Wafer-Scale IC thermome- chanical stress monitoring. It is proposed in the context of a waf...In this paper, we describe a new silicon-die thermal monitoring approach using spatiotemporal signal processing technique for Wafer-Scale IC thermome- chanical stress monitoring. It is proposed in the context of a wafer-scale-based (WaferICTM) rapid prototyping platform for electronic systems. This technique will be embedded into the structure of the WaferIC, and will be used as a preventive measure to protect the wafer from possible damages that can be caused by excessive thermomechanical stress. The paper also presents spatial and spatiotemporal algorithms and the experimental results from an IR images collection campaign conducted using an IR camera.展开更多
The stretchable sensor wrapped around a foldable airfoil or embedded inside of it has great potential for use in the monitoring of the structural status of the foldable airfoil.The design methodology is important to t...The stretchable sensor wrapped around a foldable airfoil or embedded inside of it has great potential for use in the monitoring of the structural status of the foldable airfoil.The design methodology is important to the development of the stretchable sensor for status monitoring on the foldable airfoil.According to the requirement of mechanical flexibility of the sensor,the combined use of a layered flexible structural formation and a strain isolation layer is implemented.An analytical higher-order model is proposed to predict the stresses of the strain-isolation layer based on the shear-lag model for the safe design of the flexible and stretchable sensors.The normal stress and shear stress equations in the constructed structure of the sensors are obtained by the proposed model.The stress distribution in the structure is investigated when bending load is applied to the structures.The numerical results show that the proposed model can predict the variation of normal stress and shear stress along the thickness of the strain-isolation(polydimethylsiloxane)layer accurately.The results by the proposed model are in good agreement with the finite element method,in which the normal stress is variable while the shear stress is invariable along the thickness direction of strain-isolation layer.The high-order model is proposed to predict the stresses of the layered structure of the flexible and stretchable sensor for monitoring the status of the foldable airfoil.展开更多
On lunar exploration missions, the rovers which can move and explore directly are considered by various agency like NASA (National Aeronautics and Space Administration), JAXA (Japan Aerospace Exploration Agency), ...On lunar exploration missions, the rovers which can move and explore directly are considered by various agency like NASA (National Aeronautics and Space Administration), JAXA (Japan Aerospace Exploration Agency), ESA (European Space Agency). Lunar rovers are required to move on rough terrains such as craters and rear cliffs where it is scientifically very important to explore. However, there is a problem that the rovers have possibility of stack because of the lunar surface is covered with loose soil named Regolith. Therefore, this paper investigates a mechanism of kinetic behavior between the wheels of the exploration rovers and loose soil. And then, this paper proposed a flexible wheel to solve like that problems. The flexible wheel has the surface which can be changed flexibly toward rough terrain. Running experiments on loose soil which imitated regolith were carried out to observe the traversability of the flexible wheel using slip ratio. Traversality of flexible wheel was better than the circular rigid wheel. The authors believe that stress distribution is important. The stress distribution of the flexible wheels is horizontally long and stress value is small. However, the stress distribution can be changed by loaded more weight. Therefore, the relationship between the stress and the running performance was considered using this differential stress distribution. In experiments, the authors used the flexible wheel with simple structure (3 limbs). From these considerations, the relationship between the stress of the flexible wheel and the running performance was described.展开更多
A multimode-quartz-crystal oscillator was developed to excite stable dual-mode resonance at different frequencies: The oscillation of the 3rd harmonic resonance of the principle C-mode and an additional resonance B-mo...A multimode-quartz-crystal oscillator was developed to excite stable dual-mode resonance at different frequencies: The oscillation of the 3rd harmonic resonance of the principle C-mode and an additional resonance B-mode of SC-cut crystal. Harmonic combinations of the 3rd and fundamental mode of B-mode with the 3rd harmonics of C-mode are demonstrated. The measurement of the temperature dependence of the oscillation frequency is demonstrated along with the stability determined by root Allan variance. Dependence on the open conductance of the active circuit and the dependence on the coupling capacitors are discussed.展开更多
基金National Natural Science Foundation of China(No.61405127)Shanxi Province Science Foundation for Youths(No.2014021023-1)+1 种基金Scientific and Technologial Innovation Programs of Higher Education Institutions in ShanxiProgram for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi Province
文摘The optical fiber based on silicon materials has a smaller thermal expansion coefficient, therefore it can be used for the preparation of sensor devices which are insensitive to temperature but sensitive to refractive index, strain, stress, etc. For example, we can use optical fiber Fabry-Perot (F-P) sensor to achieve high sensitivity stress sensing. In this paper, we design an optical fiber F-P sensor with low cost and high sensitivity based on chemical etching method and analyze the stress sensing properties. Hydrofluoric acid is used to prepare the end face concave hole of the optical fiber first, and then the hollow struc-ture of the fiber F-P sensor is obtained by melting and discharge. This preparation method contributes greatly to enhancing the stress sensing properties and temperature insensitivity of the optical fiber device. The experimental results show that interference spectrum peak change is proportional to the stress change of optical fiber F-P sensor, stress sensitivity can reach 5. 2, and the cost is relatively low. Based on this,it has a certain application value in the stress sensing field.
基金This paper was supported by the project "Devel-opment of Portable NDT Instrument (2002(39-1))" sponsored by Na-tional Forestry Administrative Bureau of China
文摘Wood nondestructive testing (NDT) is one of the high efficient methods in utilizing wood. This paper explained the principle of log defect testing by using stress wave, and analyzed the effects of sensor quantity on defect testing results by using stress wave in terms of image fitting degree and error rate. The results showed that for logs with diameter ranging from 20 to 40 cm, at least 12 sensors were needed to meet the requirement which ensure a high testing accuracy of roughly 90% of fitness with 0.1 of error rate. And 10 sensors were recommended to judge the possible locations of defects and 6 sensors were sufficient to decide whether there were defects or not.
文摘In this paper we propose an analyzing of the response of a stress optical fiber sensor of which we proposed several design. We show that an optical fiber sensor with these designs can covenanting allow the measuring the force/stress applied to a mechanical structure or which it is linked, by optimizing the uses of appropriate materials for constituting the sensor support. The experiment that we introduce to validate our approach based in principles includes design with a support bearing a multimode optical fiber organized in such a way that the transmitted light is attenuated when the fiber-bending angle coming from stitching in holes of the support is modified by the effects of the force/stress applied to the optical fiber sensor realized in this way. The tests realized concern the most relevant parameters that define the performances of the stress sensor that we propose. We present the problems that we to solved for the optimization of the sensor for selecting the more efficient material for the optical fiber sensor support related to a relevant choice of optical fibers.
文摘In the last decade, microelectromechanical systems(MEMS) SU-8 polymeric cantilevers with piezoresistive readout combined with the advances in molecular recognition techniques have found versatile applications,especially in the field of chemical and biological sensing.Compared to conventional solid-state semiconductor-based piezoresistive cantilever sensors, SU-8 polymeric cantilevers have advantages in terms of better sensitivity along with reduced material and fabrication cost. In recent times,numerous researchers have investigated their potential as a sensing platform due to high performance-to-cost ratio of SU-8 polymer-based cantilever sensors. In this article, we critically review the design, fabrication, and performance aspects of surface stress-based piezoresistive SU-8 polymeric cantilever sensors. The evolution of surface stress-based piezoresistive cantilever sensors from solid-state semiconductor materials to polymers, especially SU-8 polymer, is discussed in detail. Theoretical principles of surface stress generation and their application in cantilever sensing technology are also devised. Variants of SU-8 polymeric cantilevers with different composition of materials in cantilever stacks are explained. Furthermore, the interdependence of the material selection, geometrical design parameters, and fabrication process of piezoresistive SU-8 polymeric cantilever sensors and their cumulative impact on the sensor response are also explained in detail.In addition to the design-, fabrication-, and performancerelated factors, this article also describes various challenges in engineering SU-8 polymeric cantilevers as a universal sensing platform such as temperature and moisture vulnerability. This review article would serve as a guideline for researchers to understand specifics and functionality of surface stress-based piezoresistive SU-8 cantilever sensors.
基金Project supported by the National Natural Science Foundation of China (Grant No 60576053)Technology Innovation of Chinese Academy of Sciences (Grant No CXJJ-176)
文摘This paper describes a micro thermal shear stress sensor with a cavity underneath, based on vacuum anodic bonding and bulk micromachined technology. A Ti/Pt alloy strip, 2μm×100μm, is deposited on the top of a thin silicon nitride diaphragm and functioned as the thermal sensor element. By using vacuum anodic bonding and bulk-si anisotropic wet etching process instead of the sacrificial-layer technique, a cavity, functioned as the adiabatic vacuum chamber, 200μm×200μm×400μm, is placed between the silicon nitride diaphragm and glass (Corning 7740). This method totally avoid adhesion problem which is a major issue of the sacrificial-layer technique.
基金National Natural Science Foundations of China(No.60976058,No.61274078)Innovation Program of Shanghai Municipal Education Commission,China(No.13ZZ049)Fundamental Research Funds for the Central Universities of Xidian University,China(No.K5051304005)
文摘To help comfort for an amputee, it is important to understand the load distribution between the residual limb and the prosthetic socket for a prosthetic socket system. An interfacial stress sensor was presented which was capable of measuring compressive pressure and shear stress simultaneously. A mathematical model was built and an experiment was conducted to obtain the transfer function of interfacial stress sensor to compressive pressure. The results show that the sensor is capable of measuring a range of 30-217 kPa compressive pressure with a relative error of 32.15% in lower range and 6.22% in upper range.
基金supported by the National Natural Science Foundation of China under Grant No. 60377021partially supported by Program for New Century Excellent Talents in University under Grant. No. NCET-07-0152Sichuan Scientific Funds for Young Researchers under Grant No. 08ZQ026-012.
文摘A landslide monitoring application is presented by using a high-resolution distributed fiber optic stress sensor. The sensor is used to monitor the intra-stress distribution and variations in landslide bodies, and can be used for the early warning of the occurrence of the landslides. The principle of distributed fiber optic stress sensing and the intra-stress monitoring method for landslides are described in detail. By measuring the distributed polarization mode coupling in the polarization-maintaining fiber, the distributed fiber stress sensor with stress measuring range 0 to 15 MPa, spatial resolution 10 cm and measuring range 0.5 km, is designed. The warning system is also investigated experimentally in the field trial.
基金Hebei Province Medical Science Research Plan Project(20220282)Baoding Science and Technology Plan Project(2141ZF237)。
文摘The endoplasmic reticulum plays an extremely important role in the process of cellular protein secretion.The cyclic AMP-responsive element-binding protein 3(CREB3)transcription factor family is closely associated with the secretion and transport of proteins within the endoplasmic reticulum.As a member of the CREB3 transcription factor family,cyclic AMP-responsive element-binding protein 3-like protein 2(CREB3L2)stands out as a non-classical sensor within the endoplasmic reticulum.CREB3L2 can detect and regulate endoplasmic reticulum pressure,exert control over the processes of protein transport and secretion,participate in the development of tumor cells,and is also closely linked to the development of certain human tissues and organs.This article aims to review the role of CREB3L2 in tissue development and disease,shedding light on the related mechanisms of CREB3L2 in cancer development.The goal is to provide insights and directions for further analysis of CREB3L2.
基金supported by the National Key Scientific Instrument and Equipment Development Project(Grant No.2013YQ04091108)the National Natural Science Foundation of China(Grant No.51309158)
文摘The object of present study is to investigate the bed shear stress on a slope under regular breaking waves by a novel instrument named Micro-Electro-Mechanical System (MEMS) flexible hot-film shear stress sensor. The sensors were calibrated before application, and then a wave flume experiment was conducted to study the bed shear stress for the case of regular waves spilling and plunging on a 1 : 15 smooth PVC slope. The experiment shows that the sensor is feasible for the measurement of the bed shear stress under breaking waves. For regular incident waves, the bed shear stress is mainly periodic in both outside and inside the breaking point. The fluctuations of the bed shear stress increase significantly after waves breaking due to the turbulence and vortexes generated by breaking waves. For plunging breaker, the extreme value of the mean maximum bed shear stress appears after the plunging point, and the more violent the wave breaks, the more dramatic increase of the maximum bed shear stress will occur. For spilling breaker, the increase of the maximum bed shear stress along the slope is gradual compared with the plunging breaker. At last, an empirical equation about the relationship between the maximum bed shear stress and the surf similarity parameter is given, which can be used to estimate the maximum bed shear stress under breaking waves in practice.
文摘Based on Hartmann-Shack sensor technique, an online thin film stress measuring system was introduced to measure the film stresses of TiO2 and SiO2, and comparison was made between the film stresses prepared respectively by the conventional process and the ion-beam assisted deposition. The effect of ion-beam assisted deposition on the film stresses of TiO2 and SiO2 was investigated in details, and the stress control methodologies using on-line adjustment and film doping were put forward. The results show that the film stress value of TiO2 prepared by ion-beam assisted deposition is 40 MPa lower than that prepared by conventional process, and the stress of TiO2 film changes gradually from tensile stress into compressive stress with increasing ion energy; while the film stress of SiO2 is a tensile stress under ion-beam assisted deposition because of the ion-beam sputtering effect, and the film refractive index decreases with increasing ion energy. A dynamic film stress control can be achieved through in-situ adjustment of the processing parameters based on the online film stress measuring technique, and the intrinsic stress of film can be effectively changed through film doping.
基金supported by the National Natural Science Foundation of China (Grant Nos.10872003,10932001 and 10525209)the Foundation for the Author of National Excellent Doctoral Dissertation of PR China (FANEDD,GrantNo.2007B2)
文摘Developing surface-enhanced microcantilevers with improved sensitivities is of longstanding interest. In this paper, the design of surface-enhanced cantilever sensors using nano- (micro-) porous films as surface layers is proposed. The static deformation and resonance frequencies of these surface-enhanced sensors with the simultaneous effects of the eigenstrain, the surface stress and the adsorption mass are analyzed. It is shown that the sensitivities of these novel cantilever sensors for the static deformation and resonance frequencies can be tuned by the porosity, the size of the pores and the structure of the porous films. For the three kinds of cantilever consisting of solid films, films with aligned cylindrical micro-scale pores, and those with nano-scale pores, the nano-porous one has the highest static and dynamic sensitivities, whereas the solid one has the lowest.
文摘The stress on a test specimen during tensile testing is generally measured by a strain gauge. This method has some problems in that it would influence the measurement conditions of the tensile test and can evaluate only the position at which the strain gauge is attached. The acoustoelastic method is proposed as a method replacing the strain gauge method. However, an ultrasonic sensor with a piezoelectric oscillator requires a coupling medium to inject an ultrasonic wave into a solid material. This condition, due to the error factor of the stress measurement, makes it difficult for the ultrasonic sensor to move on the specimen. We then tried to develop a non-contact stress measurement system during tensile testing using an electromagnetic acoustic transducer (EMAT) with an SH0-plate wave and S0-Lamb wave. The EMAT can measure the propagation time in which the ultrasonic wave travels between a receiver and a transmitter without a coupling medium during the tensile testing and can move easily. The interval between the transmitter and the receiver is 10mm and can be moved along the parallel direction or the vertical direction of the tensile load. The transit time was measured by a cross-correlation method and converted into the stress on the test specimen using the acoustoelastic method. We confirmed that the stress measurement using an SH0-plate wave was superior to that with an S0-Lamb wave.
基金financially supported by the National Key R&D Program of China(Grant No.2016YFC0402306)the National Natural Science Foundation of China(Grant No.51779149)
文摘A novel instrument named Micro-Electro-Mechanical System(MEMS) flexible hot-film shear stress sensor was used to study the boundary shear stress distribution in the generalized natural meandering open channel, and the mean sidewall shear stress distribution along the meandering channel, and the lateral boundary shear stress distribution in the typical cross-section of the meandering channel was analysed. Based on the measurement of the boundary shear stress, a semi-empirical semi-theoretical computing approach of the boundary shear stress was derived including the effects of the secondary flow, sidewall roughness factor, eddy viscosity and the additional Reynolds stress, and more importantly, for the first time, it combined the effects of the cross-section central angle and the Reynolds number into the expressions. Afterwards, a comparison between the previous research and this study was developed. Following the result, we found that the semi-empirical semi-theoretical boundary shear stress distribution algorithm can predict the boundary shear stress distribution precisely. Finally, a single factor analysis was conducted on the relationship between the average sidewall shear stress on the convex and concave bank and the flow rate, water depth, slope ratio,or the cross-section central angle of the open channel bend. The functional relationship with each of the above factors was established, and then the distance from the location of the extreme sidewall shear stress to the bottom of the open channel was deduced based on the statistical theory.
文摘In this paper, we describe a new silicon-die thermal monitoring approach using spatiotemporal signal processing technique for Wafer-Scale IC thermome- chanical stress monitoring. It is proposed in the context of a wafer-scale-based (WaferICTM) rapid prototyping platform for electronic systems. This technique will be embedded into the structure of the WaferIC, and will be used as a preventive measure to protect the wafer from possible damages that can be caused by excessive thermomechanical stress. The paper also presents spatial and spatiotemporal algorithms and the experimental results from an IR images collection campaign conducted using an IR camera.
基金Supported by National Natural Science Foundation of China(Grant No.51075327)Open Project of State Key Laboratory for Strength and Vibration of Mechanical Structures of China(Grant No.SV2014-KF-08)Shaanxi Provincial Natural Science Foundation of China(Grant No.2014JM2-5082)
文摘The stretchable sensor wrapped around a foldable airfoil or embedded inside of it has great potential for use in the monitoring of the structural status of the foldable airfoil.The design methodology is important to the development of the stretchable sensor for status monitoring on the foldable airfoil.According to the requirement of mechanical flexibility of the sensor,the combined use of a layered flexible structural formation and a strain isolation layer is implemented.An analytical higher-order model is proposed to predict the stresses of the strain-isolation layer based on the shear-lag model for the safe design of the flexible and stretchable sensors.The normal stress and shear stress equations in the constructed structure of the sensors are obtained by the proposed model.The stress distribution in the structure is investigated when bending load is applied to the structures.The numerical results show that the proposed model can predict the variation of normal stress and shear stress along the thickness of the strain-isolation(polydimethylsiloxane)layer accurately.The results by the proposed model are in good agreement with the finite element method,in which the normal stress is variable while the shear stress is invariable along the thickness direction of strain-isolation layer.The high-order model is proposed to predict the stresses of the layered structure of the flexible and stretchable sensor for monitoring the status of the foldable airfoil.
文摘On lunar exploration missions, the rovers which can move and explore directly are considered by various agency like NASA (National Aeronautics and Space Administration), JAXA (Japan Aerospace Exploration Agency), ESA (European Space Agency). Lunar rovers are required to move on rough terrains such as craters and rear cliffs where it is scientifically very important to explore. However, there is a problem that the rovers have possibility of stack because of the lunar surface is covered with loose soil named Regolith. Therefore, this paper investigates a mechanism of kinetic behavior between the wheels of the exploration rovers and loose soil. And then, this paper proposed a flexible wheel to solve like that problems. The flexible wheel has the surface which can be changed flexibly toward rough terrain. Running experiments on loose soil which imitated regolith were carried out to observe the traversability of the flexible wheel using slip ratio. Traversality of flexible wheel was better than the circular rigid wheel. The authors believe that stress distribution is important. The stress distribution of the flexible wheels is horizontally long and stress value is small. However, the stress distribution can be changed by loaded more weight. Therefore, the relationship between the stress and the running performance was considered using this differential stress distribution. In experiments, the authors used the flexible wheel with simple structure (3 limbs). From these considerations, the relationship between the stress of the flexible wheel and the running performance was described.
文摘A multimode-quartz-crystal oscillator was developed to excite stable dual-mode resonance at different frequencies: The oscillation of the 3rd harmonic resonance of the principle C-mode and an additional resonance B-mode of SC-cut crystal. Harmonic combinations of the 3rd and fundamental mode of B-mode with the 3rd harmonics of C-mode are demonstrated. The measurement of the temperature dependence of the oscillation frequency is demonstrated along with the stability determined by root Allan variance. Dependence on the open conductance of the active circuit and the dependence on the coupling capacitors are discussed.