GLP-1RA及SGLT-2i是ADA和中华医学会糖尿病学分会推荐的新型降糖药物,具有低血糖风险小、兼具心血管保护及降低体重等代谢获益的特点。高尿酸血症是2型糖尿病的独立危险因素,在临床实践中,人们一直在关注预防SUA的升高。据估计,患者SUA...GLP-1RA及SGLT-2i是ADA和中华医学会糖尿病学分会推荐的新型降糖药物,具有低血糖风险小、兼具心血管保护及降低体重等代谢获益的特点。高尿酸血症是2型糖尿病的独立危险因素,在临床实践中,人们一直在关注预防SUA的升高。据估计,患者SUA每升高1 mg/dl,发生T2DM的风险就会增加17%。国内外学者研究结果提示SGLT-2i能兼顾降糖的同时降低SUA水平;最近国外研究显示GLP-1RA还可以降低SUA水平,但仍存在矛盾。国内学者对此研究报告甚少。还需要更多的研究填补此领域的空白,为更好地预防2型糖尿的发生及发展作出贡献。GLP-1RA and SGLT-2i are new hypoglycemic drugs recommended by ADA and Diabetes Branch of Chinese Medical Association, which have the characteristics of low risk of hypoglycemia, metabolic benefits such as cardiovascular protection and weight reduction. Hyperuricemia is an independent risk factor for type 2 diabetes, and much attention has been paid to the prevention of elevated SUA in clinical practice. It is estimated that every 1 mg/dl elevation of patient SUA causes a 17% increase in the risk of developing T2DM. The results of domestic and foreign scholars suggest that SGLT-2i can reduce SUA level while lowering glucose;recent foreign studies show that GLP-1RA can also reduce SUA level, but there are still contradictions. Domestic scholars have few reports on this. More studies are needed to fill the gap in this field to contribute to better prevention of the occurrence and development of type 2 diabetes mellitus.展开更多
Glucagon-like peptide-1 receptor agonists(GLP-1 RAs)protect against diabetic cardiovascular diseases and nephropathy.However,their activity in diabetic retinopathy(DR)remains unclear.Our retrospective cohort study inv...Glucagon-like peptide-1 receptor agonists(GLP-1 RAs)protect against diabetic cardiovascular diseases and nephropathy.However,their activity in diabetic retinopathy(DR)remains unclear.Our retrospective cohort study involving 1626 T2DM patients revealed superior efficacy of GLP-1 RAs in controlling DR compared to other glucose-lowering medications,suggesting their advantage in DR treatment.By single-cell RNA-sequencing analysis and immunostaining,we observed a high expression of GLP-1R in retinal endothelial cells,which was down-regulated under diabetic conditions.Treatment of GLP-1 RAs significantly restored the receptor expression,resulting in an improvement in retinal degeneration,vascular tortuosity,avascular vessels,and vascular integrity in diabetic mice.GO and GSEA analyses further implicated enhanced mitochondrial gene translation and mitochondrial functions by GLP-1 RAs.Additionally,the treatment attenuated STING signaling activation in retinal endothelial cells,which is typically activated by leaked mitochondrial DNA.Expression of STING mRNA was positively correlated to the levels of angiogenic and inflammatory factors in the endothelial cells of human fibrovascular membranes.Further investigation revealed that the cAMP-responsive element binding protein played a role in the GLP-1R signaling pathway on suppression of STING signaling.This study demonstrates a novel role of GLP-1 RAs in the protection of diabetic retinal vasculature by inhibiting STING-elicited inflammatory signals.展开更多
Repositioning of dipeptidyl peptidase-4 inhibitors and glucagon like peptide-1 receptor agonists is a breakthrough in the field of neural regeneration research increasing glucagon like peptide-1 bioavailability, hence...Repositioning of dipeptidyl peptidase-4 inhibitors and glucagon like peptide-1 receptor agonists is a breakthrough in the field of neural regeneration research increasing glucagon like peptide-1 bioavailability, hence its neuroprotective activities. In this article, the authors suggest not only crossing blood-brain barrier and neurodegenerative disease as off target for dipeptidyl peptidase-4 inhibitors and glucagon like peptide-1 receptor agonists, but also for ophthalmic preparations for diabetic retinopathy, which may be the latest breakthrough in the field if prepared and used in an appropriate nano-formulation to target the retinal nerves. The relation of neurodegenerative diseases' different mechanisms to the dipeptidyl peptidase-4 inhibitors and glucagon like peptide-1 receptor agonists should be further examined in preclinical and clinical settings. The repositioning of already marketed antidiabetic drugs for neurodegenerative diseases should save the high cost of the time-consuming normal drug development process. Drug repositioning is a hot topic as an alternative to molecular target based drug discovery or therapeutic switching. It is a relatively inexpensive pathway due to availability of previous pharmacological and safety data. The glucagon like peptide-1 produced in brain has been linked to enhanced learning and memory functions as a physiologic regulator in central nervous system by restoring insulin signaling. Intranasal administration of all marketed gliptins(or glucagon like peptide-1 receptor agonists) may show enhanced blood-brain barrier crossing and increased glucagon like peptide-1 levels in the brain after direct crossing of the drug for the olfactory region, targeting the cerebrospinal fluid. Further blood-brain barrier crossing tests may extend dipeptidyl peptidase-4 inhibitors' effects beyond the anti-hyperglycemic control to intranasal spray, intranasal powder, or drops targeting the blood-brain barrier and neurodegenerative diseases with the most suitable formula. Moreover, novel nano-formulation is encouraged either to obtain favorable pharmacokinetic parameters or to achieve promising blood-brain barrier penetration directly through the olfactory region. Many surfactants should be investigated either as a solubilizing agent for hydrophobic drugs or as penetration enhancers. Different formulae based on in vitro and in vivo characterizations, working on sister gliptins(or glucagon like peptide-1 receptor agonists), different routes of administration, pharmacokinetic studies, dose response relationship studies, monitoring of plasma/brain concentration ratio after single and multiple dose, and neurodegenerative disease animal models are required to prove the new method of use(utility) for dipeptidyl peptidase-4 inhibitors as potential neuroprotective agents. Furthermore, investigations of glucagon like peptide-1 receptor agonists' neuroprotective effects on animal models will be considered carefully because they crossed the blood-brain barrier in previous studies, enabling their direct action on the central nervous system. Combination therapy of dipeptidyl peptidase-4 inhibitors or glucagon like peptide-1 receptor agonists with already marketed drugs for neurodegenerative disease should be considered, especially regarding the novel intranasal route of administration.展开更多
文摘GLP-1RA及SGLT-2i是ADA和中华医学会糖尿病学分会推荐的新型降糖药物,具有低血糖风险小、兼具心血管保护及降低体重等代谢获益的特点。高尿酸血症是2型糖尿病的独立危险因素,在临床实践中,人们一直在关注预防SUA的升高。据估计,患者SUA每升高1 mg/dl,发生T2DM的风险就会增加17%。国内外学者研究结果提示SGLT-2i能兼顾降糖的同时降低SUA水平;最近国外研究显示GLP-1RA还可以降低SUA水平,但仍存在矛盾。国内学者对此研究报告甚少。还需要更多的研究填补此领域的空白,为更好地预防2型糖尿的发生及发展作出贡献。GLP-1RA and SGLT-2i are new hypoglycemic drugs recommended by ADA and Diabetes Branch of Chinese Medical Association, which have the characteristics of low risk of hypoglycemia, metabolic benefits such as cardiovascular protection and weight reduction. Hyperuricemia is an independent risk factor for type 2 diabetes, and much attention has been paid to the prevention of elevated SUA in clinical practice. It is estimated that every 1 mg/dl elevation of patient SUA causes a 17% increase in the risk of developing T2DM. The results of domestic and foreign scholars suggest that SGLT-2i can reduce SUA level while lowering glucose;recent foreign studies show that GLP-1RA can also reduce SUA level, but there are still contradictions. Domestic scholars have few reports on this. More studies are needed to fill the gap in this field to contribute to better prevention of the occurrence and development of type 2 diabetes mellitus.
基金supported by grants from the National Natural Science Foundation of China(82000782,82270886,82070811)the Foster Program for NSFC at the Third Affiliated Hospital of Sun Yat-Sen University(2020G2RPYQN11,China)+3 种基金China International Medical Foundation(2018-N-01)the Science and Technology Plan Project of Guangzhou City(2024A03J0002,China)Key Area R&D Program of Guangdong Province(2019B020227003,China)Sci-Tech Research Development Program of Guangzhou City(202201020589,China).
文摘Glucagon-like peptide-1 receptor agonists(GLP-1 RAs)protect against diabetic cardiovascular diseases and nephropathy.However,their activity in diabetic retinopathy(DR)remains unclear.Our retrospective cohort study involving 1626 T2DM patients revealed superior efficacy of GLP-1 RAs in controlling DR compared to other glucose-lowering medications,suggesting their advantage in DR treatment.By single-cell RNA-sequencing analysis and immunostaining,we observed a high expression of GLP-1R in retinal endothelial cells,which was down-regulated under diabetic conditions.Treatment of GLP-1 RAs significantly restored the receptor expression,resulting in an improvement in retinal degeneration,vascular tortuosity,avascular vessels,and vascular integrity in diabetic mice.GO and GSEA analyses further implicated enhanced mitochondrial gene translation and mitochondrial functions by GLP-1 RAs.Additionally,the treatment attenuated STING signaling activation in retinal endothelial cells,which is typically activated by leaked mitochondrial DNA.Expression of STING mRNA was positively correlated to the levels of angiogenic and inflammatory factors in the endothelial cells of human fibrovascular membranes.Further investigation revealed that the cAMP-responsive element binding protein played a role in the GLP-1R signaling pathway on suppression of STING signaling.This study demonstrates a novel role of GLP-1 RAs in the protection of diabetic retinal vasculature by inhibiting STING-elicited inflammatory signals.
文摘Repositioning of dipeptidyl peptidase-4 inhibitors and glucagon like peptide-1 receptor agonists is a breakthrough in the field of neural regeneration research increasing glucagon like peptide-1 bioavailability, hence its neuroprotective activities. In this article, the authors suggest not only crossing blood-brain barrier and neurodegenerative disease as off target for dipeptidyl peptidase-4 inhibitors and glucagon like peptide-1 receptor agonists, but also for ophthalmic preparations for diabetic retinopathy, which may be the latest breakthrough in the field if prepared and used in an appropriate nano-formulation to target the retinal nerves. The relation of neurodegenerative diseases' different mechanisms to the dipeptidyl peptidase-4 inhibitors and glucagon like peptide-1 receptor agonists should be further examined in preclinical and clinical settings. The repositioning of already marketed antidiabetic drugs for neurodegenerative diseases should save the high cost of the time-consuming normal drug development process. Drug repositioning is a hot topic as an alternative to molecular target based drug discovery or therapeutic switching. It is a relatively inexpensive pathway due to availability of previous pharmacological and safety data. The glucagon like peptide-1 produced in brain has been linked to enhanced learning and memory functions as a physiologic regulator in central nervous system by restoring insulin signaling. Intranasal administration of all marketed gliptins(or glucagon like peptide-1 receptor agonists) may show enhanced blood-brain barrier crossing and increased glucagon like peptide-1 levels in the brain after direct crossing of the drug for the olfactory region, targeting the cerebrospinal fluid. Further blood-brain barrier crossing tests may extend dipeptidyl peptidase-4 inhibitors' effects beyond the anti-hyperglycemic control to intranasal spray, intranasal powder, or drops targeting the blood-brain barrier and neurodegenerative diseases with the most suitable formula. Moreover, novel nano-formulation is encouraged either to obtain favorable pharmacokinetic parameters or to achieve promising blood-brain barrier penetration directly through the olfactory region. Many surfactants should be investigated either as a solubilizing agent for hydrophobic drugs or as penetration enhancers. Different formulae based on in vitro and in vivo characterizations, working on sister gliptins(or glucagon like peptide-1 receptor agonists), different routes of administration, pharmacokinetic studies, dose response relationship studies, monitoring of plasma/brain concentration ratio after single and multiple dose, and neurodegenerative disease animal models are required to prove the new method of use(utility) for dipeptidyl peptidase-4 inhibitors as potential neuroprotective agents. Furthermore, investigations of glucagon like peptide-1 receptor agonists' neuroprotective effects on animal models will be considered carefully because they crossed the blood-brain barrier in previous studies, enabling their direct action on the central nervous system. Combination therapy of dipeptidyl peptidase-4 inhibitors or glucagon like peptide-1 receptor agonists with already marketed drugs for neurodegenerative disease should be considered, especially regarding the novel intranasal route of administration.