Since the outbreak and spread of corona virus disease 2019(COVID-19),the prevalence of mental disorders,such as depression,has continued to increase.To explore the abnormal changes of brain functional connections in p...Since the outbreak and spread of corona virus disease 2019(COVID-19),the prevalence of mental disorders,such as depression,has continued to increase.To explore the abnormal changes of brain functional connections in patients with depression,this paper proposes a depression analysis method based on brain function network(BFN).To avoid the volume conductor effect,BFN was constructed based on phase lag index(PLI).Then the indicators closely related to depression were selected from weighted BFN based on small-worldness(SW)characteristics and binarization BFN based on the minimum spanning tree(MST).Differences analysis between groups and correlation analysis between these indicators and diagnostic indicators were performed in turn.The resting state electroencephalogram(EEG)data of 24 patients with depression and 29 healthy controls(HC)was used to verify our proposed method.The results showed that compared with HC,the information processing of BFN in patients with depression decreased,and BFN showed a trend of randomization.展开更多
Research on brain function after brachial plexus injury focuses on local cortical functional reorganization,and few studies have focused on brain networks after brachial plexus injury.Changes in brain networks may hel...Research on brain function after brachial plexus injury focuses on local cortical functional reorganization,and few studies have focused on brain networks after brachial plexus injury.Changes in brain networks may help understanding of brain plasticity at the global level.We hypothesized that topology of the global cerebral resting-state functional network changes after unilateral brachial plexus injury.Thus,in this cross-sectional study,we recruited eight male patients with unilateral brachial plexus injury(right handedness,mean age of 27.9±5.4years old)and eight male healthy controls(right handedness,mean age of 28.6±3.2).After acquiring and preprocessing resting-state magnetic resonance imaging data,the cerebrum was divided into 90 regions and Pearson’s correlation coefficient calculated between regions.These correlation matrices were then converted into a binary matrix with affixed sparsity values of 0.1–0.46.Under sparsity conditions,both groups satisfied this small-world property.The clustering coefficient was markedly lower,while average shortest path remarkably higher in patients compared with healthy controls.These findings confirm that cerebral functional networks in patients still show smallworld characteristics,which are highly effective in information transmission in the brain,as well as normal controls.Alternatively,varied small-worldness suggests that capacity of information transmission and integration in different brain regions in brachial plexus injury patients is damaged.展开更多
The brain is a complex network system in which a large number of neurons are widely connected to each other and transmit signals to each other.The memory characteristic of memristors makes them suitable for simulating...The brain is a complex network system in which a large number of neurons are widely connected to each other and transmit signals to each other.The memory characteristic of memristors makes them suitable for simulating neuronal synapses with plasticity.In this paper,a memristor is used to simulate a synapse,a discrete small-world neuronal network is constructed based on Rulkov neurons and its dynamical behavior is explored.We explore the influence of system parameters on the dynamical behaviors of the discrete small-world network,and the system shows a variety of firing patterns such as spiking firing and triangular burst firing when the neuronal parameterαis changed.The results of a numerical simulation based on Matlab show that the network topology can affect the synchronous firing behavior of the neuronal network,and the higher the reconnection probability and number of the nearest neurons,the more significant the synchronization state of the neurons.In addition,by increasing the coupling strength of memristor synapses,synchronization performance is promoted.The results of this paper can boost research into complex neuronal networks coupled with memristor synapses and further promote the development of neuroscience.展开更多
We investigate how dynamical behaviours of complex motor networks depend on the Newman-Watts small-world (NWSW) connections. Network elements are described by the permanent magnet synchronous motor (PMSM) with the...We investigate how dynamical behaviours of complex motor networks depend on the Newman-Watts small-world (NWSW) connections. Network elements are described by the permanent magnet synchronous motor (PMSM) with the values of parameters at which each individual PMSM is stable. It is found that with the increase of connection probability p, the motor in networks becomes periodic and falls into chaotic motion as p further increases. These phenomena imply that NWSW connections can induce and enhance chaos in motor networks. The possible mechanism behind the action of NWSW connections is addressed based on stability theory.展开更多
Synchronous firing of neurons is thought to be important for information communication in neuronal networks. This paper investigates the complete and phase synchronization in a heterogeneous small-world chaotic Hindma...Synchronous firing of neurons is thought to be important for information communication in neuronal networks. This paper investigates the complete and phase synchronization in a heterogeneous small-world chaotic Hindmarsh Rose neuronal network. The effects of various network parameters on synchronization behaviour are discussed with some biological explanations. Complete synchronization of small-world neuronal networks is studied theoretically by the master stability function method. It is shown that the coupling strength necessary for complete or phase synchronization decreases with the neuron number, the node degree and the connection density are increased. The effect of heterogeneity of neuronal networks is also considered and it is found that the network heterogeneity has an adverse effect on synchrony.展开更多
Water quality sensor networks are widely used in water resource monitoring.However,due to the fact that the energy of these networks cannot be supplemented in time,it is necessary to study effective routing protocols ...Water quality sensor networks are widely used in water resource monitoring.However,due to the fact that the energy of these networks cannot be supplemented in time,it is necessary to study effective routing protocols to extend their lifecycle.To address the problem of limited resources,a routing optimization algorithm based on a small-world network model is proposed.In this paper,a small-world network model is introduced for water quality sensor networks,in which the short average path and large clustering coefficient of the model are used to construct a super link.A short average path can reduce the network’s energy consumption,and a large coefficient can improve its fault-tolerance ability.However,the energy consumption of the relay nodes near the heterogeneous node is too great,and as such the energy threshold and non-uniform clustering are constructed to improve the lifecycle of the network.Simulation results show that,compared with the low-energy adaptive clustering hierarchy routing algorithm and the best sink location clustering heterogeneous network routing algorithm,the proposed improved routing model can effectively enhance the energy-utilization.The lifecycle of the network can be extended and the data transmission amount can be greatly increased.展开更多
Based on the topological characteristics of small-world networks,a nonlinear sliding mode controller is designed to minimize the effects of internal parameter uncertainties.To qualify the effects of uncertain paramete...Based on the topological characteristics of small-world networks,a nonlinear sliding mode controller is designed to minimize the effects of internal parameter uncertainties.To qualify the effects of uncertain parameters in the response networks,some effective recognition rates are designed so as to achieve a steady value in the extremely fast simulation time period.Meanwhile,the Fisher-Kolmogorov and Burgers spatiotemporal chaotic systems are selected as the network nodes for constructing a drive and a response network,respectively.The simulation results confirm that the developed sliding mode could realize the effective synchronization problem between the spatiotemporal networks,and the outer synchronization is still achieved timely even when the connection probability of the small-world networks changes.展开更多
We propose an impulsive hybrid control method to control the period-doubling bifurcations and stabilize unstable periodic orbits embedded in a chaotic attractor of a small-world network. Simulation results show that t...We propose an impulsive hybrid control method to control the period-doubling bifurcations and stabilize unstable periodic orbits embedded in a chaotic attractor of a small-world network. Simulation results show that the bifurcations can be delayed or completely eliminated. A periodic orbit of the system can be controlled to any desired periodic orbit by using this method.展开更多
An impulsive delayed feedback control strategy to control period-doubling bifurcations and chaos is proposed. The control method is then applied to a discrete small-world network model. Qualitative analyses and simula...An impulsive delayed feedback control strategy to control period-doubling bifurcations and chaos is proposed. The control method is then applied to a discrete small-world network model. Qualitative analyses and simulations show that under a generic condition, the bifurcations and the chaos can be delayed or eliminated completely. In addition, the periodic orbits embedded in the chaotic attractor can be stabilized.展开更多
Understanding the mechanisms underlying cell-surface interaction is of fundamental importance for the rational design of scaffolds aiming at tissue engineering,tissue repair and neural regeneration applications.Here,w...Understanding the mechanisms underlying cell-surface interaction is of fundamental importance for the rational design of scaffolds aiming at tissue engineering,tissue repair and neural regeneration applications.Here,we examined patterns of neuroblastoma cells cultured in three-dimensional polymeric scaffolds obtained by two-photon lithography.Because of the intrinsic resolution of the technique,the micrometric cylinders composing the scaffold have a lateral step size of^200 nm,a surface roughness of around 20 nm,and large values of fractal dimension approaching 2.7.We found that cells in the scaffold assemble into separate groups with many elements per group.After cell wiring,we found that resulting networks exhibit high clustering,small path lengths,and small-world characteristics.These values of the topological characteristics of the network can potentially enhance the quality,quantity and density of information transported in the network compared to equivalent random graphs of the same size.This is one of the first direct observations of cells developing into 3D small-world networks in an artificial matrix.展开更多
The harmonic stochastic resonance-enhanced signal detecting in Newman-Watts small-world neural network is studied using the Hodgkin-Huxley dynamical equation with noise. If the connection probability p, coupling stren...The harmonic stochastic resonance-enhanced signal detecting in Newman-Watts small-world neural network is studied using the Hodgkin-Huxley dynamical equation with noise. If the connection probability p, coupling strength gsyn and noise intensity D matches well, higher order resonance will be found and an optimal signal-to-noise ratio will be obtained. Then, the reasons are given to explain the mechanism of this appearance.展开更多
We study the evolutionary snowdrift game in a heterogeneous Newman-Watts small-world network. The heterogeneity of the network is controlled by the number of hubs. It is found that the moderate heterogeneity of the ne...We study the evolutionary snowdrift game in a heterogeneous Newman-Watts small-world network. The heterogeneity of the network is controlled by the number of hubs. It is found that the moderate heterogeneity of the network can promote the cooperation best. Besides, we study how the hubs affect the evolution of cooperative behaviours of the heterogeneous Newman-Watts small-world network. Simulation results show that both the initial states of hubs and the connections between hubs can play an important role. Our work gives a further insight into the effect of hubs on the heterogeneous networks.展开更多
The aim of this study is to examine the small-world properties of functional brain networks inChinese to English simultaneous interpreting(SI)using functional near-infrared spectroscopy(INIRS),In particular,the fNIRS ...The aim of this study is to examine the small-world properties of functional brain networks inChinese to English simultaneous interpreting(SI)using functional near-infrared spectroscopy(INIRS),In particular,the fNIRS neuroimaging combined with complex network analysis wasperformed to extract the features of functional brain networks underling three translationstrategies associated with Chinese to English SI:"transcoding"that takes the"shortcut"linkingtranslation equivalents between Chinese and the English,code-mixing"that basically does notinvolve blingual procesing,and"transphrasingn that takes the long route"involving amonolingual processing of meaning in Chinese and then another monolingual processing ofmeaning in English.Our results demonstrated that the small-world net work topology was able todistinguish well bet ween the transcoding,code-mixing and transphrasing strategies related toChinese to English SI.展开更多
Phase transitions widely exist in nature and occur when some control parameters are changed. In neural systems, their macroscopic states are represented by the activity states of neuron populations, and phase transiti...Phase transitions widely exist in nature and occur when some control parameters are changed. In neural systems, their macroscopic states are represented by the activity states of neuron populations, and phase transitions between different activity states are closely related to corresponding functions in the brain. In particular, phase transitions to some rhythmic synchronous firing states play significant roles on diverse brain functions and disfunctions, such as encoding rhythmical external stimuli, epileptic seizure, etc. However, in previous studies, phase transitions in neuronal networks are almost driven by network parameters (e.g., external stimuli), and there has been no investigation about the transitions between typical activity states of neuronal networks in a self-organized way by applying plastic connection weights. In this paper, we discuss phase transitions in electrically coupled and lattice-based small-world neuronal networks (LBSW networks) under spike-timing-dependent plasticity (STDP). By applying STDP on all electrical synapses, various known and novel phase transitions could emerge in LBSW networks, particularly, the phenomenon of self-organized phase transitions (SOPTs): repeated transitions between synchronous and asynchronous firing states. We further explore the mechanics generating SOPTs on the basis of synaptic weight dynamics.展开更多
The phenomenon of stochastic resonance and synchronization on some complex neuronal networks have been investigated extensively.These studies are of great significance for us to understand the weak signal detection an...The phenomenon of stochastic resonance and synchronization on some complex neuronal networks have been investigated extensively.These studies are of great significance for us to understand the weak signal detection and information transmission in neural systems.Moreover,the complex electrical activities of a cell can induce time-varying electromagnetic fields,of which the internal fluctuation can change collective electrical activities of neuronal networks.However,in the past there have been a few corresponding research papers on the influence of the electromagnetic induction among neurons on the collective dynamics of the complex system.Therefore,modeling each node by imposing electromagnetic radiation on the networks and investigating stochastic resonance in a hybrid network can extend the interest of the work to the understanding of these network dynamics.In this paper,we construct a small-world network consisting of excitatory neurons and inhibitory neurons,in which the effect of electromagnetic induction that is considered by using magnetic flow and the modulation of magnetic flow on membrane potential is described by using memristor coupling.According to our proposed network model,we investigate the effect of induced electric field generated by magnetic stimulation on the transition of bursting phase synchronization of neuronal system under electromagnetic radiation.It is shown that the intensity and frequency of the electric field can induce the transition of the network bursting phase synchronization.Moreover,we also analyze the effect of magnetic flow on the detection of weak signals and stochastic resonance by introducing a subthreshold pacemaker into a single cell of the network and we find that there is an optimal electromagnetic radiation intensity,where the phenomenon of stochastic resonance occurs and the degree of response to the weak signal is maximized.Simulation results show that the extension of the subthreshold pacemaker in the network also depends greatly on coupling strength.The presented results may have important implications for the theoretical study of magnetic stimulation technology,thus promoting further development of transcranial magnetic stimulation(TMS) as an effective means of treating certain neurological diseases.展开更多
In this paper, we propose a new model of weighted small-world biological neural networks based on biophysical Hodgkin-Huxley neurons with side-restrain mechanism. Then we study excitement properties of the model under...In this paper, we propose a new model of weighted small-world biological neural networks based on biophysical Hodgkin-Huxley neurons with side-restrain mechanism. Then we study excitement properties of the model under alternating current (AC) stimulation. The study shows that the excitement properties in the networks are preferably consistent with the behavior properties of a brain nervous system under different AC stimuli, such as refractory period and the brain neural excitement response induced by different intensities of noise and coupling. The results of the study have reference worthiness for the brain nerve electrophysiology and epistemological science.展开更多
We study the dynamics of an epidemic-like model for the spread of a rumor on a connecting multi-small-world- network (CM-SWN) model, which represents organizational communication in the real world. It has been shown...We study the dynamics of an epidemic-like model for the spread of a rumor on a connecting multi-small-world- network (CM-SWN) model, which represents organizational communication in the real world. It has been shown that this model exhibits a transition between regimes of localization and propagation at a finite value of network randomness. Here, by numerical means, we perform a quantitative characterization of the evolution in the three groups under two evolution rules, namely the conformity and obeying principles. The variant of a dynamic CM-SWN, where the quenched disorder of small-world networks is replaced by randomly changing connections between individuals in a single network and stable connection by star nodes between networks, is also analysed in detail and compared with a mean-field approximation.展开更多
A fast global convergence algorithm, small-world optimization (SWO), was designed to solve the global optimization problems, which was inspired from small-world theory and six degrees of separation principle in sociol...A fast global convergence algorithm, small-world optimization (SWO), was designed to solve the global optimization problems, which was inspired from small-world theory and six degrees of separation principle in sociology. Firstly, the solution space was organized into a small-world network model based on social relationship network. Secondly, a simple search strategy was adopted to navigate into this network in order to realize the optimization. In SWO, the two operators for searching the short-range contacts and long-range contacts in small-world network were corresponding to the exploitation and exploration, which have been revealed as the common features in many intelligent algorithms. The proposed algorithm was validated via popular benchmark functions and engineering problems. And also the impacts of parameters were studied. The simulation results indicate that because of the small-world theory, it is suitable for heuristic methods to search targets efficiently in this constructed small-world network model. It is not easy for each test mail to fall into a local trap by shifting into two mapping spaces in order to accelerate the convergence speed. Compared with some classical algorithms, SWO is inherited with optimal features and outstanding in convergence speed. Thus, the algorithm can be considered as a good alternative to solve global optimization problems.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61962034,61862058)Longyuan Youth Innovation and Entrepreneurship Talent(Individual)Project and Tianyou Youth Talent Lift Program of Lanzhou Jiaotong Univesity。
文摘Since the outbreak and spread of corona virus disease 2019(COVID-19),the prevalence of mental disorders,such as depression,has continued to increase.To explore the abnormal changes of brain functional connections in patients with depression,this paper proposes a depression analysis method based on brain function network(BFN).To avoid the volume conductor effect,BFN was constructed based on phase lag index(PLI).Then the indicators closely related to depression were selected from weighted BFN based on small-worldness(SW)characteristics and binarization BFN based on the minimum spanning tree(MST).Differences analysis between groups and correlation analysis between these indicators and diagnostic indicators were performed in turn.The resting state electroencephalogram(EEG)data of 24 patients with depression and 29 healthy controls(HC)was used to verify our proposed method.The results showed that compared with HC,the information processing of BFN in patients with depression decreased,and BFN showed a trend of randomization.
文摘Research on brain function after brachial plexus injury focuses on local cortical functional reorganization,and few studies have focused on brain networks after brachial plexus injury.Changes in brain networks may help understanding of brain plasticity at the global level.We hypothesized that topology of the global cerebral resting-state functional network changes after unilateral brachial plexus injury.Thus,in this cross-sectional study,we recruited eight male patients with unilateral brachial plexus injury(right handedness,mean age of 27.9±5.4years old)and eight male healthy controls(right handedness,mean age of 28.6±3.2).After acquiring and preprocessing resting-state magnetic resonance imaging data,the cerebrum was divided into 90 regions and Pearson’s correlation coefficient calculated between regions.These correlation matrices were then converted into a binary matrix with affixed sparsity values of 0.1–0.46.Under sparsity conditions,both groups satisfied this small-world property.The clustering coefficient was markedly lower,while average shortest path remarkably higher in patients compared with healthy controls.These findings confirm that cerebral functional networks in patients still show smallworld characteristics,which are highly effective in information transmission in the brain,as well as normal controls.Alternatively,varied small-worldness suggests that capacity of information transmission and integration in different brain regions in brachial plexus injury patients is damaged.
基金Project supported by the Key Projects of Hunan Provincial Department of Education (Grant No.23A0133)the Natural Science Foundation of Hunan Province (Grant No.2022JJ30572)the National Natural Science Foundations of China (Grant No.62171401)。
文摘The brain is a complex network system in which a large number of neurons are widely connected to each other and transmit signals to each other.The memory characteristic of memristors makes them suitable for simulating neuronal synapses with plasticity.In this paper,a memristor is used to simulate a synapse,a discrete small-world neuronal network is constructed based on Rulkov neurons and its dynamical behavior is explored.We explore the influence of system parameters on the dynamical behaviors of the discrete small-world network,and the system shows a variety of firing patterns such as spiking firing and triangular burst firing when the neuronal parameterαis changed.The results of a numerical simulation based on Matlab show that the network topology can affect the synchronous firing behavior of the neuronal network,and the higher the reconnection probability and number of the nearest neurons,the more significant the synchronization state of the neurons.In addition,by increasing the coupling strength of memristor synapses,synchronization performance is promoted.The results of this paper can boost research into complex neuronal networks coupled with memristor synapses and further promote the development of neuroscience.
基金Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 50937001)the National Natural Science Foundation of China (Grant Nos. 10862001 and 10947011)the Construction of Key Laboratories in Universities of Guangxi,China (Grant No. 200912)
文摘We investigate how dynamical behaviours of complex motor networks depend on the Newman-Watts small-world (NWSW) connections. Network elements are described by the permanent magnet synchronous motor (PMSM) with the values of parameters at which each individual PMSM is stable. It is found that with the increase of connection probability p, the motor in networks becomes periodic and falls into chaotic motion as p further increases. These phenomena imply that NWSW connections can induce and enhance chaos in motor networks. The possible mechanism behind the action of NWSW connections is addressed based on stability theory.
基金supported by the National Natural Science Foundation of China (Grant No 10872014)
文摘Synchronous firing of neurons is thought to be important for information communication in neuronal networks. This paper investigates the complete and phase synchronization in a heterogeneous small-world chaotic Hindmarsh Rose neuronal network. The effects of various network parameters on synchronization behaviour are discussed with some biological explanations. Complete synchronization of small-world neuronal networks is studied theoretically by the master stability function method. It is shown that the coupling strength necessary for complete or phase synchronization decreases with the neuron number, the node degree and the connection density are increased. The effect of heterogeneity of neuronal networks is also considered and it is found that the network heterogeneity has an adverse effect on synchrony.
基金This research was funded by the National Natural Science Foundation of China(Grant No.61802010)Hundred-Thousand-Ten-Thousand Talents Project of Beijing(Grant No.2020A28)+1 种基金National Social Science Fund of China(Grant No.19BGL184)Beijing Excellent Talent Training Support Project for Young Top-Notch Team(Grant No.2018000026833TD01).
文摘Water quality sensor networks are widely used in water resource monitoring.However,due to the fact that the energy of these networks cannot be supplemented in time,it is necessary to study effective routing protocols to extend their lifecycle.To address the problem of limited resources,a routing optimization algorithm based on a small-world network model is proposed.In this paper,a small-world network model is introduced for water quality sensor networks,in which the short average path and large clustering coefficient of the model are used to construct a super link.A short average path can reduce the network’s energy consumption,and a large coefficient can improve its fault-tolerance ability.However,the energy consumption of the relay nodes near the heterogeneous node is too great,and as such the energy threshold and non-uniform clustering are constructed to improve the lifecycle of the network.Simulation results show that,compared with the low-energy adaptive clustering hierarchy routing algorithm and the best sink location clustering heterogeneous network routing algorithm,the proposed improved routing model can effectively enhance the energy-utilization.The lifecycle of the network can be extended and the data transmission amount can be greatly increased.
基金Project supported by the National Natural Science Foundation of China(Nos.11602146,11872304,and 11962019)the Science Foundation of Shanghai(No.18ZR1438200)and the Chen Guang Project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation(No.16CG65)。
文摘Based on the topological characteristics of small-world networks,a nonlinear sliding mode controller is designed to minimize the effects of internal parameter uncertainties.To qualify the effects of uncertain parameters in the response networks,some effective recognition rates are designed so as to achieve a steady value in the extremely fast simulation time period.Meanwhile,the Fisher-Kolmogorov and Burgers spatiotemporal chaotic systems are selected as the network nodes for constructing a drive and a response network,respectively.The simulation results confirm that the developed sliding mode could realize the effective synchronization problem between the spatiotemporal networks,and the outer synchronization is still achieved timely even when the connection probability of the small-world networks changes.
基金supported by the Research Foundation for Outstanding Young Teachers of China University of Geosciences, China (Grant No CUGNL0637)the National Natural Science Foundation of China (Grant Nos 60573005, 60603006 and 60628301)
文摘We propose an impulsive hybrid control method to control the period-doubling bifurcations and stabilize unstable periodic orbits embedded in a chaotic attractor of a small-world network. Simulation results show that the bifurcations can be delayed or completely eliminated. A periodic orbit of the system can be controlled to any desired periodic orbit by using this method.
基金Project supported by the National Natural Science Foundation of China(Grant No.60974004)the Science Foundation of Ministry of Housing and Urban-Rural Development,China(Grant No.2011-K5-31)
文摘An impulsive delayed feedback control strategy to control period-doubling bifurcations and chaos is proposed. The control method is then applied to a discrete small-world network model. Qualitative analyses and simulations show that under a generic condition, the bifurcations and the chaos can be delayed or eliminated completely. In addition, the periodic orbits embedded in the chaotic attractor can be stabilized.
文摘Understanding the mechanisms underlying cell-surface interaction is of fundamental importance for the rational design of scaffolds aiming at tissue engineering,tissue repair and neural regeneration applications.Here,we examined patterns of neuroblastoma cells cultured in three-dimensional polymeric scaffolds obtained by two-photon lithography.Because of the intrinsic resolution of the technique,the micrometric cylinders composing the scaffold have a lateral step size of^200 nm,a surface roughness of around 20 nm,and large values of fractal dimension approaching 2.7.We found that cells in the scaffold assemble into separate groups with many elements per group.After cell wiring,we found that resulting networks exhibit high clustering,small path lengths,and small-world characteristics.These values of the topological characteristics of the network can potentially enhance the quality,quantity and density of information transported in the network compared to equivalent random graphs of the same size.This is one of the first direct observations of cells developing into 3D small-world networks in an artificial matrix.
基金Project supported by the Natural Science Foundation of Jiangsu Province,China (Grant No. 06KJB140110)the Project of Xuzhou Normal Uiniversity,China (Grant Nos. 08XLB06 and 07PYL02)
文摘The harmonic stochastic resonance-enhanced signal detecting in Newman-Watts small-world neural network is studied using the Hodgkin-Huxley dynamical equation with noise. If the connection probability p, coupling strength gsyn and noise intensity D matches well, higher order resonance will be found and an optimal signal-to-noise ratio will be obtained. Then, the reasons are given to explain the mechanism of this appearance.
基金supported by the National Basic Research Program of China (No 2006CB705500)the National Natural Science Foundation of China (Grant Nos 60744003, 10635040, 10532060 and 10472116)the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘We study the evolutionary snowdrift game in a heterogeneous Newman-Watts small-world network. The heterogeneity of the network is controlled by the number of hubs. It is found that the moderate heterogeneity of the network can promote the cooperation best. Besides, we study how the hubs affect the evolution of cooperative behaviours of the heterogeneous Newman-Watts small-world network. Simulation results show that both the initial states of hubs and the connections between hubs can play an important role. Our work gives a further insight into the effect of hubs on the heterogeneous networks.
基金supported by MYRG2016-00110-FHS,MYRG2015-00036-FHS and MYRG2015-00150-FAH grants from the University of MacaoFDCT 026/2014/A1 and FDCT 025/2015/A1 grants from the Macao government.
文摘The aim of this study is to examine the small-world properties of functional brain networks inChinese to English simultaneous interpreting(SI)using functional near-infrared spectroscopy(INIRS),In particular,the fNIRS neuroimaging combined with complex network analysis wasperformed to extract the features of functional brain networks underling three translationstrategies associated with Chinese to English SI:"transcoding"that takes the"shortcut"linkingtranslation equivalents between Chinese and the English,code-mixing"that basically does notinvolve blingual procesing,and"transphrasingn that takes the long route"involving amonolingual processing of meaning in Chinese and then another monolingual processing ofmeaning in English.Our results demonstrated that the small-world net work topology was able todistinguish well bet ween the transcoding,code-mixing and transphrasing strategies related toChinese to English SI.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11135001 and 11174034)
文摘Phase transitions widely exist in nature and occur when some control parameters are changed. In neural systems, their macroscopic states are represented by the activity states of neuron populations, and phase transitions between different activity states are closely related to corresponding functions in the brain. In particular, phase transitions to some rhythmic synchronous firing states play significant roles on diverse brain functions and disfunctions, such as encoding rhythmical external stimuli, epileptic seizure, etc. However, in previous studies, phase transitions in neuronal networks are almost driven by network parameters (e.g., external stimuli), and there has been no investigation about the transitions between typical activity states of neuronal networks in a self-organized way by applying plastic connection weights. In this paper, we discuss phase transitions in electrically coupled and lattice-based small-world neuronal networks (LBSW networks) under spike-timing-dependent plasticity (STDP). By applying STDP on all electrical synapses, various known and novel phase transitions could emerge in LBSW networks, particularly, the phenomenon of self-organized phase transitions (SOPTs): repeated transitions between synchronous and asynchronous firing states. We further explore the mechanics generating SOPTs on the basis of synaptic weight dynamics.
基金Project supported by the National Natural Science Foundation of China(Grant No.11172103)
文摘The phenomenon of stochastic resonance and synchronization on some complex neuronal networks have been investigated extensively.These studies are of great significance for us to understand the weak signal detection and information transmission in neural systems.Moreover,the complex electrical activities of a cell can induce time-varying electromagnetic fields,of which the internal fluctuation can change collective electrical activities of neuronal networks.However,in the past there have been a few corresponding research papers on the influence of the electromagnetic induction among neurons on the collective dynamics of the complex system.Therefore,modeling each node by imposing electromagnetic radiation on the networks and investigating stochastic resonance in a hybrid network can extend the interest of the work to the understanding of these network dynamics.In this paper,we construct a small-world network consisting of excitatory neurons and inhibitory neurons,in which the effect of electromagnetic induction that is considered by using magnetic flow and the modulation of magnetic flow on membrane potential is described by using memristor coupling.According to our proposed network model,we investigate the effect of induced electric field generated by magnetic stimulation on the transition of bursting phase synchronization of neuronal system under electromagnetic radiation.It is shown that the intensity and frequency of the electric field can induce the transition of the network bursting phase synchronization.Moreover,we also analyze the effect of magnetic flow on the detection of weak signals and stochastic resonance by introducing a subthreshold pacemaker into a single cell of the network and we find that there is an optimal electromagnetic radiation intensity,where the phenomenon of stochastic resonance occurs and the degree of response to the weak signal is maximized.Simulation results show that the extension of the subthreshold pacemaker in the network also depends greatly on coupling strength.The presented results may have important implications for the theoretical study of magnetic stimulation technology,thus promoting further development of transcranial magnetic stimulation(TMS) as an effective means of treating certain neurological diseases.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 70571017 and 10547004 and the Key Projects of National Natural Science Foundation of China under Grant No. 70431002
文摘In this paper, we propose a new model of weighted small-world biological neural networks based on biophysical Hodgkin-Huxley neurons with side-restrain mechanism. Then we study excitement properties of the model under alternating current (AC) stimulation. The study shows that the excitement properties in the networks are preferably consistent with the behavior properties of a brain nervous system under different AC stimuli, such as refractory period and the brain neural excitement response induced by different intensities of noise and coupling. The results of the study have reference worthiness for the brain nerve electrophysiology and epistemological science.
文摘We study the dynamics of an epidemic-like model for the spread of a rumor on a connecting multi-small-world- network (CM-SWN) model, which represents organizational communication in the real world. It has been shown that this model exhibits a transition between regimes of localization and propagation at a finite value of network randomness. Here, by numerical means, we perform a quantitative characterization of the evolution in the three groups under two evolution rules, namely the conformity and obeying principles. The variant of a dynamic CM-SWN, where the quenched disorder of small-world networks is replaced by randomly changing connections between individuals in a single network and stable connection by star nodes between networks, is also analysed in detail and compared with a mean-field approximation.
基金Projects(51105157, 50875101) supported by the National Natural Science Foundation of ChinaProject(2009AA043301) supported by the National High Technology Research and Development Program of China
文摘A fast global convergence algorithm, small-world optimization (SWO), was designed to solve the global optimization problems, which was inspired from small-world theory and six degrees of separation principle in sociology. Firstly, the solution space was organized into a small-world network model based on social relationship network. Secondly, a simple search strategy was adopted to navigate into this network in order to realize the optimization. In SWO, the two operators for searching the short-range contacts and long-range contacts in small-world network were corresponding to the exploitation and exploration, which have been revealed as the common features in many intelligent algorithms. The proposed algorithm was validated via popular benchmark functions and engineering problems. And also the impacts of parameters were studied. The simulation results indicate that because of the small-world theory, it is suitable for heuristic methods to search targets efficiently in this constructed small-world network model. It is not easy for each test mail to fall into a local trap by shifting into two mapping spaces in order to accelerate the convergence speed. Compared with some classical algorithms, SWO is inherited with optimal features and outstanding in convergence speed. Thus, the algorithm can be considered as a good alternative to solve global optimization problems.